QUINT: On Query-Specific Optimal Networks

Size: px
Start display at page:

Download "QUINT: On Query-Specific Optimal Networks"

Transcription

1 QUINT: On Query-Specific Optimal Networks Presenter: Liangyue Li Joint work with Yuan Yao (NJU) -1- Jie Tang (Tsinghua) Wei Fan (Baidu) Hanghang Tong (ASU)

2 Node Proximity: What? Node proximity: the closeness (a.k.a., relevance, or similarity) between two nodes What is the closest node to 4?

3 Node Proximity: Why? Biology [Ni+] Social Network [Lerman+] E-commerce [Chen+] Disaster Mgtm [Zheng+] - 3 -

4 - 4 - Node Proximity: How? Random Walk with Restart (RWR) Idea: summarize multiple weighted relationships btw nodes Variants: A Electric networks: SAEC[Faloutsos+] Katz [Katz], [Huang+] Matrix-Forest-based Alg [Chobotarev+] 1 H D E I F J 1 1 Prox (A, B) = G B Score (Red Path) + Score (Green Path) + Score (Blue Path) + Score (Purple Path) +

5 Node Proximity: RWR

6 Node Proximity -- RWR Detail: a random walker starts from s (a) transmit to one neighbor with (b) go back to s with prob Formulation (1 c) r s = car s +(1 p ca ij c)e s Ranking vector Adjacent matrix Restart prob Starting vector Assumption How to best leverage the fixed input graph A - 6 -

7 Node Proximity: Learning RWR Goal Use side information to learn better graph Side info: user feedback, node attributes Key Idea: Infer optimal edge weights X min w kwk2 + h(q(y, s) Q(x, s)) Map edge attributes to weights x2p,y2n Limitation: Fixed topology Match user preferences Q =(I ca) 1 J. Tang, T. Lou and J. Kleinberg. Transfer Link Prediction across Heterogeneous Social Networks. TOIS, L. Backstrom and J. Leskovec. Supervised random walks: predicting and recommending links in social networks. WSDM, A. - 7Agarwal, - S. Chakrabarti, and S. Aggarwal. Learning to rank networked Arizona entities. State KDD, University 2006.

8 Algorithmic Questions Q1: optimal weights or optimal topology? Q2: one-fits-all or one-fits-one? Q3: offline learning or online learning? - 8 -

9 Q1: Optimal Weights or Topology? Observation: real network is noisy and incomplete Challenge: learn optimal weights and topology Missing edge Noisy edge

10 Q2: One-fits-all, or one-fits-one? Observation: optimal network for different queries might be different Query Node P 1 Positive Nodes Negative Nodes N N 1 Negative Nodes Query Node Positive Nodes P Challenge: How to tailor learning for each query

11 Q3: Offline or Online Learning Observation: Learning RWR: costly iterative sub-routine to compute a single gradient vector Learning topology: parameter space expands to O(n 2 ) One-fits-one: one optimal network for each query Challenge: How to perform query-specific online learning?

12 Query-specific Optimal Network Learning s Query Node P 1 Positive Nodes Negative Nodes N A Given: An input network, a query node, positive nodes P and negative nodes N Learn: An optimal network A s specific to the query s

13 Roadmap Motivations Proposed Solutions: QUINT Empirical Evaluations Conclusions

14 QUINT - Formulations Q =(I ca) 1 Optimization Formulation (hard version) Remarks Matching Input Network Larger parameter space Query-specific Optimal Network Positive nodes No exception is allowed in the constraint Negative nodes arg min ka s Ak 2 F A s s.t., Q(x, s) > Q(y, s), 8x 2 P, 8y 2 N Matching Preference(hard) O(n 2 )

15 QUINT - Formulations Q =(I ca) 1 Optimization Formulation (soft version) arg min L(A s ) = ka s Ak 2 F A s + P g(q(y, s) Remarks Characteristic x2p,y2n Wilcoxon-Mann-Whitney (WMW) loss Loss function Q(x, s)) Penalty to the violation of preferences Q(y, s) < Q(x, s) ) g( ) =0 Q(y, s) > Q(x, s) ) g( ) >

16 QUINT -- Optimization Q =(I ca) 1 Gradient Descent Based Solution s s =2 (A s A)+ P =2 (A s A)+ P x,y yx @A s ) Derivative of an s (i,j) = ca s (i,j) Q = cqjij s (i, j) = cq(x, i)q(j, s)

17 QUINT -- Optimization Q =(I ca) 1 s (i, j) Complexity O(T 1 P N (T 2 m + n 2 )) Observation Usually = cq(x, i)q(j, s) Complexity: quadratic Query node s j Neighbor of Q(j, s) Q(x, i) T 1, T 2, P, N m, n Q: how to scale up? s s (i, j) x i Positive node Neighbor of x

18 QUINT Scale-up Q =(I ca) 1 Key idea: Optimal network is rank-one perturbation to original network Details: arg min L(f, g) = f,g kfg0 k 2 F + (kfk2 + kgk 2 ) + P g(q(y, s) Q(x, s)) Optimization: alternating gradient descent Complexity: x2p,y2n O(T 1 P N (T 2 m + n))

19 QUINT Variant #1 Key idea: apply Taylor Approximation for Details: Q =(I ca) 1 I + P k i=1 ck A k Complexity: using 1 st order Taylor O(T 1 P N n) Q Benefit: accessing faster Q(i, j)

20 QUINT Variant #2 Key idea: Only update neighborhood of the query node and the pos/neg nodes (Localized Rank-One Perturbation) Complexity O(T 1 P N max( N(s), N(P, N ) )) N(s) :Neighbors of s N(P, N ):Neighbors of pos/neg nodes max( N(s), N(P, N ) ) n Benefit: usually sub-linear to n

21 Roadmap Motivations Proposed Solutions: QUINT Empirical Evaluations Conclusions

22 Datasets 10+ diverse networks

23 Effectiveness: MAP (Higher is better) MAP: Mean Average Precision Admic/Adar Common Nbr SRW RWR wizan_dual ProSIN QUINT-Basic QUINT-Basic1st QUINT-rankOne Astro-Ph GR-QC Hep-TH Hep-PH Protein Airport Oregon NBA Gene Last.fm

24 Effectiveness: HLU (Higher is better) HLU: Half-life Utility Astro-Ph GR-QC Hep-TH Hep-PH Protein Airport Oregon NBA Gene Last.fm

25 Effectiveness: AUC (Higher is better) Astro-Ph GR-QC Hep-TH Hep-PH Protein Airport Oregon NBA Gene Last.fm

26 Effectiveness: (Higher is better) Astro-Ph GR-QC Hep-TH Hep-PH Protein Airport Oregon NBA Gene Last.fm

27 Effectiveness: (Higher is better) Astro-Ph GR-QC Hep-TH Hep-PH Protein Airport Oregon NBA Gene Last.fm

28 Effectiveness: MPR (Lower is better) MPR: Mean Percentile Ranking Astro-Ph GR-QC Hep-TH Hep-PH Protein Airport Oregon NBA Gene Last.fm

29 Efficiency -- Twitter Running Time (second) Running Time (second) # Nodes QUINT rankone QUINT Basic1st QUINT rankone x 10 7 Running Time (second) Running Time (second) # Edges QUINT rankone QUINT Basic1st QUINT rankone x s # Nodes 10 7 x 7 # Edges 10 8 x QUINT-rankOne scales sub-linearly

30 Roadmap Motivations Proposed Solutions: QUINT Empirical Evaluations Conclusions

31 QUINT rankone x Conclusion: QUINT Goals: Learn Optimal network (for Node Proximity) Q1 Q2 Q3 Existing Optimal weights One-fit-all offline QUINT Optimal topology One-fit-one online Algorithms: VERY efficient way to compute Rank-1 approx + Taylor approx + local search Results: consistently better on 10+ networks & 6 metrics sublinear scalability, near real-time response on billionscale s (i, j) Admic/Adar Common Nbr SRW 10 3 RWR wizan_dual ProSIN 0.9 QUINT-Basic QUINT-Basic1st QUINT-rankOne Astro-Ph GR-QC Hep-TH Hep-PH Protein Airport Oregon NBA Gene Last.fm Running Time (second) Query node Arizona State 10 University 1 s / j Neighbor of s Running Time (second) Q(j, s) Q(x, j) # Edges x Positive node i Neighbor of x QUINT Basic1st QUINT rankone # Edges x 10 8

QUINT: On Query-Specific Optimal Networks

QUINT: On Query-Specific Optimal Networks QUINT: On Query-Specific Optimal Networks Liangyue Li Arizona State University liangyue@asu.edu Yuan Yao Nanjing University targenardy@gmail.com Jie Tang Tsinghua University jietang@tsinghua.edu.cn Wei

More information

arxiv: v1 [cs.si] 18 Oct 2017

arxiv: v1 [cs.si] 18 Oct 2017 Supervised and Extended Restart in Random Walks for Ranking and Link Prediction in Networks Woojeong Jin Jinhong Jung U Kang arxiv:1710.06609v1 [cs.si] 18 Oct 2017 Abstract Given a real-world graph, how

More information

Supervised Link Prediction with Path Scores

Supervised Link Prediction with Path Scores Supervised Link Prediction with Path Scores Wanzi Zhou Stanford University wanziz@stanford.edu Yangxin Zhong Stanford University yangxin@stanford.edu Yang Yuan Stanford University yyuan16@stanford.edu

More information

Topic mash II: assortativity, resilience, link prediction CS224W

Topic mash II: assortativity, resilience, link prediction CS224W Topic mash II: assortativity, resilience, link prediction CS224W Outline Node vs. edge percolation Resilience of randomly vs. preferentially grown networks Resilience in real-world networks network resilience

More information

Online Social Networks and Media

Online Social Networks and Media Online Social Networks and Media Absorbing Random Walks Link Prediction Why does the Power Method work? If a matrix R is real and symmetric, it has real eigenvalues and eigenvectors: λ, w, λ 2, w 2,, (λ

More information

Link Prediction for Social Network

Link Prediction for Social Network Link Prediction for Social Network Ning Lin Computer Science and Engineering University of California, San Diego Email: nil016@eng.ucsd.edu Abstract Friendship recommendation has become an important issue

More information

Predicting Disease-related Genes using Integrated Biomedical Networks

Predicting Disease-related Genes using Integrated Biomedical Networks Predicting Disease-related Genes using Integrated Biomedical Networks Jiajie Peng (jiajiepeng@nwpu.edu.cn) HanshengXue(xhs1892@gmail.com) Jin Chen* (chen.jin@uky.edu) Yadong Wang* (ydwang@hit.edu.cn) 1

More information

Relational Retrieval Using a Combination of Path-Constrained Random Walks

Relational Retrieval Using a Combination of Path-Constrained Random Walks Relational Retrieval Using a Combination of Path-Constrained Random Walks Ni Lao, William W. Cohen University 2010.9.22 Outline Relational Retrieval Problems Path-constrained random walks The need for

More information

Fast Nearest Neighbor Search on Large Time-Evolving Graphs

Fast Nearest Neighbor Search on Large Time-Evolving Graphs Fast Nearest Neighbor Search on Large Time-Evolving Graphs Leman Akoglu Srinivasan Parthasarathy Rohit Khandekar Vibhore Kumar Deepak Rajan Kun-Lung Wu Graphs are everywhere Leman Akoglu Fast Nearest Neighbor

More information

Random Walk Inference and Learning. Carnegie Mellon University 7/28/2011 EMNLP 2011, Edinburgh, Scotland, UK

Random Walk Inference and Learning. Carnegie Mellon University 7/28/2011 EMNLP 2011, Edinburgh, Scotland, UK Random Walk Inference and Learning in A Large Scale Knowledge Base Ni Lao, Tom Mitchell, William W. Cohen Carnegie Mellon University 2011.7.28 1 Outline Motivation Inference in Knowledge Bases The NELL

More information

Combine the PA Algorithm with a Proximal Classifier

Combine the PA Algorithm with a Proximal Classifier Combine the Passive and Aggressive Algorithm with a Proximal Classifier Yuh-Jye Lee Joint work with Y.-C. Tseng Dept. of Computer Science & Information Engineering TaiwanTech. Dept. of Statistics@NCKU

More information

Relation Learning with Path Constrained Random Walks

Relation Learning with Path Constrained Random Walks Relation Learning with Path Constrained Random Walks Ni Lao 15-826 Multimedia Databases and Data Mining School of Computer Science Carnegie Mellon University 2011-09-27 1 Outline Motivation Relational

More information

Mining Web Data. Lijun Zhang

Mining Web Data. Lijun Zhang Mining Web Data Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Introduction Web Crawling and Resource Discovery Search Engine Indexing and Query Processing Ranking Algorithms Recommender Systems

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu How to organize the Web? First try: Human curated Web directories Yahoo, DMOZ, LookSmart Second

More information

Scalable Network Analysis

Scalable Network Analysis Inderjit S. Dhillon University of Texas at Austin COMAD, Ahmedabad, India Dec 20, 2013 Outline Unstructured Data - Scale & Diversity Evolving Networks Machine Learning Problems arising in Networks Recommender

More information

Hierarchical Graph Clustering: Quality Metrics & Algorithms

Hierarchical Graph Clustering: Quality Metrics & Algorithms Hierarchical Graph Clustering: Quality Metrics & Algorithms Thomas Bonald Joint work with Bertrand Charpentier, Alexis Galland & Alexandre Hollocou LTCI Data Science seminar March 2019 Motivation Clustering

More information

CS224W: Analysis of Networks Jure Leskovec, Stanford University

CS224W: Analysis of Networks Jure Leskovec, Stanford University CS224W: Analysis of Networks Jure Leskovec, Stanford University http://cs224w.stanford.edu Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu 2????? Machine Learning Node

More information

Link Prediction and Anomoly Detection

Link Prediction and Anomoly Detection Graphs and Networks Lecture 23 Link Prediction and Anomoly Detection Daniel A. Spielman November 19, 2013 23.1 Disclaimer These notes are not necessarily an accurate representation of what happened in

More information

This Talk. Map nodes to low-dimensional embeddings. 2) Graph neural networks. Deep learning architectures for graphstructured

This Talk. Map nodes to low-dimensional embeddings. 2) Graph neural networks. Deep learning architectures for graphstructured Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 1 This Talk 1) Node embeddings Map nodes to low-dimensional embeddings. 2) Graph neural networks Deep learning architectures

More information

CS249: ADVANCED DATA MINING

CS249: ADVANCED DATA MINING CS249: ADVANCED DATA MINING Recommender Systems II Instructor: Yizhou Sun yzsun@cs.ucla.edu May 31, 2017 Recommender Systems Recommendation via Information Network Analysis Hybrid Collaborative Filtering

More information

Supervised Random Walks

Supervised Random Walks Supervised Random Walks Pawan Goyal CSE, IITKGP September 8, 2014 Pawan Goyal (IIT Kharagpur) Supervised Random Walks September 8, 2014 1 / 17 Correlation Discovery by random walk Problem definition Estimate

More information

A Brief Review of Representation Learning in Recommender 赵鑫 RUC

A Brief Review of Representation Learning in Recommender 赵鑫 RUC A Brief Review of Representation Learning in Recommender Systems @ 赵鑫 RUC batmanfly@qq.com Representation learning Overview of recommender systems Tasks Rating prediction Item recommendation Basic models

More information

Outsourcing Privacy-Preserving Social Networks to a Cloud

Outsourcing Privacy-Preserving Social Networks to a Cloud IEEE INFOCOM 2013, April 14-19, Turin, Italy Outsourcing Privacy-Preserving Social Networks to a Cloud Guojun Wang a, Qin Liu a, Feng Li c, Shuhui Yang d, and Jie Wu b a Central South University, China

More information

The link prediction problem for social networks

The link prediction problem for social networks The link prediction problem for social networks Alexandra Chouldechova STATS 319, February 1, 2011 Motivation Recommending new friends in in online social networks. Suggesting interactions between the

More information

Mining Web Data. Lijun Zhang

Mining Web Data. Lijun Zhang Mining Web Data Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Introduction Web Crawling and Resource Discovery Search Engine Indexing and Query Processing Ranking Algorithms Recommender Systems

More information

Hadoop Based Link Prediction Performance Analysis

Hadoop Based Link Prediction Performance Analysis Hadoop Based Link Prediction Performance Analysis Yuxiao Dong, Casey Robinson, Jian Xu Department of Computer Science and Engineering University of Notre Dame Notre Dame, IN 46556, USA Email: ydong1@nd.edu,

More information

Link Sign Prediction and Ranking in Signed Directed Social Networks

Link Sign Prediction and Ranking in Signed Directed Social Networks Noname manuscript No. (will be inserted by the editor) Link Sign Prediction and Ranking in Signed Directed Social Networks Dongjin Song David A. Meyer Received: date / Accepted: date Abstract Signed directed

More information

Learning to Rank on Network Data

Learning to Rank on Network Data Learning to Rank on Network Data Majid Yazdani Idiap Research Institute/EPFL 1920 Martigny, Switzerland majid.yazdani@idiap.ch Ronan Collobert Idiap Research Institute 1920 Martigny, Switzerland ronan.collobert@idiap.ch

More information

AspEm: Embedding Learning by Aspects in Heterogeneous Information Networks

AspEm: Embedding Learning by Aspects in Heterogeneous Information Networks AspEm: Embedding Learning by Aspects in Heterogeneous Information Networks Yu Shi, Huan Gui, Qi Zhu, Lance Kaplan, Jiawei Han University of Illinois at Urbana-Champaign (UIUC) Facebook Inc. U.S. Army Research

More information

Learning Dense Models of Query Similarity from User Click Logs

Learning Dense Models of Query Similarity from User Click Logs Learning Dense Models of Query Similarity from User Click Logs Fabio De Bona, Stefan Riezler*, Keith Hall, Massi Ciaramita, Amac Herdagdelen, Maria Holmqvist Google Research, Zürich *Dept. of Computational

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu How to organize the Web? First try: Human curated Web directories Yahoo, DMOZ, LookSmart Second

More information

Bipartite Edge Prediction via Transductive Learning over Product Graphs

Bipartite Edge Prediction via Transductive Learning over Product Graphs Bipartite Edge Prediction via Transductive Learning over Product Graphs Hanxiao Liu, Yiming Yang School of Computer Science, Carnegie Mellon University July 8, 2015 ICML 2015 Bipartite Edge Prediction

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu HITS (Hypertext Induced Topic Selection) Is a measure of importance of pages or documents, similar to PageRank

More information

CS249: SPECIAL TOPICS MINING INFORMATION/SOCIAL NETWORKS

CS249: SPECIAL TOPICS MINING INFORMATION/SOCIAL NETWORKS CS249: SPECIAL TOPICS MINING INFORMATION/SOCIAL NETWORKS Overview of Networks Instructor: Yizhou Sun yzsun@cs.ucla.edu January 10, 2017 Overview of Information Network Analysis Network Representation Network

More information

Learning to Rank Networked Entities

Learning to Rank Networked Entities Learning to Rank Networked Entities Alekh Agarwal Soumen Chakrabarti Sunny Aggarwal Presented by Dong Wang 11/29/2006 We've all heard that a million monkeys banging on a million typewriters will eventually

More information

arxiv: v1 [cs.si] 12 Jan 2019

arxiv: v1 [cs.si] 12 Jan 2019 Predicting Diffusion Reach Probabilities via Representation Learning on Social Networks Furkan Gursoy furkan.gursoy@boun.edu.tr Ahmet Onur Durahim onur.durahim@boun.edu.tr arxiv:1901.03829v1 [cs.si] 12

More information

Mining Social Network Graphs

Mining Social Network Graphs Mining Social Network Graphs Analysis of Large Graphs: Community Detection Rafael Ferreira da Silva rafsilva@isi.edu http://rafaelsilva.com Note to other teachers and users of these slides: We would be

More information

TGNet: Learning to Rank Nodes in Temporal Graphs. Qi Song 1 Bo Zong 2 Yinghui Wu 1,3 Lu-An Tang 2 Hui Zhang 2 Guofei Jiang 2 Haifeng Chen 2

TGNet: Learning to Rank Nodes in Temporal Graphs. Qi Song 1 Bo Zong 2 Yinghui Wu 1,3 Lu-An Tang 2 Hui Zhang 2 Guofei Jiang 2 Haifeng Chen 2 TGNet: Learning to Rank Nodes in Temporal Graphs Qi Song 1 Bo Zong 2 Yinghui Wu 1,3 Lu-An Tang 2 Hui Zhang 2 Guofei Jiang 2 Haifeng Chen 2 1 2 3 Node Ranking in temporal graphs Temporal graphs have been

More information

Composite Self-concordant Minimization

Composite Self-concordant Minimization Composite Self-concordant Minimization Volkan Cevher Laboratory for Information and Inference Systems-LIONS Ecole Polytechnique Federale de Lausanne (EPFL) volkan.cevher@epfl.ch Paris 6 Dec 11, 2013 joint

More information

node2vec: Scalable Feature Learning for Networks

node2vec: Scalable Feature Learning for Networks node2vec: Scalable Feature Learning for Networks A paper by Aditya Grover and Jure Leskovec, presented at Knowledge Discovery and Data Mining 16. 11/27/2018 Presented by: Dharvi Verma CS 848: Graph Database

More information

Machine Learning. Support Vector Machines. Fabio Vandin November 20, 2017

Machine Learning. Support Vector Machines. Fabio Vandin November 20, 2017 Machine Learning Support Vector Machines Fabio Vandin November 20, 2017 1 Classification and Margin Consider a classification problem with two classes: instance set X = R d label set Y = { 1, 1}. Training

More information

GIVEN a large graph and a query node, finding its k-

GIVEN a large graph and a query node, finding its k- IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL., NO., 2016 1 Efficient and Exact Local Search for Random Walk Based Top-K Proximity Query in Large Graphs Yubao Wu, Ruoming Jin, and Xiang Zhang

More information

Semi-Supervised Clustering with Partial Background Information

Semi-Supervised Clustering with Partial Background Information Semi-Supervised Clustering with Partial Background Information Jing Gao Pang-Ning Tan Haibin Cheng Abstract Incorporating background knowledge into unsupervised clustering algorithms has been the subject

More information

over Multi Label Images

over Multi Label Images IBM Research Compact Hashing for Mixed Image Keyword Query over Multi Label Images Xianglong Liu 1, Yadong Mu 2, Bo Lang 1 and Shih Fu Chang 2 1 Beihang University, Beijing, China 2 Columbia University,

More information

Graph-based Semi- Supervised Learning as Optimization

Graph-based Semi- Supervised Learning as Optimization Graph-based Semi- Supervised Learning as Optimization Partha Pratim Talukdar CMU Machine Learning with Large Datasets (10-605) April 3, 2012 Graph-based Semi-Supervised Learning 0.2 0.1 0.2 0.3 0.3 0.2

More information

Link Prediction in Networks with Nodes Attributes. by Similarity Propagation

Link Prediction in Networks with Nodes Attributes. by Similarity Propagation Link Prediction in Networks with Nodes Attributes by Similarity Propagation Maosheng Jiang 1, Yonxiang Chen 1, Ling Chen 1,2 1 Department of Computer Science, Yangzhou University, Yangzhou, 225127, China

More information

The Comparative Study of Machine Learning Algorithms in Text Data Classification*

The Comparative Study of Machine Learning Algorithms in Text Data Classification* The Comparative Study of Machine Learning Algorithms in Text Data Classification* Wang Xin School of Science, Beijing Information Science and Technology University Beijing, China Abstract Classification

More information

Effective Latent Space Graph-based Re-ranking Model with Global Consistency

Effective Latent Space Graph-based Re-ranking Model with Global Consistency Effective Latent Space Graph-based Re-ranking Model with Global Consistency Feb. 12, 2009 1 Outline Introduction Related work Methodology Graph-based re-ranking model Learning a latent space graph A case

More information

Jianyong Wang Department of Computer Science and Technology Tsinghua University

Jianyong Wang Department of Computer Science and Technology Tsinghua University Jianyong Wang Department of Computer Science and Technology Tsinghua University jianyong@tsinghua.edu.cn Joint work with Wei Shen (Tsinghua), Ping Luo (HP), and Min Wang (HP) Outline Introduction to entity

More information

How to organize the Web?

How to organize the Web? How to organize the Web? First try: Human curated Web directories Yahoo, DMOZ, LookSmart Second try: Web Search Information Retrieval attempts to find relevant docs in a small and trusted set Newspaper

More information

Efficient Iterative Semi-supervised Classification on Manifold

Efficient Iterative Semi-supervised Classification on Manifold . Efficient Iterative Semi-supervised Classification on Manifold... M. Farajtabar, H. R. Rabiee, A. Shaban, A. Soltani-Farani Sharif University of Technology, Tehran, Iran. Presented by Pooria Joulani

More information

Recommendation System for Location-based Social Network CS224W Project Report

Recommendation System for Location-based Social Network CS224W Project Report Recommendation System for Location-based Social Network CS224W Project Report Group 42, Yiying Cheng, Yangru Fang, Yongqing Yuan 1 Introduction With the rapid development of mobile devices and wireless

More information

Sampling Large Graphs: Algorithms and Applications

Sampling Large Graphs: Algorithms and Applications Sampling Large Graphs: Algorithms and Applications Don Towsley Umass - Amherst Joint work with P.H. Wang, J.Z. Zhou, J.C.S. Lui, X. Guan Measuring, Analyzing Large Networks - large networks can be represented

More information

Uncovering the Formation of Triadic Closure in Social Networks. Zhanpeng Fang and Jie Tang Tsinghua University

Uncovering the Formation of Triadic Closure in Social Networks. Zhanpeng Fang and Jie Tang Tsinghua University Uncovering the Formation of Triadic Closure in Social Networks Zhanpeng Fang and Jie Tang Tsinghua University 1 Triangle Laws Triangle is one of most basic human groups in social networks Friends of friends

More information

Structured prediction using the network perceptron

Structured prediction using the network perceptron Structured prediction using the network perceptron Ta-tsen Soong Joint work with Stuart Andrews and Prof. Tony Jebara Motivation A lot of network-structured data Social networks Citation networks Biological

More information

Analysis of Biological Networks. 1. Clustering 2. Random Walks 3. Finding paths

Analysis of Biological Networks. 1. Clustering 2. Random Walks 3. Finding paths Analysis of Biological Networks 1. Clustering 2. Random Walks 3. Finding paths Problem 1: Graph Clustering Finding dense subgraphs Applications Identification of novel pathways, complexes, other modules?

More information

Reddit Recommendation System Daniel Poon, Yu Wu, David (Qifan) Zhang CS229, Stanford University December 11 th, 2011

Reddit Recommendation System Daniel Poon, Yu Wu, David (Qifan) Zhang CS229, Stanford University December 11 th, 2011 Reddit Recommendation System Daniel Poon, Yu Wu, David (Qifan) Zhang CS229, Stanford University December 11 th, 2011 1. Introduction Reddit is one of the most popular online social news websites with millions

More information

GraphGAN: Graph Representation Learning with Generative Adversarial Nets

GraphGAN: Graph Representation Learning with Generative Adversarial Nets The 32 nd AAAI Conference on Artificial Intelligence (AAAI 2018) New Orleans, Louisiana, USA GraphGAN: Graph Representation Learning with Generative Adversarial Nets Hongwei Wang 1,2, Jia Wang 3, Jialin

More information

Introduction to Data Mining

Introduction to Data Mining Introduction to Data Mining Lecture #10: Link Analysis-2 Seoul National University 1 In This Lecture Pagerank: Google formulation Make the solution to converge Computing Pagerank for very large graphs

More information

Overview Citation. ML Introduction. Overview Schedule. ML Intro Dataset. Introduction to Semi-Supervised Learning Review 10/4/2010

Overview Citation. ML Introduction. Overview Schedule. ML Intro Dataset. Introduction to Semi-Supervised Learning Review 10/4/2010 INFORMATICS SEMINAR SEPT. 27 & OCT. 4, 2010 Introduction to Semi-Supervised Learning Review 2 Overview Citation X. Zhu and A.B. Goldberg, Introduction to Semi- Supervised Learning, Morgan & Claypool Publishers,

More information

CSE 573: Artificial Intelligence Autumn 2010

CSE 573: Artificial Intelligence Autumn 2010 CSE 573: Artificial Intelligence Autumn 2010 Lecture 16: Machine Learning Topics 12/7/2010 Luke Zettlemoyer Most slides over the course adapted from Dan Klein. 1 Announcements Syllabus revised Machine

More information

Link Prediction in a Modified Heterogeneous Bibliographic Network

Link Prediction in a Modified Heterogeneous Bibliographic Network Link Prediction in a Modified Heterogeneous Bibliographic Network John Boaz Lee, Henry Adorna Department of Information Systems and Computer Science, Ateneo de Manila University Algorithms and Complexity

More information

Query Independent Scholarly Article Ranking

Query Independent Scholarly Article Ranking Query Independent Scholarly Article Ranking Shuai Ma, Chen Gong, Renjun Hu, Dongsheng Luo, Chunming Hu, Jinpeng Huai SKLSDE Lab, Beihang University, China Beijing Advanced Innovation Center for Big Data

More information

Applying SnapVX to Real-World Problems

Applying SnapVX to Real-World Problems Applying SnapVX to Real-World Problems David Hallac Stanford University Goal Other resources (MLOSS Paper, website, documentation,...) describe the math/software side of SnapVX This presentation is meant

More information

De#anonymizing,Social,Networks, and,inferring,private,attributes, Using,Knowledge,Graphs,

De#anonymizing,Social,Networks, and,inferring,private,attributes, Using,Knowledge,Graphs, De#anonymizing,Social,Networks, and,inferring,private,attributes, Using,Knowledge,Graphs, Jianwei Qian Illinois Tech Chunhong Zhang BUPT Xiang#Yang Li USTC,/Illinois Tech Linlin Chen Illinois Tech Outline

More information

INF4820, Algorithms for AI and NLP: Hierarchical Clustering

INF4820, Algorithms for AI and NLP: Hierarchical Clustering INF4820, Algorithms for AI and NLP: Hierarchical Clustering Erik Velldal University of Oslo Sept. 25, 2012 Agenda Topics we covered last week Evaluating classifiers Accuracy, precision, recall and F-score

More information

SCALABLE, LOW LATENCY MODEL SERVING AND MANAGEMENT WITH VELOX

SCALABLE, LOW LATENCY MODEL SERVING AND MANAGEMENT WITH VELOX THE MISSING PIECE IN COMPLEX ANALYTICS: SCALABLE, LOW LATENCY MODEL SERVING AND MANAGEMENT WITH VELOX Daniel Crankshaw, Peter Bailis, Joseph Gonzalez, Haoyuan Li, Zhao Zhang, Ali Ghodsi, Michael Franklin,

More information

Learning to Match. Jun Xu, Zhengdong Lu, Tianqi Chen, Hang Li

Learning to Match. Jun Xu, Zhengdong Lu, Tianqi Chen, Hang Li Learning to Match Jun Xu, Zhengdong Lu, Tianqi Chen, Hang Li 1. Introduction The main tasks in many applications can be formalized as matching between heterogeneous objects, including search, recommendation,

More information

Proximal operator and methods

Proximal operator and methods Proximal operator and methods Master 2 Data Science, Univ. Paris Saclay Robert M. Gower Optimization Sum of Terms A Datum Function Finite Sum Training Problem The Training Problem Convergence GD I Theorem

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 22, 2016 Course Information Website: http://www.stat.ucdavis.edu/~chohsieh/teaching/ ECS289G_Fall2016/main.html My office: Mathematical Sciences

More information

Parallel and Distributed Sparse Optimization Algorithms

Parallel and Distributed Sparse Optimization Algorithms Parallel and Distributed Sparse Optimization Algorithms Part I Ruoyu Li 1 1 Department of Computer Science and Engineering University of Texas at Arlington March 19, 2015 Ruoyu Li (UTA) Parallel and Distributed

More information

PERSONALIZED TAG RECOMMENDATION

PERSONALIZED TAG RECOMMENDATION PERSONALIZED TAG RECOMMENDATION Ziyu Guan, Xiaofei He, Jiajun Bu, Qiaozhu Mei, Chun Chen, Can Wang Zhejiang University, China Univ. of Illinois/Univ. of Michigan 1 Booming of Social Tagging Applications

More information

C N O S N T S RA R INT N - T BA B SE S D E L O L C O A C L S E S A E RC R H

C N O S N T S RA R INT N - T BA B SE S D E L O L C O A C L S E S A E RC R H LECTURE 11 & 12 CONSTRAINT-BASED LOCAL SEARCH Constraint-based Local Search Problem given in CSP form : a set of variables V={V1, V2,, Vn} a set of constraints C={C1, C2,, Ck} i.e. arithmetic or symbolic

More information

1 Case study of SVM (Rob)

1 Case study of SVM (Rob) DRAFT a final version will be posted shortly COS 424: Interacting with Data Lecturer: Rob Schapire and David Blei Lecture # 8 Scribe: Indraneel Mukherjee March 1, 2007 In the previous lecture we saw how

More information

Network-based auto-probit modeling for protein function prediction

Network-based auto-probit modeling for protein function prediction Network-based auto-probit modeling for protein function prediction Supplementary material Xiaoyu Jiang, David Gold, Eric D. Kolaczyk Derivation of Markov Chain Monte Carlo algorithm with the GO annotation

More information

Markov Networks in Computer Vision

Markov Networks in Computer Vision Markov Networks in Computer Vision Sargur Srihari srihari@cedar.buffalo.edu 1 Markov Networks for Computer Vision Some applications: 1. Image segmentation 2. Removal of blur/noise 3. Stereo reconstruction

More information

Introduction to Optimization Problems and Methods

Introduction to Optimization Problems and Methods Introduction to Optimization Problems and Methods wjch@umich.edu December 10, 2009 Outline 1 Linear Optimization Problem Simplex Method 2 3 Cutting Plane Method 4 Discrete Dynamic Programming Problem Simplex

More information

CS224W: Social and Information Network Analysis Project Report: Edge Detection in Review Networks

CS224W: Social and Information Network Analysis Project Report: Edge Detection in Review Networks CS224W: Social and Information Network Analysis Project Report: Edge Detection in Review Networks Archana Sulebele, Usha Prabhu, William Yang (Group 29) Keywords: Link Prediction, Review Networks, Adamic/Adar,

More information

Learning a Distance Metric for Structured Network Prediction. Stuart Andrews and Tony Jebara Columbia University

Learning a Distance Metric for Structured Network Prediction. Stuart Andrews and Tony Jebara Columbia University Learning a Distance Metric for Structured Network Prediction Stuart Andrews and Tony Jebara Columbia University Outline Introduction Context, motivation & problem definition Contributions Structured network

More information

BEAR: Block Elimination Approach for Random Walk with Restart on Large Graphs

BEAR: Block Elimination Approach for Random Walk with Restart on Large Graphs BEAR: Block Elimination Approach for Random Walk with Restart on Large Graphs ABSTRACT Kijung Shin Seoul National University koreaskj@snu.ac.kr Lee Sael The State University of New York (SUNY) Korea sael@sunykorea.ac.kr

More information

Jure Leskovec, Cornell/Stanford University. Joint work with Kevin Lang, Anirban Dasgupta and Michael Mahoney, Yahoo! Research

Jure Leskovec, Cornell/Stanford University. Joint work with Kevin Lang, Anirban Dasgupta and Michael Mahoney, Yahoo! Research Jure Leskovec, Cornell/Stanford University Joint work with Kevin Lang, Anirban Dasgupta and Michael Mahoney, Yahoo! Research Network: an interaction graph: Nodes represent entities Edges represent interaction

More information

Markov Networks in Computer Vision. Sargur Srihari

Markov Networks in Computer Vision. Sargur Srihari Markov Networks in Computer Vision Sargur srihari@cedar.buffalo.edu 1 Markov Networks for Computer Vision Important application area for MNs 1. Image segmentation 2. Removal of blur/noise 3. Stereo reconstruction

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu SPAM FARMING 2/11/2013 Jure Leskovec, Stanford C246: Mining Massive Datasets 2 2/11/2013 Jure Leskovec, Stanford

More information

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University DS 4400 Machine Learning and Data Mining I Alina Oprea Associate Professor, CCIS Northeastern University January 24 2019 Logistics HW 1 is due on Friday 01/25 Project proposal: due Feb 21 1 page description

More information

CS224W Project: Recommendation System Models in Product Rating Predictions

CS224W Project: Recommendation System Models in Product Rating Predictions CS224W Project: Recommendation System Models in Product Rating Predictions Xiaoye Liu xiaoye@stanford.edu Abstract A product recommender system based on product-review information and metadata history

More information

Link Prediction Benchmarks

Link Prediction Benchmarks Link Prediction Benchmarks Haifeng Qian IBM T. J. Watson Research Center Yorktown Heights, NY qianhaifeng@us.ibm.com October 13, 2016 This document describes two temporal link prediction benchmarks that

More information

Review: Identification of cell types from single-cell transcriptom. method

Review: Identification of cell types from single-cell transcriptom. method Review: Identification of cell types from single-cell transcriptomes using a novel clustering method University of North Carolina at Charlotte October 12, 2015 Brief overview Identify clusters by merging

More information

Extracting Information from Complex Networks

Extracting Information from Complex Networks Extracting Information from Complex Networks 1 Complex Networks Networks that arise from modeling complex systems: relationships Social networks Biological networks Distinguish from random networks uniform

More information

Personalized Information Retrieval

Personalized Information Retrieval Personalized Information Retrieval Shihn Yuarn Chen Traditional Information Retrieval Content based approaches Statistical and natural language techniques Results that contain a specific set of words or

More information

Link prediction in multiplex bibliographical networks

Link prediction in multiplex bibliographical networks Int. J. Complex Systems in Science vol. 3(1) (2013), pp. 77 82 Link prediction in multiplex bibliographical networks Manisha Pujari 1, and Rushed Kanawati 1 1 Laboratoire d Informatique de Paris Nord (LIPN),

More information

Numerical Geometry of Nonrigid Shapes. CS 468, Spring 2013 Differential Geometry for Computer Science Justin Solomon and Adrian Butscher

Numerical Geometry of Nonrigid Shapes. CS 468, Spring 2013 Differential Geometry for Computer Science Justin Solomon and Adrian Butscher Numerical Geometry of Nonrigid Shapes CS 468, Spring 2013 Differential Geometry for Computer Science Justin Solomon and Adrian Butscher Intrinsically far Extrinsically close Straightest Geodesics on Polyhedral

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS6: Mining Massive Datasets Jure Leskovec, Stanford University http://cs6.stanford.edu //8 Jure Leskovec, Stanford CS6: Mining Massive Datasets Training data 00 million ratings, 80,000 users, 7,770 movies

More information

Deep-Q: Traffic-driven QoS Inference using Deep Generative Network

Deep-Q: Traffic-driven QoS Inference using Deep Generative Network Deep-Q: Traffic-driven QoS Inference using Deep Generative Network Shihan Xiao, Dongdong He, Zhibo Gong Network Technology Lab, Huawei Technologies Co., Ltd., Beijing, China 1 Background What is a QoS

More information

S-MART: Novel Tree-based Structured Learning Algorithms Applied to Tweet Entity Linking

S-MART: Novel Tree-based Structured Learning Algorithms Applied to Tweet Entity Linking S-MART: Novel Tree-based Structured Learning Algorithms Applied to Tweet Entity Linking Yi Yang * and Ming-Wei Chang # * Georgia Institute of Technology, Atlanta # Microsoft Research, Redmond Traditional

More information

Network embedding. Cheng Zheng

Network embedding. Cheng Zheng Network embedding Cheng Zheng Outline Problem definition Factorization based algorithms --- Laplacian Eigenmaps(NIPS, 2001) Random walk based algorithms ---DeepWalk(KDD, 2014), node2vec(kdd, 2016) Deep

More information

Evaluation of different biological data and computational classification methods for use in protein interaction prediction.

Evaluation of different biological data and computational classification methods for use in protein interaction prediction. Evaluation of different biological data and computational classification methods for use in protein interaction prediction. Yanjun Qi, Ziv Bar-Joseph, Judith Klein-Seetharaman Protein 2006 Motivation Correctly

More information

A Survey on Postive and Unlabelled Learning

A Survey on Postive and Unlabelled Learning A Survey on Postive and Unlabelled Learning Gang Li Computer & Information Sciences University of Delaware ligang@udel.edu Abstract In this paper we survey the main algorithms used in positive and unlabeled

More information

Machine Learning in Biology

Machine Learning in Biology Università degli studi di Padova Machine Learning in Biology Luca Silvestrin (Dottorando, XXIII ciclo) Supervised learning Contents Class-conditional probability density Linear and quadratic discriminant

More information

TPA: Fast, Scalable, and Accurate Method for Approximate Random Walk with Restart on Billion Scale Graphs

TPA: Fast, Scalable, and Accurate Method for Approximate Random Walk with Restart on Billion Scale Graphs TPA: Fast, Scalable, and Accurate Method for Approximate Random Walk with Restart on Billion Scale Graphs Minji Yoon Seoul National University riin55@snu.ac.kr Jinhong Jung Seoul National University jinhongjung@snu.ac.kr

More information

Regularization and Markov Random Fields (MRF) CS 664 Spring 2008

Regularization and Markov Random Fields (MRF) CS 664 Spring 2008 Regularization and Markov Random Fields (MRF) CS 664 Spring 2008 Regularization in Low Level Vision Low level vision problems concerned with estimating some quantity at each pixel Visual motion (u(x,y),v(x,y))

More information