# Finite Math - J-term Homework. Section Inverse of a Square Matrix

Save this PDF as:

Size: px
Start display at page:

Download "Finite Math - J-term Homework. Section Inverse of a Square Matrix"

## Transcription

1 Section.5-77, 78, 79, 80 Finite Math - J-term 017 Lecture Notes - 1/19/017 Homework Section.6-9, 1, 1, 15, 17, 18, 1, 6, 9, 3, 37, 39, 1,, 5, 6, 55 Section 5.1-9, 11, 1, 13, 1, 17, 9, 30 Section.5 - Inverse of a Square Matrix Cryptography. Suppose we represent letters by numbers as follows Blank 0 I 9 R 18 A 1 J 10 S 19 B K 11 T 0 C 3 L 1 U 1 D M 13 V E 5 N 1 W 3 F 6 O 15 X G 7 P 16 Y 5 H 8 Q 17 Z 6 Then, for example, the message SECRET CODE would correspond to the sequence The goal of Cryptography is to encode messages in a different sequence which can only be translated back to the message using a decoder. Definition 1 (Encoding matrix/decoding matrix). Any matrix with positive integer elements whose inverse exists can be used as an encoding matrix. The inverse of an encoding matrix is a decoding matrix. To encode a message, we must first decide on a encoding matrix A. If A is a n n matrix, then we create another matrix n p matrix B by entering the message going down columns and taking as many columns as necessary to fit the whole message. Note that the number of rows of B MUST MATCH the size of A. If there are extra entries in B after fitting the whole message, just fill them with 0 s. Example 1. Encode the message SECRET CODE using the encoding matrix [ ] 3 A =

2 Solution. We first make the matrix B [ ] B = Then to encode the message we find the product [ ] [ ] AB = [ = [ ] = ] So the coded message is Example. A message was encoded with A from the previous example. Decode the sequence Solution. First we have to invert the encoding matrix to get the decoding matrix A 1 = 1 [ ] Make a matrix out of the coded message in the same way as above [ ] C = and find the product A 1 C = = = [ ] [ ] [ [ ] ]

3 Example 3. Use the encoding matrix [ ] E = (a) Encode the message MATH IS FUN using E. (b) Decode the sequence

4 Section.6 - Matrix Equations and Systems of Linear Equations Matrix Equations. Theorem 1. Assume that all products and sums are defined for the indicated matrices A, B, C, I, and 0 (where 0 stands for the zero matrix). Then Addition Properties (1) Associative (A + B) + C = A + (B + C) () Commutative A + B = B + A (3) Additive Identity A + 0 = 0 + A = A () Additive Inverse Multiplication Properties (1) Associative Property () Multiplicative Identity A + ( A) = ( A) + A = 0 A(BC) = (AB)C AI = IA = A (3) Multiplicative Inverse If A is a square matrix and A 1 exists, then AA 1 = A 1 A = I Combined Properties (1) Left Distributive () Right Distributive A(B + C) = AB + AC (B + C)A = BA + CA

5 5 Equality (1) Addition If A = B, then A + C = B + C () Left Multiplication If A = B, then CA = CB (3) Right Multiplication If A = B, then AC = BC We can use the rules above to solve various matrix equations. In the next 3 examples, we will assume all necessary inverses exists. Example. Suppose A is an n n matrix and B and X are n 1 column matrices. Solve the matrix equation for X AX = B. Solution. If we multiply both sides of this equation ON THE LEFT by A 1 we find A 1 (AX) = A 1 B = (A 1 A)X = IX = X = A 1 B Example 5. Suppose A is an n n matrix and B, C, and X are n 1 matrices. Solve the matrix equation for X AX + C = B. Solution. Begin by subtracting C to the other side and now multiply on the left by A 1 AX + C = B = AX = B C A 1 (AX) = A 1 (B C) = (A 1 A)X = IX = X = A 1 (B C) = A 1 B A 1 C Example 6. Suppose A and B are n n matrices and C is an n 1 matrix. Solve the matrix equation for X AX BX = C. What size matrix is X?

6 6 Matrix Equations and Systems of Linear Equations. We can also solve systems of equations using the above ideas. These apply in the case that the system has the same number of variables as equations and the coefficient matrix of the system is invertible. If that is the case, for the system We can create the matrix equation where a 11 x 1 + a 1 x + + a 1n x n = b 1 a 1 x 1 + a x + + a n x n = b a 1n x n =. a n1 x 1 + a n x + + a nn x n = b n a 11 a 1 a 1n A = a 1 a a n a n1 a n a 1n AX = B, X = x 1 x. x n, and B = Then, if A is invertible (as is the case when the system is consistent and independent, i.e., exactly one solution), we have X = A 1 B. Example 7. Solve the system of equations using matrix methods x + y = 1 x + 3y = 3 Solution. Begin by writing this system as a matrix equation [ ] [ ] [ ] 1 x 1 AX = = = B 1 3 y 3 Our goal is to find A 1 B, so first find A 1 : A 1 = 1 [ Then X = A 1 B = So we have x = 3 and y =. [ ] = ] [ 1 3 [ ] = [ 3 Example 8. Solve the system of equations using matrix methods Solution. x =, y = 7 x + y = 1 5x + 3y = 1 ] ]. b 1 b. b n

7 Section Linear Inequalities in Two Variables Graphing Linear Inequalities in Two Variables. There are types of linear inequalities 7 Ax + By C Ax + By > C Ax + By C Ax + By < C There is a simple procedure to graphing any of these. If equality is not allowed in an inequality, we call it a strict inequality, otherwise we simply call it an inequality. Procedure. (1) Graph the line Ax + By = C as a dashed line if the inequality is strict. Otherwise, graph it as a solid line. () Choose a test point anywhere in the plane, as long as it is not the line. (The origin, (0, 0) is often an easy choice here, but if it is on the line, (1, 0) or (0, 1) are also easy points to check.) (3) Plug the point from step () into the inequality. Is the inequality true? Shade in the side of the line with that point. If the inequality is false, shade in the other side. Example 9. Graph the inequality Solution. The line we want to graph is 6x 3y 1 6x 3y = 1 or y = x. Since the inequality is not strict, we graph it with a solid line

8 8 The point (0, 0) is not on the line, so we check that point in the inequality 6(0) 3(0) = 0 1 This is false, so we shade in the side of the line without the origin Example 10. Graph the inequality x + 8y < 3 Solution. The line we want to graph is x + 8y = 3 or y = 1 x +. Since the inequality is strict, we graph it with a dashed line The point (0, 0) is not on the line, so we check that point in the inequality (0) + 8(0) = 0 < 3 This is true, so we shade in the side of the line with the origin.

9 Example 11. Graph the inequality y

10 10 Example 1. Graph the inequality x 5y > Example 13. Consider the graphed region below

11 (a) Find an equation for the boundary of the region in the form Ax + By = C. (b) Find a linear equality which describes this region. Solution. (a) Observing the graph, we see that the boundary line passes through (0, 0) and (, 1). Using the point-slope form, we get 11 which simplifies to y 0 = 1 0 (x 0) 0 y = 1 x Putting this in the required form gives x y = 0. (b) Because the boundary line is solid, we are going to replace = with either or. To figure out which one, we pick a test point which is not on the line and choose the inequality appropriately. If the test point comes from the shaded region, then we pick the inequality which makes the statement true. If the test point comes from outside the shaded region, pick the inequality which makes the statement false. Since (0, 0) actually is on this line, we will pick (1, 0) as our test point. Notice that (1, 0) is outside the shaded region. Plugging (1, 0) into the equation gives x y = 1 (0) = 1? 0. Since (1, 0) is not in the shaded region, we need to pick the one of and to replace? which makes the statement false. This means we choose giving that the inequality for this picture is x y 0.

12 1 Example 1. Consider the graphed region below (a) Find an equation for the boundary of the region in the form Ax + By = C. (b) Find a linear equality which describes this region.

### x = 12 x = 12 1x = 16

2.2 - The Inverse of a Matrix We've seen how to add matrices, multiply them by scalars, subtract them, and multiply one matrix by another. The question naturally arises: Can we divide one matrix by another?

### AH Matrices.notebook November 28, 2016

Matrices Numbers are put into arrays to help with multiplication, division etc. A Matrix (matrices pl.) is a rectangular array of numbers arranged in rows and columns. Matrices If there are m rows and

### Review for Mastery Using Graphs and Tables to Solve Linear Systems

3-1 Using Graphs and Tables to Solve Linear Systems A linear system of equations is a set of two or more linear equations. To solve a linear system, find all the ordered pairs (x, y) that make both equations

### Precalculus Notes: Unit 7 Systems of Equations and Matrices

Date: 7.1, 7. Solving Systems of Equations: Graphing, Substitution, Elimination Syllabus Objectives: 8.1 The student will solve a given system of equations or system of inequalities. Solution of a System

### 6-2 Matrix Multiplication, Inverses and Determinants

Find AB and BA, if possible. 4. A = B = A = ; B = A is a 2 1 matrix and B is a 1 4 matrix. Because the number of columns of A is equal to the number of rows of B, AB exists. To find the first entry of

### Chapter 18 out of 37 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. Cargal.

Chapter 8 out of 7 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. Cargal 8 Matrices Definitions and Basic Operations Matrix algebra is also known

### Matrices. A Matrix (This one has 2 Rows and 3 Columns) To add two matrices: add the numbers in the matching positions:

Matrices A Matrix is an array of numbers: We talk about one matrix, or several matrices. There are many things we can do with them... Adding A Matrix (This one has 2 Rows and 3 Columns) To add two matrices:

### The inverse of a matrix

The inverse of a matrix A matrix that has an inverse is called invertible. A matrix that does not have an inverse is called singular. Most matrices don't have an inverse. The only kind of matrix that has

### Experiment 4 Boolean Functions Implementation

Experiment 4 Boolean Functions Implementation Introduction: Generally you will find that the basic logic functions AND, OR, NAND, NOR, and NOT are not sufficient to implement complex digital logic functions.

### Question 2: How do you solve a linear programming problem with a graph?

Question : How do you solve a linear programming problem with a graph? Now that we have several linear programming problems, let s look at how we can solve them using the graph of the system of inequalities.

### Chapter 1 Section 1 Solving Linear Equations in One Variable

Chapter Section Solving Linear Equations in One Variable A linear equation in one variable is an equation which can be written in the form: ax + b = c for a, b, and c real numbers with a 0. Linear equations

### Encryption à la Mod Name

Rock Around the Clock Part Encryption à la Mod Let s call the integers,, 3,, 5, and the mod 7 encryption numbers and define a new mod 7 multiplication operation, denoted by, in the following manner: a

### Teachers Teaching with Technology (Scotland) Teachers Teaching with Technology. Scotland T 3. Matrices. Teachers Teaching with Technology (Scotland)

Teachers Teaching with Technology (Scotland) Teachers Teaching with Technology T 3 Scotland Matrices Teachers Teaching with Technology (Scotland) MATRICES Aim To demonstrate how the TI-83 can be used to

### LSN 4 Boolean Algebra & Logic Simplification. ECT 224 Digital Computer Fundamentals. Department of Engineering Technology

LSN 4 Boolean Algebra & Logic Simplification Department of Engineering Technology LSN 4 Key Terms Variable: a symbol used to represent a logic quantity Compliment: the inverse of a variable Literal: a

### Vector: A series of scalars contained in a column or row. Dimensions: How many rows and columns a vector or matrix has.

ASSIGNMENT 0 Introduction to Linear Algebra (Basics of vectors and matrices) Due 3:30 PM, Tuesday, October 10 th. Assignments should be submitted via e-mail to: matlabfun.ucsd@gmail.com You can also submit

### Quadratic Equations over Matrices over the Quaternions. By Diana Oliff Mentor: Professor Robert Wilson

Quadratic Equations over Matrices over the Quaternions By Diana Oliff Mentor: Professor Robert Wilson Fields A field consists of a set of objects S and two operations on this set. We will call these operations

### CS/COE 0447 Example Problems for Exam 2 Spring 2011

CS/COE 0447 Example Problems for Exam 2 Spring 2011 1) Show the steps to multiply the 4-bit numbers 3 and 5 with the fast shift-add multipler. Use the table below. List the multiplicand (M) and product

### MATH 890 HOMEWORK 2 DAVID MEREDITH

MATH 890 HOMEWORK 2 DAVID MEREDITH (1) Suppose P and Q are polyhedra. Then P Q is a polyhedron. Moreover if P and Q are polytopes then P Q is a polytope. The facets of P Q are either F Q where F is a facet

### Matrices and Systems of Equations

1 CA-Fall 2011-Jordan College Algebra, 4 th edition, Beecher/Penna/Bittinger, Pearson/Addison Wesley, 2012 Chapter 6: Systems of Equations and Matrices Section 6.3 Matrices and Systems of Equations Matrices

### CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES

CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES YINGYING REN Abstract. In this paper, the applications of homogeneous coordinates are discussed to obtain an efficient model

### We have already studied equations of the line. There are several forms:

Chapter 13-Coordinate Geometry extended. 13.1 Graphing equations We have already studied equations of the line. There are several forms: slope-intercept y = mx + b point-slope y - y1=m(x - x1) standard

### LESSON 6 ADD A GRAPH TO A QUESTION

LESSON 6 ADD A GRAPH TO A QUESTION The next four lessons will focus on the different math objects you can add to your custom question. These objects include graphs, number lines, figures, pie charts, and

### Lecture 5. If, as shown in figure, we form a right triangle With P1 and P2 as vertices, then length of the horizontal

Distance; Circles; Equations of the form Lecture 5 y = ax + bx + c In this lecture we shall derive a formula for the distance between two points in a coordinate plane, and we shall use that formula to

### 1 Introduction to Matlab

1 Introduction to Matlab 1. What is Matlab? Matlab is a computer program designed to do mathematics. You might think of it as a super-calculator. That is, once Matlab has been started, you can enter computations,

### Algebra 1 Review. Properties of Real Numbers. Algebraic Expressions

Algebra 1 Review Properties of Real Numbers Algebraic Expressions Real Numbers Natural Numbers: 1, 2, 3, 4,.. Numbers used for counting Whole Numbers: 0, 1, 2, 3, 4,.. Natural Numbers and 0 Integers:,

### Introduction to the new AES Standard: Rijndael

Introduction to the new AES Standard: Rijndael Paul Donis This paper will explain how the Rijndael Cipher Reference Code in C works. Rijndael is a block cipher that encrypts and decrypts 128, 192, and

### Linear Transformations

Linear Transformations The two basic vector operations are addition and scaling From this perspective, the nicest functions are those which preserve these operations: Def: A linear transformation is a

### Rational Numbers CHAPTER Introduction

RATIONAL NUMBERS Rational Numbers CHAPTER. Introduction In Mathematics, we frequently come across simple equations to be solved. For example, the equation x + () is solved when x, because this value of

### Know the Well-ordering principle: Any set of positive integers which has at least one element contains a smallest element.

The first exam will be on Wednesday, September 22, 2010. The syllabus will be sections 1.1 and 1.2 in Lax, and the number theory handout found on the class web site, plus the handout on the method of successive

### Intro. To Graphing Linear Equations

Intro. To Graphing Linear Equations The Coordinate Plane A. The coordinate plane has 4 quadrants. B. Each point in the coordinate plain has an x-coordinate (the abscissa) and a y-coordinate (the ordinate).

### CS388C: Combinatorics and Graph Theory

CS388C: Combinatorics and Graph Theory David Zuckerman Review Sheet 2003 TA: Ned Dimitrov updated: September 19, 2007 These are some of the concepts we assume in the class. If you have never learned them

### If a b or a c, then a bc If a b and b c, then a c Every positive integer n > 1 can be written uniquely as n = p 1 k1 p 2 k2 p 3 k3 p 4 k4 p s

Points missed: Student's Name: Total score: /100 points East Tennessee State University Department of Computer and Information Sciences CSCI 1900 (Tarnoff) Math for Computer Science TEST 1 for Summer Term,

### Period: Date Lesson 13: Analytic Proofs of Theorems Previously Proved by Synthetic Means

: Analytic Proofs of Theorems Previously Proved by Synthetic Means Learning Targets Using coordinates, I can find the intersection of the medians of a triangle that meet at a point that is two-thirds of

### Bawar Abid Abdalla. Assistant Lecturer Software Engineering Department Koya University

Logic Design First Stage Lecture No.5 Boolean Algebra Bawar Abid Abdalla Assistant Lecturer Software Engineering Department Koya University Boolean Operations Laws of Boolean Algebra Rules of Boolean Algebra

### Mathematics. Jaehyun Park. CS 97SI Stanford University. June 29, 2015

Mathematics Jaehyun Park CS 97SI Stanford University June 29, 2015 Outline Algebra Number Theory Combinatorics Geometry Algebra 2 Sum of Powers n k=1 k 3 k 2 = 1 n(n + 1)(2n + 1) 6 = ( k ) 2 = ( 1 2 n(n

### Section Notes 5. Review of Linear Programming. Applied Math / Engineering Sciences 121. Week of October 15, 2017

Section Notes 5 Review of Linear Programming Applied Math / Engineering Sciences 121 Week of October 15, 2017 The following list of topics is an overview of the material that was covered in the lectures

### Transforms. COMP 575/770 Spring 2013

Transforms COMP 575/770 Spring 2013 Transforming Geometry Given any set of points S Could be a 2D shape, a 3D object A transform is a function T that modifies all points in S: T S S T v v S Different transforms

### Summer Math Packet for Rising 8 th Grade Students

Name This assignment provides a review of mathematical and algebraic skills that are required for success in 8 th grade accelerated math class. Students, please use the packets as a review to help you

### Chapter 2 and Supplements MATRICES

Finite Math B Chapter 2 + Supplements: MATRICES 1 A: Matrices, Basic Matrix Operations (Lessons 2.3 & 2.4 pg 86 107) A matrix is a rectangular array of numbers like: Chapter 2 and Supplements MATRICES

### Graphing Linear Inequalities

Graphing Linear Inequalities Basic Mathematics Review 837 Linear inequalities pla an important role in applied mathematics. The are used in an area of mathematics called linear programming which was developed

### 3.1. 3x 4y = 12 3(0) 4y = 12. 3x 4y = 12 3x 4(0) = y = x 0 = 12. 4y = 12 y = 3. 3x = 12 x = 4. The Rectangular Coordinate System

3. The Rectangular Coordinate System Interpret a line graph. Objectives Interpret a line graph. Plot ordered pairs. 3 Find ordered pairs that satisfy a given equation. 4 Graph lines. 5 Find x- and y-intercepts.

### INSIDE the circle. The angle is MADE BY. The angle EQUALS

ANGLES IN A CIRCLE The VERTEX is located At the CENTER of the circle. ON the circle. INSIDE the circle. OUTSIDE the circle. The angle is MADE BY Two Radii Two Chords, or A Chord and a Tangent, or A Chord

### Chapter 1: Foundations for Algebra

Chapter 1: Foundations for Algebra Dear Family, The student will follow the order of operations, a set of rules that standardize how to simplify expressions. Order of Operations 1. Perform operations within

### Interactive Math Glossary Terms and Definitions

Terms and Definitions Absolute Value the magnitude of a number, or the distance from 0 on a real number line Addend any number or quantity being added addend + addend = sum Additive Property of Area the

### Self-study session 1, Discrete mathematics

Self-study session 1, Discrete mathematics First year mathematics for the technology and science programmes Aalborg University In this self-study session we are working with time complexity. Space complexity

### Equations and Problem Solving with Fractions. Variable. Expression. Equation. A variable is a letter used to represent a number.

MAT 040: Basic Math Equations and Problem Solving with Fractions Variable A variable is a letter used to represent a number. Expression An algebraic expression is a combination of variables and/or numbers

### CHAPTER 4 Linear Programming with Two Variables

CHAPTER 4 Linear Programming with Two Variables In this chapter, we will study systems of linear inequalities. They are similar to linear systems of equations, but have inequalitites instead of equalities.

### CARLETON UNIVERSITY. Laboratory 2.0

CARLETON UNIVERSITY Department of Electronics ELEC 267 Switching Circuits Jan 3, 28 Overview Laboratory 2. A 3-Bit Binary Sign-Extended Adder/Subtracter A binary adder sums two binary numbers for example

### 4 ' MATHCOUNTS National Competition Sprint Round Problems 1-30 DO NOT BEGIN UNTIL YOU ARE INSTRUCTED TO DO SO.

4 ' MATHCOUNTS. 2004 National Competition Sprint Round Problems 1-30 Name School State, DO NOT BEGIN UNTIL YOU ARE INSTRUCTED TO DO SO. This round consists of 30 problems. You will have 40 minutes to complete.

### Chapter 1 & 2. Homework Ch 1 & 2

Chapter 1 & 2 1-1 Relations & Functions 1-2 Compostion of Functions 1-3 Graphs Linear Eqns 1-4 Writing Linear Functions 1-5 Parallel & Perpendicular Lines 1-7 Piecewise Functions 1-8 Linear Inequalities

### Lesson 3.3. Multiplication of Matrices, Part 2

Lesson 3.3 Multiplication of Matrices, Part 2 In Lesson 3.2 you multiplied a row matrix times a 2 by 3 price matrix to determine the total cost of 5 pizzas and 3 salads at each pizza house. (See page 133.)

### Factoring. Factor: Change an addition expression into a multiplication expression.

Factoring Factor: Change an addition expression into a multiplication expression. 1. Always look for a common factor a. immediately take it out to the front of the expression, take out all common factors

### REGULAR GRAPHS OF GIVEN GIRTH. Contents

REGULAR GRAPHS OF GIVEN GIRTH BROOKE ULLERY Contents 1. Introduction This paper gives an introduction to the area of graph theory dealing with properties of regular graphs of given girth. A large portion

### QED Q: Why is it called the triangle inequality? A: Analogue with euclidean distance in the plane: picture Defn: Minimum Distance of a code C:

Lecture 3: Lecture notes posted online each week. Recall Defn Hamming distance: for words x = x 1... x n, y = y 1... y n of the same length over the same alphabet, d(x, y) = {1 i n : x i y i } i.e., d(x,

### GEOMETRY HONORS COORDINATE GEOMETRY PACKET

GEOMETRY HONORS COORDINATE GEOMETRY PACKET Name Period 1 Day 1 - Directed Line Segments DO NOW Distance formula 1 2 1 2 2 2 D x x y y Midpoint formula x x, y y 2 2 M 1 2 1 2 Slope formula y y m x x 2 1

### Computational Modelling 102 (Scientific Programming) Tutorials

COMO 102 : Scientific Programming, Tutorials 2003 1 Computational Modelling 102 (Scientific Programming) Tutorials Dr J. D. Enlow Last modified August 18, 2003. Contents Tutorial 1 : Introduction 3 Tutorial

### 1. (a) O(log n) algorithm for finding the logical AND of n bits with n processors

1. (a) O(log n) algorithm for finding the logical AND of n bits with n processors on an EREW PRAM: See solution for the next problem. Omit the step where each processor sequentially computes the AND of

### Lesson 9: Coordinate Proof - Quadrilaterals Learning Targets

Lesson 9: Coordinate Proof - Quadrilaterals Learning Targets Using coordinates, I can find the intersection of the medians of a triangle that meet at a point that is two-thirds of the way along each median

### 6th Bay Area Mathematical Olympiad

6th Bay Area Mathematical Olympiad February 4, 004 Problems and Solutions 1 A tiling of the plane with polygons consists of placing the polygons in the plane so that interiors of polygons do not overlap,

### Math, Lower Adolescent. Unit 1 Money. Basics

Math, Lower Adolescent Unit 1 Money Basics Equations and Algebraic Equations Adding, subtracting, multiplying, and dividing integers (7.3) Concrete Ratios (7.4) Writing Algebraic Equations (7.13) Using

### You should be able to plot points on the coordinate axis. You should know that the the midpoint of the line segment joining (x, y 1 1

Name GRAPHICAL REPRESENTATION OF DATA: You should be able to plot points on the coordinate axis. You should know that the the midpoint of the line segment joining (x, y 1 1 ) and (x, y ) is x1 x y1 y,.

### Monday, 12 November 12. Matrices

Matrices Matrices Matrices are convenient way of storing multiple quantities or functions They are stored in a table like structure where each element will contain a numeric value that can be the result

### Project 2: How Parentheses and the Order of Operations Impose Structure on Expressions

MAT 51 Wladis Project 2: How Parentheses and the Order of Operations Impose Structure on Expressions Parentheses show us how things should be grouped together. The sole purpose of parentheses in algebraic

### 1. Answer: x or x. Explanation Set up the two equations, then solve each equation. x. Check

Thinkwell s Placement Test 5 Answer Key If you answered 7 or more Test 5 questions correctly, we recommend Thinkwell's Algebra. If you answered fewer than 7 Test 5 questions correctly, we recommend Thinkwell's

### Handout 1: Viewing an Animation

Handout 1: Viewing an Animation Answer the following questions about the animation your teacher shows in class. 1. Choose one character to focus on. Describe this character s range of motion and emotions,

### Operations and Properties

. Operations and Properties. OBJECTIVES. Represent the four arithmetic operations using variables. Evaluate expressions using the order of operations. Recognize and apply the properties of addition 4.

### FreeMat Tutorial. 3x + 4y 2z = 5 2x 5y + z = 8 x x + 3y = -1 xx

1 of 9 FreeMat Tutorial FreeMat is a general purpose matrix calculator. It allows you to enter matrices and then perform operations on them in the same way you would write the operations on paper. This

### Starting Boolean Algebra

Boolean Algebra March 2, 27 Diagram for FunChip2 Here is a picture of FunChip2 that we created more or less randomly in class on /25 (used in various Activities): Starting Boolean Algebra Boolean algebra

### Problem. Prove that the square of any whole number n is a multiple of 4 or one more than a multiple of 4.

CHAPTER 8 Integers Problem. Prove that the square of any whole number n is a multiple of 4 or one more than a multiple of 4. Strategy 13 Use cases. This strategy may be appropriate when A problem can be

### Programmable Logic Devices (PLDs)

Programmable Logic Devices (PLDs) 212: Digital Design I, week 13 PLDs basically store binary information in a volatile/nonvolatile device. Data is specified by designer and physically inserted (Programmed)

### Section 3.1 Graphing Systems of Linear Inequalities in Two Variables

Section 3.1 Graphing Systems of Linear Inequalities in Two Variables Procedure for Graphing Linear Inequalities: 1. Draw the graph of the equation obtained for the given inequality by replacing the inequality

### Lec-5-HW-1, TM basics

Lec-5-HW-1, TM basics (Problem 0)-------------------- Design a Turing Machine (TM), T_sub, that does unary decrement by one. Assume a legal, initial tape consists of a contiguous set of cells, each containing

### Pre-Calculus Notes: Chapter 2 Systems of Linear Equations and Inequalities

Name: Pre-Calculus Notes: Chapter 2 Systems of Linear Equations and Inequalities Section 1 Solving Systems of Equations in Two Variables System of equations Solution to the system Consistent system Independent

### Digital Logic Design (CEN-120) (3+1)

Digital Logic Design (CEN-120) (3+1) ASSISTANT PROFESSOR Engr. Syed Rizwan Ali, MS(CAAD)UK, PDG(CS)UK, PGD(PM)IR, BS(CE)PK HEC Certified Master Trainer (MT-FPDP) PEC Certified Professional Engineer (COM/2531)

### Assignment (3-6) Boolean Algebra and Logic Simplification - General Questions

Assignment (3-6) Boolean Algebra and Logic Simplification - General Questions 1. Convert the following SOP expression to an equivalent POS expression. 2. Determine the values of A, B, C, and D that make

### Honors Precalculus: Solving equations and inequalities graphically and algebraically. Page 1

Solving equations and inequalities graphically and algebraically 1. Plot points on the Cartesian coordinate plane. P.1 2. Represent data graphically using scatter plots, bar graphs, & line graphs. P.1

### ENGIN 112 Intro to Electrical and Computer Engineering

ENGIN 2 Intro to Electrical and Computer Engineering Lecture 5 Boolean Algebra Overview Logic functions with s and s Building digital circuitry Truth tables Logic symbols and waveforms Boolean algebra

### You can take the arccos of both sides to get θ by itself.

.7 SOLVING TRIG EQUATIONS Example on p. 8 How do you solve cos ½ for? You can tae the arccos of both sides to get by itself. cos - (cos ) cos - ( ½) / However, arccos only gives us an answer between 0

### A Theorem of Ramsey- Ramsey s Number

A Theorem of Ramsey- Ramsey s Number A simple instance Of 6 (or more) people, either there are 3 each pair of whom are acquainted or there are 3 each pair of whom are unacquainted Can we explain this without

### Problem A - Complete the sequence

Problem A - Complete the sequence You probably know those quizzes in Sunday magazines: given the sequence 1, 2, 3,,, what is the next number? Sometimes it is very easy to answer, sometimes it could be

### Linear Programming with Bounds

Chapter 481 Linear Programming with Bounds Introduction Linear programming maximizes (or minimizes) a linear objective function subject to one or more constraints. The technique finds broad use in operations

### MAT 275 Laboratory 2 Matrix Computations and Programming in MATLAB

MAT 75 Laboratory Matrix Computations and Programming in MATLAB In this laboratory session we will learn how to. Create and manipulate matrices and vectors.. Write simple programs in MATLAB NOTE: For your

### Elliptic Curve Cryptography

Elliptic Curve Cryptography November 3, 213 1 A Warmup Problem We ll begin by looking at a problem whose solution will illustrate some of the techniques used in elliptic curve cryptography, but which involves

### Math Summer 2012

Math 481 - Summer 2012 Final Exam You have one hour and fifty minutes to complete this exam. You are not allowed to use any electronic device. Be sure to give reasonable justification to all your answers.

### Geometric and Algebraic Connections

Geometric and Algebraic Connections Geometric and Algebraic Connections Triangles, circles, rectangles, squares... We see shapes every day, but do we know much about them?? What characteristics do they

### GC03 Boolean Algebra

Why study? GC3 Boolean Algebra Computers transfer and process binary representations of data. Binary operations are easily represented and manipulated in Boolean algebra! Digital electronics is binary/boolean

### Introduction to Computer Architecture

Boolean Operators The Boolean operators AND and OR are binary infix operators (that is, they take two arguments, and the operator appears between them.) A AND B D OR E We will form Boolean Functions of

### CP Math 3 Page 1 of 34. Common Core Math 3 Notes - Unit 2 Day 1 Introduction to Proofs. Properties of Congruence. Reflexive. Symmetric If A B, then B

CP Math 3 Page 1 of 34 Common Core Math 3 Notes - Unit 2 Day 1 Introduction to Proofs Properties of Congruence Reflexive A A Symmetric If A B, then B A Transitive If A B and B C then A C Properties of

### OUTLINES. Variable names in MATLAB. Matrices, Vectors and Scalar. Entering a vector Colon operator ( : ) Mathematical operations on vectors.

1 LECTURE 3 OUTLINES Variable names in MATLAB Examples Matrices, Vectors and Scalar Scalar Vectors Entering a vector Colon operator ( : ) Mathematical operations on vectors examples 2 VARIABLE NAMES IN

Moved Moved New Mathematics Grade Level Changes/Additions Summary Kindergarten Grade 1 K.2D recognize instantly the quantity of a small group of objects in organized and random arrangements K.2I compose

### LCD: 2 ( ) ( ) Interval Notation: (

MTH 065 Class notes Lecture 3 (1.4b 1.6) Section 1.4: Linear Inequalities Graphing Linear Inequalities and Interval Notation We will look at two ways to write the solution set for a linear inequality:

### Therefore, after becoming familiar with the Matrix Method, you will be able to solve a system of two linear equations in four different ways.

Grade 9 IGCSE A1: Chapter 9 Matrices and Transformations Materials Needed: Straightedge, Graph Paper Exercise 1: Matrix Operations Matrices are used in Linear Algebra to solve systems of linear equations.

### CS 403 Compiler Construction Lecture 3 Lexical Analysis [Based on Chapter 1, 2, 3 of Aho2]

CS 403 Compiler Construction Lecture 3 Lexical Analysis [Based on Chapter 1, 2, 3 of Aho2] 1 What is Lexical Analysis? First step of a compiler. Reads/scans/identify the characters in the program and groups

### 5. THE ISOPERIMETRIC PROBLEM

Math 501 - Differential Geometry Herman Gluck March 1, 2012 5. THE ISOPERIMETRIC PROBLEM Theorem. Let C be a simple closed curve in the plane with length L and bounding a region of area A. Then L 2 4 A,

### What is MATLAB? What is MATLAB? Programming Environment MATLAB PROGRAMMING. Stands for MATrix LABoratory. A programming environment

What is MATLAB? MATLAB PROGRAMMING Stands for MATrix LABoratory A software built around vectors and matrices A great tool for numerical computation of mathematical problems, such as Calculus Has powerful

### Maths Year 11 Mock Revision list

Maths Year 11 Mock Revision list F = Foundation Tier = Foundation and igher Tier = igher Tier Number Tier Topic know and use the word integer and the equality and inequality symbols use fractions, decimals

### Mathematical Reasoning. Lesson 37: Graphing Quadratic Equations. LESSON 37: Graphing Quadratic Equations

LESSON 37: Graphing Quadratic Equations Weekly Focus: quadratic equations Weekly Skill: graphing Lesson Summary: For the warm-up, students will solve a problem about mean, median, and mode. In Activity

### ECE 550D Fundamentals of Computer Systems and Engineering. Fall 2017

ECE 550D Fundamentals of Computer Systems and Engineering Fall 2017 Combinational Logic Prof. John Board Duke University Slides are derived from work by Profs. Tyler Bletsch and Andrew Hilton (Duke) Last