Interference Effects. 6.2 Interference. Coherence. Coherence. Interference. Interference

Size: px
Start display at page:

Download "Interference Effects. 6.2 Interference. Coherence. Coherence. Interference. Interference"

Transcription

1 Effects 6.2 Two-Slit Thin film is a general property of waves. A condition for is that the wave source is coherent. between two waves gives characteristic patterns due to constructive and destructive. For two waves to show they must have coherence. Two waves are coherent if one wave has a constant phase relation to the other coherent incoherent Light from two separate light bulbs is Incoherent Light from a single light bulb passing through a small slit is coherent x 2 x φ= π phase shift Laser light is coherent E δ=0 Constructive E δ= 2 Destructive Sum Distance -> distance 1

2 δ= Constructive Coherent waves barrier r 1 path difference path difference =δ =r 2 r 1 A In phase r 2 Superposition of waves at A shows due to path differences Condition for constructive Condition for destructive δ = m 1 δ = ( m + ) 2 Order number m m = 0 + 1, + 2,. pattern due to two spherical waves Amplitude on screen Destructive Constructive δ= δ=- δ=0 m=1 m=0 m=-1 pattern of water waves Coherent waves pattern Young s two slit experiment Is light a wave (Huygens) or a particle (Newton)? Path difference from the two slits Not to scale In the limit L>>d, the rays are nearly parallel Thomas Young perpendicular to r 1 and r 2 Light shows wave properties path difference δ= dsinθ 2

3 d Bright constructive Dark destructive pattern maxima m=2 m=1 θ m=0 Central maximum m= -1 m= -2 dsinθ = m bright dsin θ dark = (m + 1/ 2) m = 0, + 1, + 2,... Wavelength of light Light from a laser is passed through two slits a distance of 0.10 mm apart and is hits a screen 5.0 m away. The separation between the central maximum and the first bright fringe is 2.6 cm. Find the wavelength of the light. First maxima y m=1 d θ 0.10mm L 5.0 m 2.5cm for small dsinθ=m sinθ θ y y angles d m L L = solve for for m= 1 = yd 2 3 (2.6x10 m)(0.1x10 m) 7 = = 5.2x10 m = 520nm ml (1)(5.0m) Thin film Thin film In thin film is between light reflected from front an back surfaces of a thin film. The phase difference is due to two factors: Path difference through the film (corrected for the change in speed of light in the material) Phase shift due to reflection at the interface Phase shift due to reflection n 1 < n 2 phase shift=180 o Reflection with inversion phase shift = 180 o Phase shift due to reflection n 1 > n 2 Phase shift = zero Reflection without inversion Phase shift = zero 3

4 Thin film between light reflected from Top and bottom surfaces. For a film in air the phase difference due to reflection is 180 o. If the path difference (2t) is negligible then there is destructive. Destructive occurs when the path length difference equals integral multiples of the wavelength. Condition for destructive δ=2t= m film = m The wavelength in the film is shorter than in air. n m=0, 1, 2, 3. Thin film for a soap film in air For constructive the path difference (2t) must be half integral multiples of the wavelength to make up for the phase shift on reflection. Condition for constructive 1 1 δ=2t= (m + ) film = (m + ) 2 2 n M=0, 1, 2, 3 Soap film Question A vertical soap film displays a series of colored band due to reflected light. Find the thickness of the film at the position of the 5 th green band from the top (=550 nm, n =1.33) Constructive The 5th band has m=4 (the first is m=0) 1 2t = (m + ) 2 n nm t = (m + ) = (4 + ) = 930nm 2 2n 2 2(1.33) no coating anti-reflective coating Anti-reflective Coating Anti-reflective coatings are used to reduce reflections at the air-glass interface. n 1 Anti-reflective Coating n2 n3 t Anti-reflective coatings consists of a thin-layer of material with a refractive index in between that of air and glass. Destructive between light reflected at the two surfaces reduces the intensity of reflected light. What is the condition for destructive? n 1 =1.00 < n 2 < n 3 There is a phase shift of 180 o 1 2 t = ( m+ ) at both interfaces. 2 n2 The phase difference due to reflection is zero The path difference must be a half-integral number of wavelengths. 4

5 Question An anti-reflective coating of MgF 2 (n=1.38) is used on a glass surface to reduce reflections. Find the minimum thickness of the coating that can be used for green light (=550 nm). Optical compact disc For destructive 1 2 t = ( m+ ) minimum 2 n2 at m=0 Solve for t 550nm t = = = 100nm 4n 4(1.38) 1 2t = 2 n Quarter wavelength (in coating) thickness A CD stores information in a series of pits and bumps in the plastic. The information is read by a reflected laser beam. The intensity of the beam is changed by destructive of the reflected light t = 4n destructive 5

Chapter 25. Wave Optics

Chapter 25. Wave Optics Chapter 25 Wave Optics Interference Light waves interfere with each other much like mechanical waves do All interference associated with light waves arises when the electromagnetic fields that constitute

More information

Chapter 8: Physical Optics

Chapter 8: Physical Optics Chapter 8: Physical Optics Whether light is a particle or a wave had puzzled physicists for centuries. In this chapter, we only analyze light as a wave using basic optical concepts such as interference

More information

Interference of Light

Interference of Light Interference of Light Review: Principle of Superposition When two or more waves interact they interfere. Wave interference is governed by the principle of superposition. The superposition principle says

More information

Physics 272 Lecture 27 Interference (Ch ) Diffraction (Ch )

Physics 272 Lecture 27 Interference (Ch ) Diffraction (Ch ) Physics 272 Lecture 27 Interference (Ch 35.4-5) Diffraction (Ch 36.1-3) Thin Film Interference 1 2 n 0 =1 (air) t n 1 (thin film) n 2 Get two waves by reflection off of two different interfaces. Ray 2

More information

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric) optics

More information

LECTURE 26: Interference ANNOUNCEMENT. Interference. Interference: Phase Differences

LECTURE 26: Interference ANNOUNCEMENT. Interference. Interference: Phase Differences ANNOUNCEMENT *Exam : Friday December 4, 0, 8 AM 0 AM *Location: Elliot Hall of Music *Covers all readings, lectures, homework from Chapters 9 through 33. *The exam will be multiple choice. Be sure to bring

More information

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric) optics

More information

College Physics B - PHY2054C

College Physics B - PHY2054C Young College - PHY2054C Wave Optics: 10/29/2014 My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building Outline Young 1 2 3 Young 4 5 Assume a thin soap film rests on a flat glass surface. Young Young

More information

Young s Double Slit Experiment

Young s Double Slit Experiment Young s Double Slit Experiment Light as a Wave? If light behaves like a wave, an experiment similar to a ripple tank using two light sources should reveal bright areas (constructive interference) and dark

More information

Michelson Interferometer

Michelson Interferometer Michelson Interferometer The Michelson interferometer uses the interference of two reflected waves The third, beamsplitting, mirror is partially reflecting ( half silvered, except it s a thin Aluminum

More information

Textbook Reference: Physics (Wilson, Buffa, Lou): Chapter 24

Textbook Reference: Physics (Wilson, Buffa, Lou): Chapter 24 AP Physics-B Physical Optics Introduction: We have seen that the reflection and refraction of light can be understood in terms of both rays and wave fronts of light. Light rays are quite compatible with

More information

CHAPTER 26 INTERFERENCE AND DIFFRACTION

CHAPTER 26 INTERFERENCE AND DIFFRACTION CHAPTER 26 INTERFERENCE AND DIFFRACTION INTERFERENCE CONSTRUCTIVE DESTRUCTIVE YOUNG S EXPERIMENT THIN FILMS NEWTON S RINGS DIFFRACTION SINGLE SLIT MULTIPLE SLITS RESOLVING POWER 1 IN PHASE 180 0 OUT OF

More information

Chapter 82 Example and Supplementary Problems

Chapter 82 Example and Supplementary Problems Chapter 82 Example and Supplementary Problems Nature of Polarized Light: 1) A partially polarized beam is composed of 2.5W/m 2 of polarized and 4.0W/m 2 of unpolarized light. Determine the degree of polarization

More information

Chapter 37. Wave Optics

Chapter 37. Wave Optics Chapter 37 Wave Optics Wave Optics Wave optics is a study concerned with phenomena that cannot be adequately explained by geometric (ray) optics. Sometimes called physical optics These phenomena include:

More information

College Physics 150. Chapter 25 Interference and Diffraction

College Physics 150. Chapter 25 Interference and Diffraction College Physics 50 Chapter 5 Interference and Diffraction Constructive and Destructive Interference The Michelson Interferometer Thin Films Young s Double Slit Experiment Gratings Diffraction Resolution

More information

Chapter 24. Wave Optics

Chapter 24. Wave Optics Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric) optics

More information

1. (25pts) Answer the following questions. Justify your answers. (Use the space provided below and the next page)

1. (25pts) Answer the following questions. Justify your answers. (Use the space provided below and the next page) . (25pts) Answer the following questions. Justify your answers. (Use the space provided below and the next page) a). An object (an arrow) is placed as shown in front of each of the following optical instruments.

More information

Physical or wave optics

Physical or wave optics Physical or wave optics In the last chapter, we have been studying geometric optics u light moves in straight lines u can summarize everything by indicating direction of light using a ray u light behaves

More information

Chapter 37. Interference of Light Waves

Chapter 37. Interference of Light Waves Chapter 37 Interference of Light Waves Wave Optics Wave optics is a study concerned with phenomena that cannot be adequately explained by geometric (ray) optics These phenomena include: Interference Diffraction

More information

Chapter 24. Wave Optics

Chapter 24. Wave Optics Chapter 24 Wave Optics hitt1 An upright object is located a distance from a convex mirror that is less than the mirror's focal length. The image formed by the mirror is (1) virtual, upright, and larger

More information

UNIT VI OPTICS ALL THE POSSIBLE FORMULAE

UNIT VI OPTICS ALL THE POSSIBLE FORMULAE 58 UNIT VI OPTICS ALL THE POSSIBLE FORMULAE Relation between focal length and radius of curvature of a mirror/lens, f = R/2 Mirror formula: Magnification produced by a mirror: m = - = - Snell s law: 1

More information

specular diffuse reflection.

specular diffuse reflection. Lesson 8 Light and Optics The Nature of Light Properties of Light: Reflection Refraction Interference Diffraction Polarization Dispersion and Prisms Total Internal Reflection Huygens s Principle The Nature

More information

Version 001 Interference jean (AP Phy MHS 2012) 1

Version 001 Interference jean (AP Phy MHS 2012) 1 Version 001 Interference jean AP Phy MHS 01) 1 This print-out should have 11 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. sound m Concept

More information

Chapter 24. Wave Optics

Chapter 24. Wave Optics Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric) optics

More information

Physics 102: Lecture 21 Thin Films & Diffraction Gratings

Physics 102: Lecture 21 Thin Films & Diffraction Gratings Physics 102: Lecture 21 Thin Films & Diffraction Gratings Physics 102: Lecture 21, Slie 1 Recall Interference (at least 2 coherent waves) Constructive (full wavelength ifference) Destructive (half wavelength

More information

The sources must be coherent. This means they emit waves with a constant phase with respect to each other.

The sources must be coherent. This means they emit waves with a constant phase with respect to each other. CH. 24 Wave Optics The sources must be coherent. This means they emit waves with a constant phase with respect to each other. The waves need to have identical wavelengths. Can t be coherent without this.

More information

Interference. Electric fields from two different sources at a single location add together. The same is true for magnetic fields at a single location.

Interference. Electric fields from two different sources at a single location add together. The same is true for magnetic fields at a single location. Interference Electric fields from two different sources at a single location add together. The same is true for magnetic fields at a single location. Thus, interacting electromagnetic waves also add together.

More information

Lecture PowerPoints. Chapter 24 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 24 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 24 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Chapter 24 The Wave Nature of Light

Chapter 24 The Wave Nature of Light Chapter 24 The Wave Nature of Light 24.1 Waves Versus Particles; Huygens Principle and Diffraction Huygens principle: Every point on a wave front acts as a point source; the wavefront as it develops is

More information

AP Physics Problems -- Waves and Light

AP Physics Problems -- Waves and Light AP Physics Problems -- Waves and Light 1. 1975-4 (Physical Optics) a. Light of a single wavelength is incident on a single slit of width w. (w is a few wavelengths.) Sketch a graph of the intensity as

More information

Lecture 21. Physics 1202: Lecture 22 Today s Agenda

Lecture 21. Physics 1202: Lecture 22 Today s Agenda Physics 1202: Lecture 22 Today s Agenda Announcements: Team problems today Team 16: Navia Hall, Laura Irwin, Eric Kaufman Team 18: Charles Crilly Jr, Kyle Eline, Alexandra Vail Team 19: Erica Allen, Shana

More information

PHYSICS - CLUTCH CH 32: WAVE OPTICS.

PHYSICS - CLUTCH CH 32: WAVE OPTICS. !! www.clutchprep.com CONCEPT: DIFFRACTION Remember! Light travels in a straight line so long as it isn t disturbed - This allows light to be described as RAYS A common way to disturb light is to have

More information

Interference of Light

Interference of Light Interference of Light Young s Double-Slit Experiment If light is a wave, interference effects will be seen, where one part of wavefront can interact with another part. One way to study this is to do a

More information

Today: Interferometry, Diffraction

Today: Interferometry, Diffraction Physics 228 Please check list of students w/o registered iclicker! Today: Interferometry, Diffraction Diffraction is a further expansion of the idea of interference: Instead of two sources we consider

More information

EM Waves Practice Problems

EM Waves Practice Problems PSI AP Physics 2 Name 1. Sir Isaac Newton was one of the first physicists to study light. What properties of light did he explain by using the particle model? 2. Who was the first person who was credited

More information

PY212 Lecture 25. Prof. Tulika Bose 12/3/09. Interference and Diffraction. Fun Link: Diffraction with Ace Ventura

PY212 Lecture 25. Prof. Tulika Bose 12/3/09. Interference and Diffraction. Fun Link: Diffraction with Ace Ventura PY212 Lecture 25 Interference and Diffraction Prof. Tulika Bose 12/3/09 Fun Link: Diffraction with Ace Ventura Summary from last time The wave theory of light is strengthened by the interference and diffraction

More information

Physics 214 Midterm Fall 2003 Form A

Physics 214 Midterm Fall 2003 Form A 1. A ray of light is incident at the center of the flat circular surface of a hemispherical glass object as shown in the figure. The refracted ray A. emerges from the glass bent at an angle θ 2 with respect

More information

Lecture 4 Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization

Lecture 4 Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization Lecture 4 Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization Lens Aberrations - 3 lectures Spherical aberrations Coma,

More information

f. (5.3.1) So, the higher frequency means the lower wavelength. Visible part of light spectrum covers the range of wavelengths from

f. (5.3.1) So, the higher frequency means the lower wavelength. Visible part of light spectrum covers the range of wavelengths from Lecture 5-3 Interference and Diffraction of EM Waves During our previous lectures we have been talking about electromagnetic (EM) waves. As we know, harmonic waves of any type represent periodic process

More information

Midterm II Physics 9B Summer 2002 Session I

Midterm II Physics 9B Summer 2002 Session I Midterm II Physics 9B Summer 00 Session I Name: Last 4 digits of ID: Total Score: ) Two converging lenses, L and L, are placed on an optical bench, 6 cm apart. L has a 0 cm focal length and is placed to

More information

5 10:00 AM 12:00 PM 1420 BPS

5 10:00 AM 12:00 PM 1420 BPS Physics 294H l Professor: Joey Huston l email:huston@msu.edu l office: BPS3230 l Homework will be with Mastering Physics (and an average of 1 hand-written problem per week) I ve assigned 22.62 as a hand-in

More information

Chapter 35 &36 Physical Optics

Chapter 35 &36 Physical Optics Chapter 35 &36 Physical Optics Physical Optics Phase Difference & Coherence Thin Film Interference 2-Slit Interference Single Slit Interference Diffraction Patterns Diffraction Grating Diffraction & Resolution

More information

Class 33: Outline. Hour 1: Interference. Hour 2: Experiment 13: Interference P33-

Class 33: Outline. Hour 1: Interference. Hour 2: Experiment 13: Interference P33- Class 33: Outline Hour 1: Interference Hour 2: Experiment 13: Interference P33-1 Last time: Microwaves (mw) c f = 2 10 9 Hz λ = = 15cm mw mw f This time: Visible (red) light: c = 4.6 10 = = 6.54 10 f 14

More information

UNIT 102-9: INTERFERENCE AND DIFFRACTION

UNIT 102-9: INTERFERENCE AND DIFFRACTION Name St.No. - Date(YY/MM/DD) / / Section Group # UNIT 102-9: INTERFERENCE AND DIFFRACTION Patterns created by interference of light in a thin film. OBJECTIVES 1. Understand the creation of double-slit

More information

Lecture Wave Optics. Physics Help Q&A: tutor.leiacademy.org

Lecture Wave Optics. Physics Help Q&A: tutor.leiacademy.org Lecture 1202 Wave Optics Physics Help Q&A: tutor.leiacademy.org Total Internal Reflection A phenomenon called total internal reflectioncan occur when light is directed from a medium having a given index

More information

Diffraction. Factors that affect Diffraction

Diffraction. Factors that affect Diffraction Diffraction What is one common property the four images share? Diffraction: Factors that affect Diffraction TELJR Publications 2017 1 Young s Experiment AIM: Does light have properties of a particle? Or

More information

CHAPTER 24 The Wave Nature of Light

CHAPTER 24 The Wave Nature of Light CHAPTER 24 The Wave Nature of Light http://www.physicsclassroom.com/class/light/lighttoc.html Units Waves Versus Particles; Huygens Principle and Diffraction Huygens Principle and the Law of Refraction

More information

Physics 1CL WAVE OPTICS: INTERFERENCE AND DIFFRACTION Fall 2009

Physics 1CL WAVE OPTICS: INTERFERENCE AND DIFFRACTION Fall 2009 Introduction An important property of waves is interference. You are familiar with some simple examples of interference of sound waves. This interference effect produces positions having large amplitude

More information

Unit 5.C Physical Optics Essential Fundamentals of Physical Optics

Unit 5.C Physical Optics Essential Fundamentals of Physical Optics Unit 5.C Physical Optics Essential Fundamentals of Physical Optics Early Booklet E.C.: + 1 Unit 5.C Hwk. Pts.: / 25 Unit 5.C Lab Pts.: / 20 Late, Incomplete, No Work, No Units Fees? Y / N 1. Light reflects

More information

Chapter 24 - The Wave Nature of Light

Chapter 24 - The Wave Nature of Light Chapter 24 - The Wave Nature of Light Summary Four Consequences of the Wave nature of Light: Diffraction Dispersion Interference Polarization Huygens principle: every point on a wavefront is a source of

More information

INTERFERENCE. where, m = 0, 1, 2,... (1.2) otherwise, if it is half integral multiple of wavelength, the interference would be destructive.

INTERFERENCE. where, m = 0, 1, 2,... (1.2) otherwise, if it is half integral multiple of wavelength, the interference would be destructive. 1.1 INTERFERENCE When two (or more than two) waves of the same frequency travel almost in the same direction and have a phase difference that remains constant with time, the resultant intensity of light

More information

Topic 9: Wave phenomena - AHL 9.3 Interference

Topic 9: Wave phenomena - AHL 9.3 Interference Topic 9.3 is an extension of Topic 4.4. Essential idea: Interference patterns from multiple slits and thin films produce accurately repeatable patterns. Nature of science: (1) Curiosity: Observed patterns

More information

University Physics (Prof. David Flory) Chapt_37 Monday, August 06, 2007

University Physics (Prof. David Flory) Chapt_37 Monday, August 06, 2007 Name: Date: 1. If we increase the wavelength of the light used to form a double-slit diffraction pattern: A) the width of the central diffraction peak increases and the number of bright fringes within

More information

New topic: Diffraction only one slit, but wide. From Last time. Huygen s principle. Overlapping diffraction patterns. Diffraction from other objects

New topic: Diffraction only one slit, but wide. From Last time. Huygen s principle. Overlapping diffraction patterns. Diffraction from other objects New topic: Diffraction only one slit, but wide From Last time Two-source interference: Interference-like pattern from a single slit. For a slit: a θ central width ~ 2 Diffraction grating Week3HW on Mastering

More information

Interference of Light

Interference of Light Interference of Light Objective To study the interference patterns of light passed through a single and double-slit, a human hair, and compact discs using a laser. Equipment meter stick index card slit

More information

Problem Solving 10: Double-Slit Interference

Problem Solving 10: Double-Slit Interference MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of hysics roblem Solving 10: Double-Slit Interference OBJECTIVES 1. To introduce the concept of interference. 2. To find the conditions for constructive

More information

Models of Light The wave model: The ray model: The photon model:

Models of Light The wave model: The ray model: The photon model: Models of Light The wave model: under many circumstances, light exhibits the same behavior as sound or water waves. The study of light as a wave is called wave optics. The ray model: The properties of

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS LSN 9-3: INTERFERENCE Intro Video: Interference of Waves Questions From Reading Activity? Essential Idea: Interference patterns from multiple slits

More information

Physics 1C Lecture 27A

Physics 1C Lecture 27A Physics 1C Lecture 27A "Any other situation in quantum mechanics, it turns out, can always be explained by saying, You remember the experiment with the two holes? It s the same thing. " --Richard Feynman

More information

Electricity & Optics

Electricity & Optics Physics 24100 Electricity & Optics Lecture 27 Chapter 33 sec. 7-8 Fall 2017 Semester Professor Koltick Clicker Question Bright light of wavelength 585 nm is incident perpendicularly on a soap film (n =

More information

Where n = 0, 1, 2, 3, 4

Where n = 0, 1, 2, 3, 4 Syllabus: Interference and diffraction introduction interference in thin film by reflection Newton s rings Fraunhofer diffraction due to single slit, double slit and diffraction grating Interference 1.

More information

Dr. Quantum. General Physics 2 Light as a Wave 1

Dr. Quantum. General Physics 2 Light as a Wave 1 Dr. Quantum General Physics 2 Light as a Wave 1 The Nature of Light When studying geometric optics, we used a ray model to describe the behavior of light. A wave model of light is necessary to describe

More information

Physics 2c Lecture 25. Chapter 37 Interference & Diffraction

Physics 2c Lecture 25. Chapter 37 Interference & Diffraction Physics 2c Lecture 25 Chapter 37 Interference & Diffraction Outlook for rest of quarter Today: finish chapter 37 Tomorrow & Friday: E&M waves (Chapter 34) Next Monday, June 4 th : Quiz 8 on Chapter 37

More information

Wave Optics. April 11, 2014 Chapter 34 1

Wave Optics. April 11, 2014 Chapter 34 1 Wave Optics April 11, 2014 Chapter 34 1 Announcements! Exam tomorrow! We/Thu: Relativity! Last week: Review of entire course, no exam! Final exam Wednesday, April 30, 8-10 PM Location: WH B115 (Wells Hall)

More information

Physics 1C, Summer 2011 (Session 1) Practice Midterm 2 (50+4 points) Solutions

Physics 1C, Summer 2011 (Session 1) Practice Midterm 2 (50+4 points) Solutions Physics 1C, Summer 2011 (Session 1) Practice Midterm 2 (50+4 points) s Problem 1 (5x2 = 10 points) Label the following statements as True or False, with a one- or two-sentence explanation for why you chose

More information

Interference of Light

Interference of Light Lecture 23 Chapter 22 Physics II 08.07.2015 Wave Optics: Interference of Light Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Lecture Capture: http://echo360.uml.edu/danylov201415/physics2spring.html

More information

PHY132 Introduction to Physics II Class 5 Outline:

PHY132 Introduction to Physics II Class 5 Outline: PHY132 Introduction to Physics II Class 5 Outline: Ch. 22, sections 22.1-22.4 (Note we are skipping sections 22.5 and 22.6 in this course) Light and Optics Double-Slit Interference The Diffraction Grating

More information

Physics 228 Today: Diffraction, diffraction grating

Physics 228 Today: Diffraction, diffraction grating Physics 228 Today: Diffraction, diffraction grating Website: Sakai 01:750:228 or www.physics.rutgers.edu/ugrad/228 Diffraction is a further expansion of the idea of interference. We expand from two sources

More information

The interference of light

The interference of light The interference of light For a long time there was a dispute about what light was. Was it made up of particles, or waves? In 1801, Thomas Young carried out a famous experiment (Young s double slit) that

More information

Interference, Diffraction & Polarization

Interference, Diffraction & Polarization Interference, Diffraction & Polarization PHY232 Remco Zegers zegers@nscl.msu.edu Room W109 cyclotron building http://www.nscl.msu.edu/~zegers/phy232.html light as waves so far, light has been treated as

More information

25-1 Interference from Two Sources

25-1 Interference from Two Sources 25-1 Interference from Two Sources In this chapter, our focus will be on the wave behavior of light, and on how two or more light waves interfere. However, the same concepts apply to sound waves, and other

More information

Intermediate Physics PHYS102

Intermediate Physics PHYS102 Intermediate Physics PHYS102 Dr Richard H. Cyburt Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 384-6006 My email: rcyburt@concord.edu My webpage: www.concord.edu/rcyburt

More information

Interference and Diffraction of Light

Interference and Diffraction of Light Name Date Time to Complete h m Partner Course/ Section / Grade Interference and Diffraction of Light Reflection by mirrors and refraction by prisms and lenses can be analyzed using the simple ray model

More information

LECTURE 13 THIN FILM INTERFERENCE. Instructor: Kazumi Tolich

LECTURE 13 THIN FILM INTERFERENCE. Instructor: Kazumi Tolich LECTURE 13 THIN FILM INTERFERENCE Instructor: Kazumi Tolich Lecture 13 2 17.4 Thin film interference Interference of reflected light waves Thin films of air The colors of soap bubbles and oil slicks 17.4

More information

22.1. Visualize: Please refer to Figure Ex22.1. Solve: (a)

22.1. Visualize: Please refer to Figure Ex22.1. Solve: (a) 22.. Visualize: Please refer to Figure Ex22.. Solve: (a) (b) The initial light pattern is a double-slit interference pattern. It is centered behind the midpoint of the slits. The slight decrease in intensity

More information

Unit 4 Wave Theory of Light. Wave Behaviour

Unit 4 Wave Theory of Light. Wave Behaviour Lesson43b.notebook February 06, 2014 Unit 4 Wave Theory of Light Wave Behaviour Today's goal: I can explain wave behaviour with; barriers, different mediums, etc... and explain how they relate to real

More information

Interference of Light

Interference of Light Lecture 23 Chapter 22 Physics II Wave Optics: Interference of Light Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Lecture Capture: http://echo360.uml.edu/danylov201415/physics2spring.html

More information

Update on the Gravitational-Wave Observatory project? Wikipedia OPL length questions: We ll go over this in lecture. Through the optics section, many

Update on the Gravitational-Wave Observatory project? Wikipedia OPL length questions: We ll go over this in lecture. Through the optics section, many More Interference Update on the Gravitational-Wave Observatory project? Wikipedia OPL length questions: We ll go over this in lecture. Through the optics section, many of the equations we use don't use

More information

Thin Lenses 4/16/2018 1

Thin Lenses 4/16/2018 1 Thin Lenses f 4/16/2018 1 Thin Lenses: Converging Lens C 2 F 1 F 2 C 1 r 2 f r 1 Parallel rays refract twice Converge at F 2 a distance f from center of lens F 2 is a real focal pt because rays pass through

More information

( ) n ; t = n! $ m 2 = & ' ; t = n. 2n soap film. Solution: " t = & 7.45 ( 10)7 m =

( ) n ; t = n! $ m 2 = & ' ; t = n. 2n soap film. Solution:  t = & 7.45 ( 10)7 m = Section 10.1: Interference in Thin Films Tutorial 1 Practice, page 507 1. The second soap film is thicker. The longer wavelength of the second film means the film at that point must be thicker for constructive

More information

MDHS Science Department SPH 4U - Student Goal Tracking Sheet

MDHS Science Department SPH 4U - Student Goal Tracking Sheet Name: Unit name: Wave Nature of light Goals for this unit: MDHS Science Department SPH 4U - Student Goal Tracking Sheet 1) I can explain wave behaviour and apply the properties to the Wave Theory of Light.

More information

E x Direction of Propagation. y B y

E x Direction of Propagation. y B y x E x Direction of Propagation k z z y B y An electromagnetic wave is a travelling wave which has time varying electric and magnetic fields which are perpendicular to each other and the direction of propagation,

More information

PHYS2002 Spring 2012 Practice Exam 3 (Chs. 25, 26, 27) Constants

PHYS2002 Spring 2012 Practice Exam 3 (Chs. 25, 26, 27) Constants PHYS00 Spring 01 Practice Exam 3 (Chs. 5, 6, 7) Constants m m q q p e ε = 8.85 o o p e = 1.67 = 9.11 7 9 7 31 = + 1.60 = 1.60 μ = 4π k = 8.99 g = 9.8 m/s 1 kg 19 19 C kg T m/a N m C / N m C / C 1. A convex

More information

Fresnel's biprism and mirrors

Fresnel's biprism and mirrors Fresnel's biprism and mirrors 1 Table of Contents Section Page Back ground... 3 Basic Experiments Experiment 1: Fresnel's mirrors... 4 Experiment 2: Fresnel's biprism... 7 2 Back ground Interference of

More information

22.4. (a) (b) (c) (d)

22.4. (a) (b) (c) (d) mλl 22.2. Because ym = increasing λ and L increases the fringe spacing. Increasing d decreases the fringe d spacing. Submerging the experiment in water decreases λ and decreases the fringe spacing. So

More information

Name: Lab Partner: Section:

Name: Lab Partner: Section: Chapter The Wave Nature of Light - Interference and Di raction Name: Lab Partner: Section:. Purpose This experiment will demonstrate that light can be considered as a wave. If light is a wave, then interference

More information

SESSION 5: INVESTIGATING LIGHT. Key Concepts. X-planation. Physical Sciences Grade In this session we:

SESSION 5: INVESTIGATING LIGHT. Key Concepts. X-planation. Physical Sciences Grade In this session we: SESSION 5: INVESTIGATING LIGHT Key Concepts In this session we: Explain what light is, where light comes from and why it is important Identify what happens when light strikes the surface of different objects

More information

14 Chapter. Interference and Diffraction

14 Chapter. Interference and Diffraction 14 Chapter Interference and Diffraction 14.1 Superposition of Waves... 14-14.1.1 Interference Conditions for Light Sources... 14-4 14. Young s Double-Slit Experiment... 14-4 Example 14.1: Double-Slit Experiment...

More information

Interference of Light

Interference of Light Lecture 22 Chapter 22 Physics II Wave Optics: Interference of Light Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Wave Motion Interference Models of Light (Water waves are Easy

More information

Ch. 22 Properties of Light HW# 1, 5, 7, 9, 11, 15, 19, 22, 29, 37, 38

Ch. 22 Properties of Light HW# 1, 5, 7, 9, 11, 15, 19, 22, 29, 37, 38 Ch. 22 Properties of Light HW# 1, 5, 7, 9, 11, 15, 19, 22, 29, 37, 38 Brief History of the Nature of Light Up until 19 th century, light was modeled as a stream of particles. Newton was a proponent of

More information

Lecture 41: WED 29 APR

Lecture 41: WED 29 APR Physics 2102 Jonathan Dowling Lecture 41: WED 29 APR Ch. 36: Diffraction PHYS 2102-2 FINAL 5:30-7:30PM FRI 08 MAY COATES 143 1/2 ON NEW MATERIAL 1/2 ON OLD MATERIAL Old Formula Sheet: http://www.phys.lsu.edu/classes/

More information

Diffraction at a single slit and double slit Measurement of the diameter of a hair

Diffraction at a single slit and double slit Measurement of the diameter of a hair Diffraction at a single slit and double slit Measurement of the diameter of a hair AREEJ AL JARB Background... 3 Objects of the experiments 4 Principles Single slit... 4 Double slit.. 6 Setup. 7 Procedure

More information

Lecture 39: FRI 24 APR

Lecture 39: FRI 24 APR Physics 2102 Jonathan Dowling Lecture 39: FRI 24 APR Ch. 35: Interference Christian Huygens 1629-1695 The Lunatic Fringe: The waves arriving at the screen from the two slits will interfere constructively

More information

Chapter 15. Light Waves

Chapter 15. Light Waves Chapter 15 Light Waves Chapter 15 is finished, but is not in camera-ready format. All diagrams are missing, but here are some excerpts from the text with omissions indicated by... After 15.1, read 15.2

More information

Lab 12 - Interference-Diffraction of Light Waves

Lab 12 - Interference-Diffraction of Light Waves Lab 12 - Interference-Diffraction of Light Waves Equipment and Safety: No special safety equipment is required for this lab. Do not look directly into the laser. Do not point the laser at other people.

More information

Interference II: Thin Films

Interference II: Thin Films Interference II: Thin Films Physics 2415 Lecture 36 Michael Fowler, UVa Today s Topics Colors of thin films Michelson s interferometer The Michelson Morley experiment Thin Film Interference Effects The

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 37 Interference Spring 2016 Semester Matthew Jones Multiple Beam Interference In many situations, a coherent beam can interfere with itself multiple times Consider

More information

light Chapter Type equation here. Important long questions

light Chapter Type equation here. Important long questions Type equation here. Light Chapter 9 Important long questions Q.9.1 Describe Young s double slit experiment for the demonstration of interference of. Derive an expression for fringe spacing? Ans. Young

More information

Past Paper Questions Waves

Past Paper Questions Waves Past Paper Questions Waves Name 1. Explain the differences between an undamped progressive transverse wave and a stationary transverse wave, in terms of amplitude, (ii) phase and (iii) energy transfer.

More information

PHYS 450 Fall semester Lecture 08: Young s Double Slit. Ron Reifenberger Birck Nanotechnology Center Purdue University

PHYS 450 Fall semester Lecture 08: Young s Double Slit. Ron Reifenberger Birck Nanotechnology Center Purdue University /4/6 PHYS 45 Fall semester 6 Lecture 8: Young s Double Slit Ron Reifenberger Birck Nanotechnolog Center Purdue Universit Lecture 8 Young s Double Slit Experiment 83 ( double path genre of experiments)

More information