Asymptotic Error Analysis

Size: px
Start display at page:

Download "Asymptotic Error Analysis"

Transcription

1 Asymptotic Error Analysis Brian Wetton Mathematics Department, UBC wetton PIMS YRC, June 3, 2014

2 Outline Overview Some History Romberg Integration Cubic Splines - Periodic Case More History: Strang s Trick PDE Problem and Discretization Piecewise Regular Grids Example Scheme Analysis Summary

3 Overview of the Talk Errors from computational methods using regular grids to compute smooth solutions have additional structure. This structure can allow Richardson Extrapolation lead to super-convergence help in the analysis of methods for non-linear problems Numerical artifacts (non-standard errors) can be present The process of finding the structure and order of errors can be called Asymptotic Error Analysis. Needs smooth solutions and regular grids. Historical examples: Romberg Integration, Cubic Splines, Strang s Trick. New result: a numerical artifact from an idealized adaptive grid with hanging nodes.

4 Trapezoidal Rule Trapezoidal Rule T h approximation to b a f (x)dx is the sum of areas of red trapezoids. Widths h = (b a)/n where N is the number of sub-intervals. Error bound b f (x)dx T h a where K = max f Second order convergence. (b a) Kh 2 12

5 Proof of Error Bound-I Consider a subinterval x [0, h]. Let L(x) be linear interpolation on this subinterval and g(x) = f (x) L(x), so g(0) = g(h) = 0. The error E of trapezoidal rule on this subinterval is Integrate by parts twice E = = 1 2 h 0 h 0 E = h 0 (x h/2)g (x)dx g(x)dx (x 2 xh)g (x)dx = 1 2 h 0 (x 2 xh)f (x)dx

6 Proof of Error Bound-II Subinterval E = 1 2 h 0 (x 2 xh)f (x)dx E K 2 h 0 (xh x 2 )dx = Kh3 12. Summing over N = (b a)/h subintervals gives the result I T h (b a) Kh 2 12

7 Trapezoidal Rule Applied Trapezoidal Rule applied to the integral I = 1 0 h I T h 1/ / / / / Not only is but I T h I T h lim h 0 h 2 (b a) Kh 2 12 sin xdx exists. There is regularity in the error that can be exploited.

8 Error Analysis of Trapezoidal Rule-I We had E Kh3 12 I T (b a) h Kh 2 12 but with a bit more work it can be shown that E = f aveh /12 + O(h 5 ) I T h = (b a) Ch 2 + O(h 4 ) 12 where C is average value of f on the subinterval. with more work the error in Trapezoidal Rule can be written as a series of regular terms with even powers of h (Euler-McLaurin Formula).

9 Error Analysis of Trapezoidal Rule-II T h = I + (b a) Ch 2 + O(h 4 ) 12 This error regularity justifies Richardson extrapolation I = ( 4 3 T h/2 1 3 T h) + O(h 4 ) The O(h 4 ) error above is regular and so can also be eliminated by extrapolation. Repeated application of this idea is the Romberg method.

10 Interesting Facts Richardson extrapolation of the Trapezoidal Rule is Simpson s Rule Trapezoidal and Midpoint Rules are spectrally accurate for integrals of periodic functions over their period

11 Cubic Splines Given smooth f (x) on [0,1], spacing h = 1/N, and data a i = f (ih) for i = 0,... N the standard cubic spline fit is a C 1 piecewise cubic interpolation. Cubic interpolation on each sub-interval for given values and second derivative values c i at the end points is fourth order accurate. If the second derivative values are only accurate to second order, the cubic approximation is still fourth order accurate. For C 1 continuity, c i 1 + 4c i + c i+1 = 6 h 2 (a i+1 2a i + a i 1 )

12 Cubic Splines - Periodic Analysis c i 1 + 4c i + c i+1 = 6 h 2 (a i+1 2a i + a i 1 ) In this case, c has a regular asymptotic error expansion c = f + h 2 ( )f +... (the fact that c i 1 + c i+1 = 2c i + h 2 c +... is used). Since the c s are second order accurate, the cubic spline approximation is fourth order accurate. Notes: The earliest convergence proof for splines is in this equally spaced, periodic setting Ahlberg and Nilson, Convergence properties of the spline fit, J. SIAM, 1963 Lucas, Asymptotic expansions for interpolating periodic splines, SINUM, 1982.

13 Cubic Splines - Non-Periodic Case c i 1 + 4c i + c i+1 = 6 h 2 (a i+1 2a i + a i 1 ) In the non-periodic case, additional conditions are needed for the end values c 0 and c N : natural: c 0 = 0, O(1) derivative: 2c 0 + c 1 = 6 h 2 (a 1 a 0 ) 3 h f (0), O(h 2 ) not a knot: c 0 2c 1 + c 2 = 0, O(h 2 ) First convergence proof for derivative conditions Birkhoff and DeBoor, Error Bounds for Spline Interpolation, J Math and Mech, 1964.

14 Cubic Splines - Numerical Boundary Layer c i 1 + 4c i + c i+1 = 6 h 2 (a i+1 2a i + a i 1 ) No regular error can match the natural boundary condition c 0 = 0. However, note that 1 + 4κ + κ 2 = 0 has a root κ Error Expansion: c i = f (ih) h f (ih) f (0)κ i... The new term is a numerical boundary layer. In this case, the spline fit will be second order near the ends of the interval and fourth order in the interior. Reference?

15 Cubic Splines - Computation

16 PDE Problem and Discretization Strang, Accurate Partial Differential Methods II. Non-linear Problems, Numerische Mathematik, 1964 Suppose u(x, t), 0 t T, x [0, 1], periodic in x is smooth and solves u t = f (u x ). Divide [0, 1] into N sub-intervals of length h = 1/N. Let U i (t) u(ih, t), i = 1 N. Let D 1 be the second order centred finite approximation of the first derivative D 1 U i = U i+1 U i 1 2h = u x (ih, t) + h2 6 u xxx(ih, t) + O(h 4 ) Semi-discrete scheme (method of lines): du i dt = f (D 1 U)

17 Analysis of Scheme-I du i dt du i dt = f (D 1 U) Introduce the error E = U u = f (D 1 u) 1 6 f (u x )u xxx h 2 + O(h 4 ) de i dt = f (D 1 u)d 1 E + f (D 1 (u + θe))(d 1 E) 2 + O(h 2 ) Introduce the discrete l 2 norm E 2 = N h Note that i E 2 i E h 1/2 E 2

18 Analysis of the Scheme-II To handle the nonlinear error, a bootstrap argument is used. Assume E 2 h p for t T and show that the scheme converges with order greater than p to finish the argument. de i dt = f (D 1 u)d 1 E + f (D 1 (u + θe))(d 1 E) 2 + O(h 2 ) Multiplying the equation above by h and taking the inner product with E gives (after summation by parts) d E 2 dt Df (D 1 u) E 2 + f (D 1 (u+θe)) h p 5/2 E 2 +O(h 2 ) Note that the bootstrap argument can t be closed with this estimate.

19 Asymptotic Error Analysis-I The truncation error is smooth so it is reasonable to expect error regularity U = u + h 2 e + O(h 4 ) with e a smooth function of x and t, independent of h. I ll show how to construct this function e below, but assume it exists: u + h 2 e has truncation error O(h 4 ) in the discrete equations so by using E = U (u + h 2 e) in the analysis above, the bootstrap argument can be closed. The error expression above can be used to show full order convergence in maximum norm and difference approximations to derivatives (super-convergence) D 2 U = u xx + h 2 ( 1 12 u xxxx + e xx ) + O(h 4 ) Error regularity also leads to full order convergence of derivatives of solution functionals with respect to parameters.

20 Asymptotic Error Analysis-II Want u + h 2 e to satisfy the discrete equations to fourth order. du dt = f (D 1U) Plug in, expand, identify the O(h 2 ) term: e t = f (u x )e x f (u x )u xxx Realize that this problem (linearization about the exact solution forced by terms involving derivatives of the exact solution) has a smooth solution. You don t have to find the solution, just know that it exists.

21 More History Goodman, Hou and Lowengrub, Convergence of the Point Vortex Method for the 2-D Euler Equations, Comm. Pure Appl. Math, 1990 E and Liu, Projection Method I: Convergence and Numerical Boundary Layers, SINUM, 1995

22 Piecewise Regular Grids Computations on regular grids have many advantages. To retain some of the advantages but allow adaptivity, refinement in regular blocks is often done. Clinton Groth, University of Toronto

23 Idealized Piecewise Regular Grid Consider the idealized setting of a coarse grid and fine grid with a straight interface:

24 Problem and Discretization Consider the problem u = f. The grid spacing is h (coarse) and h/2 (fine). The discrete approximation is cell-centred, denoted by U. Away from the interface, a five point stencil approximation is used. At the interface, ghost points are introduced, related to grid points by linear extrapolation.

25 Analysis of Piecewise Regular Grid-I I advise not to try to analyze the accuracy of the scheme using the discrete approximation of the PDE near the interface Instead, determine the accuracy at which the interface conditions [u] = 0 and [ u/ n] = 0 are approximated.

26 Analysis of Piecewise Regular Grid-II The ghost point extrapolation is equivalent to 1 4 (U A + U A + U B + U B ) = 1 2 (U C + U C ) 1 h (U A U A + U B U B ) = 1 h (U C U C ) (U A U B U A + U B ) = 0 The first two conditions are second order approximations of the interface conditions [u] = 0 and [ u/ n] = 0. They contribute to the second order regular errors of the scheme (different on either side of the grid interface).

27 Analysis of Piecewise Regular Grid-III (U A U B U A + U B ) = 0 This is satisfied to second order by the exact solution, error h 2 u xy /4. Note that this only involves fine grid points. Expect a parity difference between fine grid solutions at the interface. This results in a numerical artifact of the form h 2 A(y)( 1) j κ i where (i, j) is the fine grid index and κ This is a numerical boundary layer on the fine grid side that alternates in sign between vertically adjacent points.

28 Piecewise Regular Grid - Analysis Summary Coarse grid has regular error U coarse = u + h 2 e coarse +... Fine grid has regular error and the artifact U fine = u + h 2 e fine + h 2 u xy(0, y) 8(1 κ) ( 1)j κ i + Second order convergence in U (surprising? the scheme violates the rule of thumb ) Artifact causes loss of convergence in D 2,y U and D 2,x on the fine grid side at the interface.

29 Additional Discussion h q A(y)( 1) j κ i This artifact is present in all schemes (FE, FD, FV) on the grid, although the q may vary. Determinant condition, satisfied for stable schemes. For variable coefficient elliptic problems, κ(y) smooth.

30 Summary Asymptotic error analysis can be used to describe regular errors and numerical artifacts in finite difference methods and other schemes on regular meshes. Historical examples of Romberg integration; finite difference approximations of nonlinear, first order equations; and spline interpolation were given. Asymptotic error analysis can be used to help understand the accuracy of different implementations of boundary and interface conditions. A new result describing the errors in methods for elliptic problems on piecewise regular grids with hanging nodes was given.

Math 225 Scientific Computing II Outline of Lectures

Math 225 Scientific Computing II Outline of Lectures Math 225 Scientific Computing II Outline of Lectures Spring Semester 2003 I. Interpolating polynomials Lagrange formulation of interpolating polynomial Uniqueness of interpolating polynomial of degree

More information

APPM/MATH Problem Set 4 Solutions

APPM/MATH Problem Set 4 Solutions APPM/MATH 465 Problem Set 4 Solutions This assignment is due by 4pm on Wednesday, October 16th. You may either turn it in to me in class on Monday or in the box outside my office door (ECOT 35). Minimal

More information

8 Piecewise Polynomial Interpolation

8 Piecewise Polynomial Interpolation Applied Math Notes by R. J. LeVeque 8 Piecewise Polynomial Interpolation 8. Pitfalls of high order interpolation Suppose we know the value of a function at several points on an interval and we wish to

More information

Finite difference methods

Finite difference methods Finite difference methods Siltanen/Railo/Kaarnioja Spring 8 Applications of matrix computations Applications of matrix computations Finite difference methods Spring 8 / Introduction Finite difference methods

More information

APPROXIMATING PDE s IN L 1

APPROXIMATING PDE s IN L 1 APPROXIMATING PDE s IN L 1 Veselin Dobrev Jean-Luc Guermond Bojan Popov Department of Mathematics Texas A&M University NONLINEAR APPROXIMATION TECHNIQUES USING L 1 Texas A&M May 16-18, 2008 Outline 1 Outline

More information

Deficient Quartic Spline Interpolation

Deficient Quartic Spline Interpolation International Journal of Computational Science and Mathematics. ISSN 0974-3189 Volume 3, Number 2 (2011), pp. 227-236 International Research Publication House http://www.irphouse.com Deficient Quartic

More information

Convergence of C 2 Deficient Quartic Spline Interpolation

Convergence of C 2 Deficient Quartic Spline Interpolation Advances in Computational Sciences and Technology ISSN 0973-6107 Volume 10, Number 4 (2017) pp. 519-527 Research India Publications http://www.ripublication.com Convergence of C 2 Deficient Quartic Spline

More information

= f (a, b) + (hf x + kf y ) (a,b) +

= f (a, b) + (hf x + kf y ) (a,b) + Chapter 14 Multiple Integrals 1 Double Integrals, Iterated Integrals, Cross-sections 2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals

More information

Fully discrete Finite Element Approximations of Semilinear Parabolic Equations in a Nonconvex Polygon

Fully discrete Finite Element Approximations of Semilinear Parabolic Equations in a Nonconvex Polygon Fully discrete Finite Element Approximations of Semilinear Parabolic Equations in a Nonconvex Polygon Tamal Pramanick 1,a) 1 Department of Mathematics, Indian Institute of Technology Guwahati, Guwahati

More information

What is Multigrid? They have been extended to solve a wide variety of other problems, linear and nonlinear.

What is Multigrid? They have been extended to solve a wide variety of other problems, linear and nonlinear. AMSC 600/CMSC 760 Fall 2007 Solution of Sparse Linear Systems Multigrid, Part 1 Dianne P. O Leary c 2006, 2007 What is Multigrid? Originally, multigrid algorithms were proposed as an iterative method to

More information

4.7 Approximate Integration

4.7 Approximate Integration 4.7 Approximate Integration Some anti-derivatives are difficult to impossible to find. For example, 1 0 e x2 dx or 1 1 1 + x3 dx We came across this situation back in calculus I when we introduced the

More information

Lecture VIII. Global Approximation Methods: I

Lecture VIII. Global Approximation Methods: I Lecture VIII Global Approximation Methods: I Gianluca Violante New York University Quantitative Macroeconomics G. Violante, Global Methods p. 1 /29 Global function approximation Global methods: function

More information

Index. C m (Ω), 141 L 2 (Ω) space, 143 p-th order, 17

Index. C m (Ω), 141 L 2 (Ω) space, 143 p-th order, 17 Bibliography [1] J. Adams, P. Swarztrauber, and R. Sweet. Fishpack: Efficient Fortran subprograms for the solution of separable elliptic partial differential equations. http://www.netlib.org/fishpack/.

More information

February 2017 (1/20) 2 Piecewise Polynomial Interpolation 2.2 (Natural) Cubic Splines. MA378/531 Numerical Analysis II ( NA2 )

February 2017 (1/20) 2 Piecewise Polynomial Interpolation 2.2 (Natural) Cubic Splines. MA378/531 Numerical Analysis II ( NA2 ) f f f f f (/2).9.8.7.6.5.4.3.2. S Knots.7.6.5.4.3.2. 5 5.2.8.6.4.2 S Knots.2 5 5.9.8.7.6.5.4.3.2..9.8.7.6.5.4.3.2. S Knots 5 5 S Knots 5 5 5 5.35.3.25.2.5..5 5 5.6.5.4.3.2. 5 5 4 x 3 3.5 3 2.5 2.5.5 5

More information

Computational Physics PHYS 420

Computational Physics PHYS 420 Computational Physics PHYS 420 Dr Richard H. Cyburt Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 384-6006 My email: rcyburt@concord.edu My webpage: www.concord.edu/rcyburt

More information

Module 2: Single Step Methods Lecture 4: The Euler Method. The Lecture Contains: The Euler Method. Euler's Method (Analytical Interpretations)

Module 2: Single Step Methods Lecture 4: The Euler Method. The Lecture Contains: The Euler Method. Euler's Method (Analytical Interpretations) The Lecture Contains: The Euler Method Euler's Method (Analytical Interpretations) An Analytical Example file:///g /Numerical_solutions/lecture4/4_1.htm[8/26/2011 11:14:40 AM] We shall now describe methods

More information

Mar. 20 Math 2335 sec 001 Spring 2014

Mar. 20 Math 2335 sec 001 Spring 2014 Mar. 20 Math 2335 sec 001 Spring 2014 Chebyshev Polynomials Definition: For an integer n 0 define the function ( ) T n (x) = cos n cos 1 (x), 1 x 1. It can be shown that T n is a polynomial of degree n.

More information

Piecewise polynomial interpolation

Piecewise polynomial interpolation Chapter 2 Piecewise polynomial interpolation In ection.6., and in Lab, we learned that it is not a good idea to interpolate unctions by a highorder polynomials at equally spaced points. However, it transpires

More information

Discrete Cubic Interpolatory Splines

Discrete Cubic Interpolatory Splines Publ RIMS, Kyoto Univ. 28 (1992), 825-832 Discrete Cubic Interpolatory Splines By Manjulata SHRIVASTAVA* Abstract In the present paper, existence, uniqueness and convergence properties of a discrete cubic

More information

Chapter 6. Semi-Lagrangian Methods

Chapter 6. Semi-Lagrangian Methods Chapter 6. Semi-Lagrangian Methods References: Durran Chapter 6. Review article by Staniford and Cote (1991) MWR, 119, 2206-2223. 6.1. Introduction Semi-Lagrangian (S-L for short) methods, also called

More information

Euler s Methods (a family of Runge- Ku9a methods)

Euler s Methods (a family of Runge- Ku9a methods) Euler s Methods (a family of Runge- Ku9a methods) ODE IVP An Ordinary Differential Equation (ODE) is an equation that contains a function having one independent variable: The equation is coupled with an

More information

MATH 122 FINAL EXAM WINTER March 15, 2011

MATH 122 FINAL EXAM WINTER March 15, 2011 MATH 1 FINAL EXAM WINTER 010-011 March 15, 011 NAME: SECTION: ONLY THE CORRECT ANSWER AND ALL WORK USED TO REACH IT WILL EARN FULL CREDIT. Simplify all answers as much as possible unless explicitly stated

More information

CS 450 Numerical Analysis. Chapter 7: Interpolation

CS 450 Numerical Analysis. Chapter 7: Interpolation Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

A C 2 Four-Point Subdivision Scheme with Fourth Order Accuracy and its Extensions

A C 2 Four-Point Subdivision Scheme with Fourth Order Accuracy and its Extensions A C 2 Four-Point Subdivision Scheme with Fourth Order Accuracy and its Extensions Nira Dyn Michael S. Floater Kai Hormann Abstract. We present a new four-point subdivision scheme that generates C 2 curves.

More information

ADAPTIVE FINITE ELEMENT

ADAPTIVE FINITE ELEMENT Finite Element Methods In Linear Structural Mechanics Univ. Prof. Dr. Techn. G. MESCHKE SHORT PRESENTATION IN ADAPTIVE FINITE ELEMENT Abdullah ALSAHLY By Shorash MIRO Computational Engineering Ruhr Universität

More information

Cubic Spline Interpolation with New Conditions on M 0 and M n

Cubic Spline Interpolation with New Conditions on M 0 and M n Cubic Spline Interpolation with New Conditions on M 0 and M n 1 Parcha Kalyani and P.S. Rama Chandra Rao 2 1,2 Kakatiya Institute of Technology and Sciences, Warangal-506009-India Abstract In this communication,

More information

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections REVIEW I MATH 254 Calculus IV Exam I (Friday, April 29 will cover sections 14.1-8. 1. Functions of multivariables The definition of multivariable functions is similar to that of functions of one variable.

More information

An Investigation into Iterative Methods for Solving Elliptic PDE s Andrew M Brown Computer Science/Maths Session (2000/2001)

An Investigation into Iterative Methods for Solving Elliptic PDE s Andrew M Brown Computer Science/Maths Session (2000/2001) An Investigation into Iterative Methods for Solving Elliptic PDE s Andrew M Brown Computer Science/Maths Session (000/001) Summary The objectives of this project were as follows: 1) Investigate iterative

More information

Math 226A Homework 4 Due Monday, December 11th

Math 226A Homework 4 Due Monday, December 11th Math 226A Homework 4 Due Monday, December 11th 1. (a) Show that the polynomial 2 n (T n+1 (x) T n 1 (x)), is the unique monic polynomial of degree n + 1 with roots at the Chebyshev points x k = cos ( )

More information

Exercises for a Numerical Methods Course

Exercises for a Numerical Methods Course Exercises for a Numerical Methods Course Brian Heinold Department of Mathematics and Computer Science Mount St. Mary s University November 18, 2017 1 / 73 About the class Mix of Math and CS students, mostly

More information

A C 2 Four-Point Subdivision Scheme with Fourth Order Accuracy and its Extensions

A C 2 Four-Point Subdivision Scheme with Fourth Order Accuracy and its Extensions A C 2 Four-Point Subdivision Scheme with Fourth Order Accuracy and its Extensions Nira Dyn School of Mathematical Sciences Tel Aviv University Michael S. Floater Department of Informatics University of

More information

ODE IVP. An Ordinary Differential Equation (ODE) is an equation that contains a function having one independent variable:

ODE IVP. An Ordinary Differential Equation (ODE) is an equation that contains a function having one independent variable: Euler s Methods ODE IVP An Ordinary Differential Equation (ODE) is an equation that contains a function having one independent variable: The equation is coupled with an initial value/condition (i.e., value

More information

Volumes of Solids of Revolution

Volumes of Solids of Revolution Volumes of Solids of Revolution Farid Aliniaeifard York University http://math.yorku.ca/ faridanf April 27, 2016 Overview What is a solid of revolution? Method of Rings or Method of Disks Method of Cylindrical

More information

f xx + f yy = F (x, y)

f xx + f yy = F (x, y) Application of the 2D finite element method to Laplace (Poisson) equation; f xx + f yy = F (x, y) M. R. Hadizadeh Computer Club, Department of Physics and Astronomy, Ohio University 4 Nov. 2013 Domain

More information

Lacunary Interpolation Using Quartic B-Spline

Lacunary Interpolation Using Quartic B-Spline General Letters in Mathematic, Vol. 2, No. 3, June 2017, pp. 129-137 e-issn 2519-9277, p-issn 2519-9269 Available online at http:\\ www.refaad.com Lacunary Interpolation Using Quartic B-Spline 1 Karwan

More information

There are also formulas of higher order for this situation, but we will refrain from giving them.

There are also formulas of higher order for this situation, but we will refrain from giving them. 136 Chapter 4. Integration of Functions N = 1 2 3 4 (total after N = 4) Figure 4.2.1. Sequential calls to the routine trapzd incorporate the information from previous calls and evaluate the integrand only

More information

Parameterization of triangular meshes

Parameterization of triangular meshes Parameterization of triangular meshes Michael S. Floater November 10, 2009 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to

More information

Scientific Computing: Interpolation

Scientific Computing: Interpolation Scientific Computing: Interpolation Aleksandar Donev Courant Institute, NYU donev@courant.nyu.edu Course MATH-GA.243 or CSCI-GA.22, Fall 25 October 22nd, 25 A. Donev (Courant Institute) Lecture VIII /22/25

More information

ODEs occur quite often in physics and astrophysics: Wave Equation in 1-D stellar structure equations hydrostatic equation in atmospheres orbits

ODEs occur quite often in physics and astrophysics: Wave Equation in 1-D stellar structure equations hydrostatic equation in atmospheres orbits Solving ODEs General Stuff ODEs occur quite often in physics and astrophysics: Wave Equation in 1-D stellar structure equations hydrostatic equation in atmospheres orbits need workhorse solvers to deal

More information

Mathematics for chemical engineers

Mathematics for chemical engineers Mathematics for chemical engineers Drahoslava Janovská Department of mathematics Winter semester 2013-2014 Numerical solution of ordinary differential equations Initial value problem Outline 1 Introduction

More information

Multi-Mesh CFD. Chris Roy Chip Jackson (1 st year PhD student) Aerospace and Ocean Engineering Department Virginia Tech

Multi-Mesh CFD. Chris Roy Chip Jackson (1 st year PhD student) Aerospace and Ocean Engineering Department Virginia Tech Multi-Mesh CFD Chris Roy Chip Jackson (1 st year PhD student) Aerospace and Ocean Engineering Department Virginia Tech cjroy@vt.edu May 21, 2014 CCAS Program Review, Columbus, OH 1 Motivation Automated

More information

Spline Solution Of Some Linear Boundary Value Problems

Spline Solution Of Some Linear Boundary Value Problems Applied Mathematics E-Notes, 8(2008, 171-178 c ISSN 1607-2510 Available free at mirror sites of http://www.math.nthu.edu.tw/ amen/ Spline Solution Of Some Linear Boundary Value Problems Abdellah Lamnii,

More information

MATH 2400, Analytic Geometry and Calculus 3

MATH 2400, Analytic Geometry and Calculus 3 MATH 2400, Analytic Geometry and Calculus 3 List of important Definitions and Theorems 1 Foundations Definition 1. By a function f one understands a mathematical object consisting of (i) a set X, called

More information

Study Guide for Test 2

Study Guide for Test 2 Study Guide for Test Math 6: Calculus October, 7. Overview Non-graphing calculators will be allowed. You will need to know the following:. Set Pieces 9 4.. Trigonometric Substitutions (Section 7.).. Partial

More information

The WENO Method in the Context of Earlier Methods To approximate, in a physically correct way, [3] the solution to a conservation law of the form u t

The WENO Method in the Context of Earlier Methods To approximate, in a physically correct way, [3] the solution to a conservation law of the form u t An implicit WENO scheme for steady-state computation of scalar hyperbolic equations Sigal Gottlieb Mathematics Department University of Massachusetts at Dartmouth 85 Old Westport Road North Dartmouth,

More information

An ε-uniform Initial Value Technique For Convection-Diffusion Singularly Perturbed Problems

An ε-uniform Initial Value Technique For Convection-Diffusion Singularly Perturbed Problems An -Uniform Initial Value Technique For Convection-Diffusion Singularly Perturbed Problems RKBawa and Vinod Kumar Abstract In this paper, we have proposed an -uniform initial value technique for singularly

More information

1\C 1 I)J1mptMIll 'betl~flbejlli

1\C 1 I)J1mptMIll 'betl~flbejlli 1\C 1 )J1mptMll 'betl~flbejll l~~1hlbd ada]t6gh -or~«ejf. '~illrlf J~..6 '~~~ll!~ 4iJ~ "Mf:i',nl.Nqr2l' ~':l:mj}.i~:tv t.~l '\h Dr. N.Homsup, Abstract n this paper, two high-order FDTD schemes are developed

More information

CS205b/CME306. Lecture 9

CS205b/CME306. Lecture 9 CS205b/CME306 Lecture 9 1 Convection Supplementary Reading: Osher and Fedkiw, Sections 3.3 and 3.5; Leveque, Sections 6.7, 8.3, 10.2, 10.4. For a reference on Newton polynomial interpolation via divided

More information

Linear Interpolating Splines

Linear Interpolating Splines Jim Lambers MAT 772 Fall Semester 2010-11 Lecture 17 Notes Tese notes correspond to Sections 112, 11, and 114 in te text Linear Interpolating Splines We ave seen tat ig-degree polynomial interpolation

More information

Interpolation - 2D mapping Tutorial 1: triangulation

Interpolation - 2D mapping Tutorial 1: triangulation Tutorial 1: triangulation Measurements (Zk) at irregular points (xk, yk) Ex: CTD stations, mooring, etc... The known Data How to compute some values on the regular spaced grid points (+)? The unknown data

More information

Finite Difference Calculus

Finite Difference Calculus Chapter 2 Finite Difference Calculus In this chapter we review the calculus of finite differences. The topic is classic and covered in many places. The Taylor series is fundamental to most analysis. A

More information

An Adaptive Stencil Linear Deviation Method for Wave Equations

An Adaptive Stencil Linear Deviation Method for Wave Equations 211 An Adaptive Stencil Linear Deviation Method for Wave Equations Kelly Hasler Faculty Sponsor: Robert H. Hoar, Department of Mathematics ABSTRACT Wave Equations are partial differential equations (PDEs)

More information

and F is an antiderivative of f

and F is an antiderivative of f THE EVALUATION OF DEFINITE INTEGRALS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions Comments to ingrid.stewart@csn.edu. Thank you! We have finally reached a point,

More information

Review Initial Value Problems Euler s Method Summary

Review Initial Value Problems Euler s Method Summary THE EULER METHOD P.V. Johnson School of Mathematics Semester 1 2008 OUTLINE 1 REVIEW 2 INITIAL VALUE PROBLEMS The Problem Posing a Problem 3 EULER S METHOD Method Errors 4 SUMMARY OUTLINE 1 REVIEW 2 INITIAL

More information

Advective and conservative semi-lagrangian schemes on uniform and non-uniform grids

Advective and conservative semi-lagrangian schemes on uniform and non-uniform grids Advective and conservative semi-lagrangian schemes on uniform and non-uniform grids M. Mehrenberger Université de Strasbourg and Max-Planck Institut für Plasmaphysik 5 September 2013 M. Mehrenberger (UDS

More information

Lecture 8. Divided Differences,Least-Squares Approximations. Ceng375 Numerical Computations at December 9, 2010

Lecture 8. Divided Differences,Least-Squares Approximations. Ceng375 Numerical Computations at December 9, 2010 Lecture 8, Ceng375 Numerical Computations at December 9, 2010 Computer Engineering Department Çankaya University 8.1 Contents 1 2 3 8.2 : These provide a more efficient way to construct an interpolating

More information

Solve Non-Linear Parabolic Partial Differential Equation by Spline Collocation Method

Solve Non-Linear Parabolic Partial Differential Equation by Spline Collocation Method Solve Non-Linear Parabolic Partial Differential Equation by Spline Collocation Method P.B. Choksi 1 and A.K. Pathak 2 1 Research Scholar, Rai University,Ahemdabad. Email:pinalchoksey@gmail.com 2 H.O.D.

More information

AP Calculus AB. a.) Midpoint rule with 4 subintervals b.) Trapezoid rule with 4 subintervals

AP Calculus AB. a.) Midpoint rule with 4 subintervals b.) Trapezoid rule with 4 subintervals AP Calculus AB Unit 6 Review Name: Date: Block: Section : RAM and TRAP.) Evaluate using Riemann Sums L 4, R 4 for the following on the interval 8 with four subintervals. 4.) Approimate ( )d using a.) Midpoint

More information

Integration by parts, sometimes multiple times in the same problem. a. Show your choices. b. Evaluate the integral. a.

Integration by parts, sometimes multiple times in the same problem. a. Show your choices. b. Evaluate the integral. a. Instructions Complete the homework with a pencil. Show your work. Use extra paper if necessary. Homework can be turned in as follows Turn in homework in person at KPC Scan and e-mail to UAACalculus@yahoo.com

More information

Interpolation & Polynomial Approximation. Cubic Spline Interpolation II

Interpolation & Polynomial Approximation. Cubic Spline Interpolation II Interpolation & Polynomial Approximation Cubic Spline Interpolation II Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University

More information

New Basis Functions and Their Applications to PDEs

New Basis Functions and Their Applications to PDEs Copyright c 2007 ICCES ICCES, vol.3, no.4, pp.169-175, 2007 New Basis Functions and Their Applications to PDEs Haiyan Tian 1, Sergiy Reustkiy 2 and C.S. Chen 1 Summary We introduce a new type of basis

More information

High Order Fixed-Point Sweeping WENO Methods for Steady State of Hyperbolic Conservation Laws and Its Convergence Study

High Order Fixed-Point Sweeping WENO Methods for Steady State of Hyperbolic Conservation Laws and Its Convergence Study Commun. Comput. Phys. doi:.48/cicp.375.6a Vol., No. 4, pp. 835-869 October 6 High Order Fixed-Point Sweeping WENO Methods for Steady State of Hyperbolic Conservation Laws and Its Convergence Study Liang

More information

A new 8-node quadrilateral spline finite element

A new 8-node quadrilateral spline finite element Journal of Computational and Applied Mathematics 195 (2006) 54 65 www.elsevier.com/locate/cam A new 8-node quadrilateral spline finite element Chong-Jun Li, Ren-Hong Wang Institute of Mathematical Sciences,

More information

arxiv: v1 [math.na] 20 Sep 2016

arxiv: v1 [math.na] 20 Sep 2016 arxiv:1609.06236v1 [math.na] 20 Sep 2016 A Local Mesh Modification Strategy for Interface Problems with Application to Shape and Topology Optimization P. Gangl 1,2 and U. Langer 3 1 Doctoral Program Comp.

More information

Collocation and optimization initialization

Collocation and optimization initialization Boundary Elements and Other Mesh Reduction Methods XXXVII 55 Collocation and optimization initialization E. J. Kansa 1 & L. Ling 2 1 Convergent Solutions, USA 2 Hong Kong Baptist University, Hong Kong

More information

Numerical Methods for (Time-Dependent) HJ PDEs

Numerical Methods for (Time-Dependent) HJ PDEs Numerical Methods for (Time-Dependent) HJ PDEs Ian Mitchell Department of Computer Science The University of British Columbia research supported by National Science and Engineering Research Council of

More information

A Quintic Spline method for fourth order singularly perturbed Boundary Value Problem of Reaction-Diffusion type

A Quintic Spline method for fourth order singularly perturbed Boundary Value Problem of Reaction-Diffusion type A Quintic Spline method for fourth order singularly perturbed Boundary Value Problem of Reaction-Diffusion type Jigisha U. Pandya and Harish D. Doctor Asst. Prof., Department of Mathematics, Sarvajanik

More information

CONSERVATIVE AND NON-CONSERVATIVE METHODS BASED ON HERMITE WEIGHTED ESSENTIALLY-NON-OSCILLATORY RECONSTRUCTION FOR VLASOV EQUATIONS

CONSERVATIVE AND NON-CONSERVATIVE METHODS BASED ON HERMITE WEIGHTED ESSENTIALLY-NON-OSCILLATORY RECONSTRUCTION FOR VLASOV EQUATIONS CONSERVATIVE AND NON-CONSERVATIVE METHODS BASED ON HERMITE WEIGHTED ESSENTIALLY-NON-OSCILLATORY RECONSTRUCTION FOR VLASOV EQUATIONS CHANG YANG AND FRANCIS FILBET Abstract. We develop weighted essentially

More information

Notice that the height of each rectangle is and the width of each rectangle is.

Notice that the height of each rectangle is and the width of each rectangle is. Math 1410 Worksheet #40: Section 6.3 Name: In some cases, computing the volume of a solid of revolution with cross-sections can be difficult or even impossible. Is there another way to compute volumes

More information

Computational QC Geometry: A tool for Medical Morphometry, Computer Graphics & Vision

Computational QC Geometry: A tool for Medical Morphometry, Computer Graphics & Vision Computational QC Geometry: A tool for Medical Morphometry, Computer Graphics & Vision Part II of the sequel of 2 talks. Computation C/QC geometry was presented by Tony F. Chan Ronald Lok Ming Lui Department

More information

Smoothers. < interactive example > Partial Differential Equations Numerical Methods for PDEs Sparse Linear Systems

Smoothers. < interactive example > Partial Differential Equations Numerical Methods for PDEs Sparse Linear Systems Smoothers Partial Differential Equations Disappointing convergence rates observed for stationary iterative methods are asymptotic Much better progress may be made initially before eventually settling into

More information

Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Spring 2018 Instructor: Dr. Sateesh Mane.

Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Spring 2018 Instructor: Dr. Sateesh Mane. Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Spring 2018 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 2018 16 Lecture 16 May 3, 2018 Numerical solution of systems

More information

Chapter 8: Applications of Definite Integrals

Chapter 8: Applications of Definite Integrals Name: Date: Period: AP Calc AB Mr. Mellina Chapter 8: Applications of Definite Integrals v v Sections: 8.1 Integral as Net Change 8.2 Areas in the Plane v 8.3 Volumes HW Sets Set A (Section 8.1) Pages

More information

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is 1. Let f(x, y) = 5 + 3x 2 + 3y 2 + 2y 3 + x 3. (a) Final all critical points of f. (b) Use the second derivatives test to classify the critical points you found in (a) as a local maximum, local minimum,

More information

x n x n stepnumber k order r error constant C r+1 1/2 5/12 3/8 251/720 abs. stab. interval (α,0) /11-3/10

x n x n stepnumber k order r error constant C r+1 1/2 5/12 3/8 251/720 abs. stab. interval (α,0) /11-3/10 MATH 573 LECTURE NOTES 77 13.8. Predictor-corrector methods. We consider the Adams methods, obtained from the formula xn+1 xn+1 y(x n+1 y(x n ) = y (x)dx = f(x,y(x))dx x n x n by replacing f by an interpolating

More information

Higher-Order Accurate Schemes for a Constant Coefficient Singularly Perturbed Reaction-Diffusion Problem of Boundary Layer Type

Higher-Order Accurate Schemes for a Constant Coefficient Singularly Perturbed Reaction-Diffusion Problem of Boundary Layer Type Applied Mathematical Sciences, Vol., 6, no. 4, 63-79 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.988/ams.6.639 Higher-Order Accurate Schemes for a Constant Coefficient Singularly Perturbed Reaction-Diffusion

More information

Engineering Analysis ENG 3420 Fall Dan C. Marinescu Office: HEC 439 B Office hours: Tu-Th 11:00-12:00

Engineering Analysis ENG 3420 Fall Dan C. Marinescu Office: HEC 439 B Office hours: Tu-Th 11:00-12:00 Engineering Analysis ENG 3420 Fall 2009 Dan C. Marinescu Office: HEC 439 B Office hours: Tu-Th 11:00-12:00 1 Lecture 24 Attention: The last homework HW5 and the last project are due on Tuesday November

More information

EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines

EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines EECS 556 Image Processing W 09 Interpolation Interpolation techniques B splines What is image processing? Image processing is the application of 2D signal processing methods to images Image representation

More information

The use of the Spectral Properties of the Basis Splines in Problems of Signal Processing

The use of the Spectral Properties of the Basis Splines in Problems of Signal Processing The use of the Spectral Properties of the Basis Splines in Problems of Signal Processing Zaynidinov Hakim Nasiritdinovich, MirzayevAvazEgamberdievich, KhalilovSirojiddinPanjievich Doctor of Science, professor,

More information

An Interface-fitted Mesh Generator and Polytopal Element Methods for Elliptic Interface Problems

An Interface-fitted Mesh Generator and Polytopal Element Methods for Elliptic Interface Problems An Interface-fitted Mesh Generator and Polytopal Element Methods for Elliptic Interface Problems Long Chen University of California, Irvine chenlong@math.uci.edu Joint work with: Huayi Wei (Xiangtan University),

More information

τ-extrapolation on 3D semi-structured finite element meshes

τ-extrapolation on 3D semi-structured finite element meshes τ-extrapolation on 3D semi-structured finite element meshes European Multi-Grid Conference EMG 2010 Björn Gmeiner Joint work with: Tobias Gradl, Ulrich Rüde September, 2010 Contents The HHG Framework τ-extrapolation

More information

On the high order FV schemes for compressible flows

On the high order FV schemes for compressible flows Applied and Computational Mechanics 1 (2007) 453-460 On the high order FV schemes for compressible flows J. Fürst a, a Faculty of Mechanical Engineering, CTU in Prague, Karlovo nám. 13, 121 35 Praha, Czech

More information

Numerical Methods in Physics Lecture 2 Interpolation

Numerical Methods in Physics Lecture 2 Interpolation Numerical Methods in Physics Pat Scott Department of Physics, Imperial College November 8, 2016 Slides available from http://astro.ic.ac.uk/pscott/ course-webpage-numerical-methods-201617 Outline The problem

More information

The Immersed Interface Method

The Immersed Interface Method The Immersed Interface Method Numerical Solutions of PDEs Involving Interfaces and Irregular Domains Zhiiin Li Kazufumi Ito North Carolina State University Raleigh, North Carolina Society for Industrial

More information

Introduction to Multigrid and its Parallelization

Introduction to Multigrid and its Parallelization Introduction to Multigrid and its Parallelization! Thomas D. Economon Lecture 14a May 28, 2014 Announcements 2 HW 1 & 2 have been returned. Any questions? Final projects are due June 11, 5 pm. If you are

More information

Normals of subdivision surfaces and their control polyhedra

Normals of subdivision surfaces and their control polyhedra Computer Aided Geometric Design 24 (27 112 116 www.elsevier.com/locate/cagd Normals of subdivision surfaces and their control polyhedra I. Ginkel a,j.peters b,,g.umlauf a a University of Kaiserslautern,

More information

Problem #3 Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page Mark Sparks 2012

Problem #3 Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page Mark Sparks 2012 Problem # Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 490 Mark Sparks 01 Finding Anti-derivatives of Polynomial-Type Functions If you had to explain to someone how to find

More information

Space Filling Curves and Hierarchical Basis. Klaus Speer

Space Filling Curves and Hierarchical Basis. Klaus Speer Space Filling Curves and Hierarchical Basis Klaus Speer Abstract Real world phenomena can be best described using differential equations. After linearisation we have to deal with huge linear systems of

More information

Chapter 6 Some Applications of the Integral

Chapter 6 Some Applications of the Integral Chapter 6 Some Applications of the Integral More on Area More on Area Integrating the vertical separation gives Riemann Sums of the form More on Area Example Find the area A of the set shaded in Figure

More information

Contents. I The Basic Framework for Stationary Problems 1

Contents. I The Basic Framework for Stationary Problems 1 page v Preface xiii I The Basic Framework for Stationary Problems 1 1 Some model PDEs 3 1.1 Laplace s equation; elliptic BVPs... 3 1.1.1 Physical experiments modeled by Laplace s equation... 5 1.2 Other

More information

Chapter 3. Numerical Differentiation, Interpolation, and Integration. Instructor: Dr. Ming Ye

Chapter 3. Numerical Differentiation, Interpolation, and Integration. Instructor: Dr. Ming Ye Chapter 3 Numerical Differentiation, Interpolation, and Integration Instructor: Dr. Ming Ye Measuring Flow in Natural Channels Mean-Section Method (1) Divide the stream into a number of rectangular elements

More information

Polynomials tend to oscillate (wiggle) a lot, even when our true function does not.

Polynomials tend to oscillate (wiggle) a lot, even when our true function does not. AMSC/CMSC 460 Computational Methods, Fall 2007 UNIT 2: Spline Approximations Dianne P O Leary c 2001, 2002, 2007 Piecewise polynomial interpolation Piecewise polynomial interpolation Read: Chapter 3 Skip:

More information

Multigrid Pattern. I. Problem. II. Driving Forces. III. Solution

Multigrid Pattern. I. Problem. II. Driving Forces. III. Solution Multigrid Pattern I. Problem Problem domain is decomposed into a set of geometric grids, where each element participates in a local computation followed by data exchanges with adjacent neighbors. The grids

More information

Adaptive techniques for spline collocation

Adaptive techniques for spline collocation Adaptive techniques for spline collocation Christina C. Christara and Kit Sun Ng Department of Computer Science University of Toronto Toronto, Ontario M5S 3G4, Canada ccc,ngkit @cs.utoronto.ca July 18,

More information

Adaptive osculatory rational interpolation for image processing

Adaptive osculatory rational interpolation for image processing Journal of Computational and Applied Mathematics 195 (2006) 46 53 www.elsevier.com/locate/cam Adaptive osculatory rational interpolation for image processing Min Hu a, Jieqing Tan b, a College of Computer

More information

An introduction to interpolation and splines

An introduction to interpolation and splines An introduction to interpolation and splines Kenneth H. Carpenter, EECE KSU November 22, 1999 revised November 20, 2001, April 24, 2002, April 14, 2004 1 Introduction Suppose one wishes to draw a curve

More information

Functions of Two variables.

Functions of Two variables. Functions of Two variables. Ferdinánd Filip filip.ferdinand@bgk.uni-obuda.hu siva.banki.hu/jegyzetek 27 February 217 Ferdinánd Filip 27 February 217 Functions of Two variables. 1 / 36 Table of contents

More information

Generalised Mean Averaging Interpolation by Discrete Cubic Splines

Generalised Mean Averaging Interpolation by Discrete Cubic Splines Publ. RIMS, Kyoto Univ. 30 (1994), 89-95 Generalised Mean Averaging Interpolation by Discrete Cubic Splines By Manjulata SHRIVASTAVA* Abstract The aim of this work is to introduce for a discrete function,

More information

4.2 and 4.6 filled in notes.notebook. December 08, Integration. Copyright Cengage Learning. All rights reserved.

4.2 and 4.6 filled in notes.notebook. December 08, Integration. Copyright Cengage Learning. All rights reserved. 4 Integration Copyright Cengage Learning. All rights reserved. 1 4.2 Area Copyright Cengage Learning. All rights reserved. 2 Objectives Use sigma notation to write and evaluate a sum. Understand the concept

More information

Maximizing an interpolating quadratic

Maximizing an interpolating quadratic Week 11: Monday, Apr 9 Maximizing an interpolating quadratic Suppose that a function f is evaluated on a reasonably fine, uniform mesh {x i } n i=0 with spacing h = x i+1 x i. How can we find any local

More information