Space Subdivision for the Adaptive Edge Spinning Polygonization

Size: px
Start display at page:

Download "Space Subdivision for the Adaptive Edge Spinning Polygonization"

Transcription

1 Space Subdivision for the Adaptive Edge Spinning Polygonization MARTIN CERMAK 1, VACLAV SKALA Department of Computer Science and Engineering University of West Bohemia in Pilsen Univerzitni 8, Plzen CZECH REPUBLIC Abstract: - This paper presents a speed-up of the adaptive approach for polygonization of implicit surfaces. The original algorithm generates well-shaped triangular mesh with respect to a given approximation error. Our modification accelerates the method significantly and therefore, use for more complex object is much easier now. The algorithm is based on the surface tracking scheme and its most time consuming part is accelerated by the space subdivision technique. Our approach is compared with the original regarding to speed and to quality of polygonal mesh generated as well. Key-Words: - polygonization, edge spinning, acceleration, space subdivision, implicit surfaces 1 Introduction Implicit surfaces seem to be one of the most appealing concepts for building complex shapes and surfaces. They have become widely used in several applications in computer graphics and visualization. An implicit surface is mathematically defined as a set of points x in space that satisfy the equation f(x) = 0. Thus, implicit surfaces visualization typically consists of finding the zero set of f, which may be performed either by polygonizing the surface or by direct ray tracing. There are two different definitions of implicit surfaces. The first one [3], [4] defines an implicit object as f(x) < 0 and the second one, F-rep [13], [15], [16], [17] defines it as f(x) 0. These inequalities describe a half space in E 3 and an object defined by these inequalities is usually called solid (or volume). If f is an arbitrary procedural method (i.e. a black box function that evaluates x) then the geometric properties of the surface can be deduced only through numerical evaluation of the function. The value of f is often a measure of distance between x and the surface. The measure is Euclidean if it is ordinary (physical) distance. For an algebraic surface, f measures the algebraic distance. Existing polygonization techniques may be classified into several categories. Spatial sampling techniques (exhaustive enumeration of a given region) that regularly or adaptively sample the space to find the cells that straddle the implicit surface [2], [3], [5]. Surface tracking approaches (also known as continuation methods) iteratively create a triangulation from a seed element by marching along the surface [1], [3], [11], [12], [14], [18]. Surface fitting techniques progressively adapt and deform an initial mesh to converge to the implicit surface, [15]. Particle systems (physically based techniques) start from initial positions in space and seek their equilibrium positions, i.e. positions where a potential function f is minimal on an implicit surface, [9], [10]. The desired polygonal approximation is then obtained by computing the Delaunay triangulation associated with the points. 2 Data structures A triangular mesh generated by the Edge spinning algorithm is kept in winding edges data structure and the resulting mesh is complete with neighborhood among triangles. During polygonization, edges lying on a triangulation border are contained in the active edges list (AEL) and they are called active edges. Each point of an active edge has two pointers to its left and right active edge (active edges are oriented, so, left and right directions are in active edges orientation). 3 Edge spinning principle The algorithm is based on the surface tracking scheme and therefore, there are several limitations. A starting point must be determined and only one separated implicit surface can by polygonized for such point. Several disjoint surfaces can be polygonized from a starting point for each of them. The method is described in detail in [7]. The whole algorithm consists of the following steps. 1 Supported by the Ministry of Education of the Czech Republic - project MSM

2 1. Initialization of polygonization: a. Locate a starting point p 0 on a surface and create the first triangle T 0. b. Insert edges (e 0,e 1,e 2 ) of the first triangle T 0 into the active edges list. 2. Polygonize the first active edge e from the active edges list. 3. Update the AEL; remove the currently polygonized active edge/s and insert the new generated active edge/s at the end of the list. 4. If the AEL is not empty return to step 2. In the adaptive approach the distance test has to be performed among the new triangle (its bounding sphere) and the active edges. The first steps of the algorithm are illustrated in Fig. 1. Fig. 2. Overlapping triangles. If an active edge crosses the extended bounding sphere of the new triangle, the triangle will not be created and the situation is solved for example as in Fig. 3, see [7] for more details. Fig. 1. Beginning of polygonization. At the beginning of polygonization, the algorithm has to know the maximal size of triangles that is represented by the constant: - LOD max the maximal length of triangles edges, i.e. maximal level of detail; note that the constant is given by a user. The algorithm generates triangles according to this criterion and to the local surface curvature estimation as well, [6]. 4 Distance test The Edge spinning algorithm marches over the surface of an implicit object. This principle is known as a surface tracking scheme (also known as a continuation scheme). Surface tracking approaches have a common problem with a detection of a global overlap. New triangles must not cross the others generated before. For non-adaptive approaches, there is enough to perform the distance test among the new point p new and points of active edges. If the distance is less then some limit then the algorithm solves this situation, detailed description see in [8]. In an adaptive approach, triangles of different size are created and the test among points is not good enough. In the case illustrated in Fig. 2 is seen that the new triangle would cross another one generated before although no active edges point lies inside of the extended bounding sphere of the new triangle. Fig. 3. Solution of overlapping triangles. The distance test is performed before creating of each triangle and its time complexity is O(N), where N is a number of active edges. For complex objects, this variable grows up and polygonization speed strongly depends on it. 5 Space subdivision technique Advantageous solution is dividing of space into subspaces (sub-areas). Then, the active edge that probably crosses the new triangle, must incident to the same subarea like the new triangle (centre of its bounding sphere) or to the closest neighborhood. In our approach, we define a polygonization area that is divided into (MxMxM) sub-areas, where M is a number of divisions in one axis. Note that the given polygonization area should contain the whole implicit object.

3 During polygonization, the algorithm only tests active edges which incident to adjacent sub-areas. The time complexity is O(K) in this case, where K is a number of active edges incident with the adjacent sub-areas and K << N. Note that the number of edges of adjacent subareas depends on their size. How this variable affect the computation speed is examined in next section. An example of the situation during polygonization of a sphere object is illustrated in Fig Experimental results Because the presented technique affects the polygonization speed, our experiments are primarily aimed at speed comparison between the original and accelerated version of the Edge spinning algorithm. Let the computational time of the Edge spinning algorithm be divided into two parts, the polygonization time and the distance test time. Fig. 6 then shows the ratio between the both parts for the original Edge spinning algorithm and the accelerated one as well. Fig. 6. Time ratio between the Polygonization time and the Distance test time; a) the original Edge spinning algorithm, b) the accelerated Edge spinning algorithm; measured on the Genus object. It can be seen that the significant speed-up has been achieved in this part. Fig. 4. A triangulation border during polygonization of a sphere object and visualization of space subdivisions (10x10x10). The algorithm works well if the size of sub-areas is greater than the maximal length of triangles edges, i.e. if the size of sub-area is σ then σ > LOD max. This is the only condition. In order to use the space subdivision technique, the data structures introduced above have to be slightly extended. Each active edge s point should contain the index of subarea in which lies and each sub-area should have its own dynamically allocated list of points located inside. The sub-areas are implemented as an array and each of them has its unique index. Spped-up 4,50 4,00 3,50 3,00 2,50 2,00 1,50 1,00 Genus Jack Morph Tap M Fig. 7. Comparison of speed-up according to number of division used. Fig. 5. Implicit objects used in the experiment.

4 The next tests of the accelerated approach have been made on several objects illustrated in Fig. 5. The results in Fig. 7 show that the total speed-up depends on a given implicit object. For simple implicit functions, the distance test is the main part of the computing time and therefore, the speed-up is higher. For complex objects such as the Tap, calling the function is the most time consuming and acceleration in distance test part is not so significant. Table 1 contains exact values from the experiment M NA t[ms] ν 1 2,39 2,53 2,95 3,67 3,99 4,20 t[ms] ν 1 2,47 2,79 3,03 3,31 3,62 3,78 t[ms] ν 1 2,25 2,26 2,24 2,48 3,05 3,48 t[ms] ν 1 1,37 1,39 1,42 1,44 1,44 1,46 Table 1. Measured values of the computing time and speed-up from the experiment; 1. Genus, 2. Jack, 3. Morph and 4. Tap object. The value ν represents the speed-up that has been computed by the following simple formula. t NA ν =, t M where t NA is the computing time without using the space subdivision and t M is the computing time achieved with space subdivision technique according to values in Table 1, i.e. M = 10, 16, 24, 40, 63, 100. Space subdivision technique has no effect to quality of polygonal mesh generated. For all space divisions used, a number of triangles and vertices generated has been the same. The measured values are in Table 2. Genus Jack Morph Tap Triangles Vertices Angle criterion 0,757 0,787 0,8 0,73 E_length criterion 0,851 0,869 0,875 0,829 Table 2. Number of triangles and vertices generated in our experiment. The value Angle criterion in Table 2 means the criterion of the ratio of the smallest angle to the largest angle in a triangle and the value E_length criterion means the criterion of the ratio of the shortest edge to the longest edge of a triangle. These values show the quality of resulting triangles generated. The histogram in Fig. 8 illustrates the triangulation quality as well. It can be seen that the Edge spinning method generates about 80% triangles with angles in interval <50, 70> degrees. For the visual comparison, see Appendix A. Number of angles [%] 50,00 45,00 40,00 35,00 30,00 25,00 20,00 15,00 10,00 5,00 0, Angle's intervals in degrees Fig. 8. Histogram of triangles shape quality for the Edge spinning, algorithm; generated according to values in Table 2, the Genus object. 7 Conclusion In this paper, we have presented the new fast modification of the adaptive Edge spinning algorithm for polygonization of implicit surfaces. Experimental results proved that the selection of subset of candidate points by the space subdivision scheme is an effective way for this type of geometric algorithms. The Edge spinning algorithm generates a well-shaped triangular mesh that is not influenced by the acceleration and the polygonization speed has been significantly increased. Acknowledgement: The authors of this paper would like to thank to all who contributed to development of this approach, especially to colleagues MSc. and PhD. students at the University of West Bohemia in Plzen. References: [1] Akkouche, S., Galin, E.: Adaptive Implicit Surface Polygonization using Marching Triangles, Computer Graphic Forum, 20(2): 67-80, [2] Allgower, E.L., Gnutzmann, S.: An algorithm for piecewise linear approximation of implicitly defined two-dimensional surfaces. SIAM Journal of Numerical Analysis, 24, , April [3] Bloomenthal, J.: Graphics Gems IV, Academic Press, [4] Bloomenthal, J.: Skeletal Design of Natural Forms, Ph.D. Thesis, [5] Bloomenthal, J., Bajaj, Ch., Blinn, J., Cani- Gascuel, M-P., Rockwood, A., Wyvill, B.,

5 Wyvill, G.: Introduction to implicit surfaces, Morgan Kaufmann, [6] Cermak,M., Skala,V. Surface Curvature Estimation for Edge Spinning Algorithm. International Conference on Computational Science ICCS 2004, Krakow, Poland, [7] Cermak,M., Skala,V. Adaptive Edge Spinning Algorithm for Polygonization of Implicit Surfaces. Computer Graphics International CGI 2004, Crete, Greece, [8] Cermak,M., Skala,V. Polygonization by the Edge Spinning. 16th Conference on Scientific Computing Algoritmy 2002, Slovakia, ISBN , September 8-13, [9] Figueiredo, L.H.: Computational Morphology of Implicit Curves, doctoral thesis, IMPA, [10] Figueiredo L.H., Gomes J.M., Terzopoulos D., Velho L.: Physically-based methods for polygonization of implicit surfaces, In Proceedings of Graphics Interface 92, [11] Hartmann, E.: A Marching Method for the Triangulation of Surfaces, The Visual Computer (14), pp , Appendix A [12] Hilton, A., Stoddart, A.J., Illingworth, J., Windeatt, T.: Marching Triangles: Range Image Fusion for Complex Object Modelling, Int. Conf. on Image Processing, [13] Hyperfun: Language for F-Rep Geometric Modeling, [14] Karkanis, T., Stewart, A.J.: Curvature-Dependent Triangulation of Implicit Surfaces, IEEE Computer Graphics and Applications, Volume 21, Issue 2, March [15] Ohtake, Y., Belyaev, A., Pasko, A.: Dynamic Mesh Optimization for Polygonized Implicit Surfaces with Sharp Features, The Visual Computer, [16] Pasko, A., Adzhiev, V., Karakov, M., Savchenko,V.: Hybrid system architecture for volume modeling, Computer & Graphics 24 (6768), [17] Rvachov, A.M.: Definition of R-functions, [18] Triquet, F., Meseure, F., Chaillou, Ch.: Fast Polygonization of Implicit Surfaces, Int. Conf. WSCG 2001.

Surface Curvature Estimation for Edge Spinning Algorithm *

Surface Curvature Estimation for Edge Spinning Algorithm * Surface Curvature Estimation for Edge Spinning Algorithm * Martin Cermak and Vaclav Skala University of West Bohemia in Pilsen Department of Computer Science and Engineering Czech Republic {cermakm skala}@kiv.zcu.cz

More information

Polygonization of implicit surfaces with sharp features by edge-spinning

Polygonization of implicit surfaces with sharp features by edge-spinning Visual Comput (2005) 21: 252 264 DOI 10.1007/s00371-005-0286-2 ORIGINAL ARTICLE Martin Čermák 1 Václav Skala Polygonization of implicit surfaces with sharp features by edge-spinning Published online: 12

More information

The Implicit Function Modeling System - Comparison of C++ and C# Solutions

The Implicit Function Modeling System - Comparison of C++ and C# Solutions The Implicit Function Modeling System - Comparison of C++ and C# Solutions Uhlir Karel 1 University of West Bohemia Univerzitni 8 30614 Plzen, Czech Republic kuhlir@kiv.zcu.cz Skala Vaclav University of

More information

Line Clipping in E 3 with Expected Complexity O(1)

Line Clipping in E 3 with Expected Complexity O(1) Line Clipping in E 3 with Expected Complexity O(1) Václav Skala 1 Departments of Informatics and Computer Science University of West Bohemia Americká 42, Box 314 306 14 Plzeò Czech Republic skala@kiv.zcu.cz

More information

A Point in Non-Convex Polygon Location Problem Using the Polar Space Subdivision in E 2

A Point in Non-Convex Polygon Location Problem Using the Polar Space Subdivision in E 2 A Point in Non-Convex Polygon Location Problem Using the Polar Space Subdivision in E 2 Vaclav Skala 1, Michal Smolik 1 1 Faculty of Applied Sciences, University of West Bohemia, Univerzitni 8, CZ 30614

More information

LATEST TRENDS on APPLIED MATHEMATICS, SIMULATION, MODELLING

LATEST TRENDS on APPLIED MATHEMATICS, SIMULATION, MODELLING 3D surface reconstruction of objects by using stereoscopic viewing Baki Koyuncu, Kurtuluş Küllü bkoyuncu@ankara.edu.tr kkullu@eng.ankara.edu.tr Computer Engineering Department, Ankara University, Ankara,

More information

New Hash Function Construction for Textual and Geometric Data Retrieval

New Hash Function Construction for Textual and Geometric Data Retrieval ASM conference, NAUN, Corfu, Greece, pp.9-9, ISSN 79-433, ISBN 978-96-474--3,. New Hash Function Construction for Textual and Geometric Data Retrieval V.Skala. J.Hrádek, M.Kuchař Abstract Techniques based

More information

ALGORITHMS COMPLEXITY AND LINE CLIPPING PROBLEM SOLUTIONS

ALGORITHMS COMPLEXITY AND LINE CLIPPING PROBLEM SOLUTIONS ALGORITHMS COMPLEXITY AND LINE CLIPPING PROBLEM SOLUTIONS Vaclav Skala 1 Department of Informatics and Computer Science University of West Bohemia, Univerzitní 22, Box 314 306 14 Plzen Czech Republic Skala@kiv.zcu.cz

More information

A New Algorithm for Pyramidal Clipping of Line Segments in E 3

A New Algorithm for Pyramidal Clipping of Line Segments in E 3 A New Algorithm for Pyramidal Clipping of Line Segments in E 3 Vaclav Skala 1, Duc Huy Bui Department of Informatics and Computer Science 2 University of West Bohemia Univerzitni 22, Box 314 306 14 Plzen

More information

BS-Patch: Constrained Bezier Parametric Patch

BS-Patch: Constrained Bezier Parametric Patch BS-Patch: Constrained Bezier Parametric Patch VACLAV SKALA, VIT ONDRACKA Department of Computer Science and Engineering University of West Bohemia Univerzitni 8, CZ 06 14 Plzen CZECH REPUBLIC skala@kiv.zcu.cz

More information

A Comparative Study of LOWESS and RBF Approximations for Visualization

A Comparative Study of LOWESS and RBF Approximations for Visualization A Comparative Study of LOWESS and RBF Approximations for Visualization Michal Smolik, Vaclav Skala and Ondrej Nedved Faculty of Applied Sciences, University of West Bohemia, Univerzitni 8, CZ 364 Plzen,

More information

x1_nearest x2_nearest Implicit Surface:[ f(x)=0,b(x)= false ]

x1_nearest x2_nearest Implicit Surface:[ f(x)=0,b(x)= false ] Marching Triangles: Delaunay Implicit Surface Triangulation A.Hilton 1 and J.Illingworth Vision, Speech and Signal Processing Group, Department of Electronic and Electrical Engineering University of Surrey,

More information

Computers & Graphics, Pergamon Press, Vol.21, No.2, pp , 1997

Computers & Graphics, Pergamon Press, Vol.21, No.2, pp , 1997 A Fast Algorithm for Line Clipping by Convex Polyhedron in E 3 Václav Skala 1 Department of Informatics and Computer Science University of West Bohemia Univerzitní 22, Box 314, 306 14 Plzen Czech Republic

More information

RBF Interpolation with CSRBF of Large Data Sets

RBF Interpolation with CSRBF of Large Data Sets RBF Interpolation with CSRBF of Large Data Sets Vaclav Skala University of West Bohemia, Plzen, Czech Republic. www.vaclavskala.eu Abstract This contribution presents a new analysis of properties of the

More information

Aspect-Ratio Voronoi Diagram with Applications

Aspect-Ratio Voronoi Diagram with Applications Aspect-Ratio Voronoi Diagram with Applications Tetsuo Asano School of Information Science, JAIST (Japan Advanced Institute of Science and Technology), Japan 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan

More information

Level-of-Detail Triangle Strips for Deforming. meshes

Level-of-Detail Triangle Strips for Deforming. meshes Level-of-Detail Triangle Strips for Deforming Meshes Francisco Ramos 1, Miguel Chover 1, Jindra Parus 2 and Ivana Kolingerova 2 1 Universitat Jaume I, Castellon, Spain {Francisco.Ramos,chover}@uji.es 2

More information

Geometric and Solid Modeling. Problems

Geometric and Solid Modeling. Problems Geometric and Solid Modeling Problems Define a Solid Define Representation Schemes Devise Data Structures Construct Solids Page 1 Mathematical Models Points Curves Surfaces Solids A shape is a set of Points

More information

Polygonization of Implicit Surfaces

Polygonization of Implicit Surfaces Polygonization of Implicit Surfaces Hongxin Zhang and Jieqing Feng 2007-01-11 State Key Lab of CAD&CG Zhejiang University Contents Polygonization of Implicit Surfaces Other Methods for Displaying Implicit

More information

A Fast Particle System Framework for Interactive Implicit Modeling

A Fast Particle System Framework for Interactive Implicit Modeling A Fast Particle System Framework for Interactive Implicit Modeling Eric Galin LIRIS - NRS Université laude Bernard Lyon 1 eric.galin@liris.cnrs.fr Rémi Allègre LIRIS - NRS Université laude Bernard Lyon

More information

CURRICULUM CATALOG. CCR Mathematics Grade 8 (270720) MS

CURRICULUM CATALOG. CCR Mathematics Grade 8 (270720) MS 2018-19 CURRICULUM CATALOG Table of Contents COURSE OVERVIEW... 1 UNIT 1: THE REAL NUMBER SYSTEM... 2 UNIT 2: MODELING PROBLEMS IN INTEGERS... 2 UNIT 3: MODELING PROBLEMS WITH RATIONAL NUMBERS... 2 UNIT

More information

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece Parallel Computation of Spherical Parameterizations for Mesh Analysis Th. Athanasiadis and I. Fudos, Greece Introduction Mesh parameterization is a powerful geometry processing tool Applications Remeshing

More information

13.472J/1.128J/2.158J/16.940J COMPUTATIONAL GEOMETRY

13.472J/1.128J/2.158J/16.940J COMPUTATIONAL GEOMETRY 13.472J/1.128J/2.158J/16.940J COMPUTATIONAL GEOMETRY Lecture 23 Dr. W. Cho Prof. N. M. Patrikalakis Copyright c 2003 Massachusetts Institute of Technology Contents 23 F.E. and B.E. Meshing Algorithms 2

More information

QUADRILATERAL MESHES STRIPIFICATION

QUADRILATERAL MESHES STRIPIFICATION Proceedings of ALGORITMY 2005 pp. 300 308 QUADRILATERAL MESHES STRIPIFICATION PETR VANĚČEK, RADEK SVITÁK, IVANA KOLINGEROVÁ, AND VÁCLAV SKALA CENTRE OF COMPUTER GRAPHICS AND DATA VISUALIZATION DEPARTMENT

More information

correlated to the Utah 2007 Secondary Math Core Curriculum Geometry

correlated to the Utah 2007 Secondary Math Core Curriculum Geometry correlated to the Utah 2007 Secondary Math Core Curriculum Geometry McDougal Littell Geometry: Concepts and Skills 2005 correlated to the Utah 2007 Secondary Math Core Curriculum Geometry The main goal

More information

Multi-Scale Free-Form Surface Description

Multi-Scale Free-Form Surface Description Multi-Scale Free-Form Surface Description Farzin Mokhtarian, Nasser Khalili and Peter Yuen Centre for Vision Speech and Signal Processing Dept. of Electronic and Electrical Engineering University of Surrey,

More information

Homework 1: Implicit Surfaces, Collision Detection, & Volumetric Data Structures. Loop Subdivision. Loop Subdivision. Questions/Comments?

Homework 1: Implicit Surfaces, Collision Detection, & Volumetric Data Structures. Loop Subdivision. Loop Subdivision. Questions/Comments? Homework 1: Questions/Comments? Implicit Surfaces,, & Volumetric Data Structures Loop Subdivision Shirley, Fundamentals of Computer Graphics Loop Subdivision SIGGRAPH 2000 course notes Subdivision for

More information

Interactive Implicit Modeling With Hierarchical Spatial Caching

Interactive Implicit Modeling With Hierarchical Spatial Caching Interactive Implicit Modeling With Hierarchical Spatial Caching Ryan Schmidt University of Calgary Computer Science rms@cpsc.ucalgary.ca Brian Wyvill University of Calgary Computer Science blob@cpsc.ucalgary.ca

More information

Efficient Lipschitz function evaluation for CSG implicit surfaces

Efficient Lipschitz function evaluation for CSG implicit surfaces Efficient Lipschitz function evaluation for CSG implicit surfaces Phap Nguyen and Huub van de Wetering Department of Mathematics and Computing Science Eindhoven University of Technology Abstract The rendering

More information

Triangular Mesh Segmentation Based On Surface Normal

Triangular Mesh Segmentation Based On Surface Normal ACCV2002: The 5th Asian Conference on Computer Vision, 23--25 January 2002, Melbourne, Australia. Triangular Mesh Segmentation Based On Surface Normal Dong Hwan Kim School of Electrical Eng. Seoul Nat

More information

Interactive Implicit Modeling With Hierarchical Spatial Caching

Interactive Implicit Modeling With Hierarchical Spatial Caching Interactive Implicit Modeling With Hierarchical Spatial Caching Ryan Schmidt University of Calgary Computer Science rms@cpsc.ucalgary.ca Brian Wyvill University of Calgary Computer Science blob@cpsc.ucalgary.ca

More information

Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass

Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass University of California, Davis, USA http://www.cs.ucdavis.edu/~koehl/ims2017/ What is a shape? A shape is a 2-manifold with a Riemannian

More information

u 0+u 2 new boundary vertex

u 0+u 2 new boundary vertex Combined Subdivision Schemes for the design of surfaces satisfying boundary conditions Adi Levin School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel. Email:fadilev@math.tau.ac.ilg

More information

x On record with the USOE.

x On record with the USOE. Textbook Alignment to the Utah Core Geometry This alignment has been completed using an Independent Alignment Vendor from the USOE approved list (www.schools.utah.gov/curr/imc/indvendor.html.) Yes N/A

More information

Outline. Reconstruction of 3D Meshes from Point Clouds. Motivation. Problem Statement. Applications. Challenges

Outline. Reconstruction of 3D Meshes from Point Clouds. Motivation. Problem Statement. Applications. Challenges Reconstruction of 3D Meshes from Point Clouds Ming Zhang Patrick Min cs598b, Geometric Modeling for Computer Graphics Feb. 17, 2000 Outline - problem statement - motivation - applications - challenges

More information

Interactive Implicit Modeling With Hierarchical Spatial Caching

Interactive Implicit Modeling With Hierarchical Spatial Caching Interactive Implicit Modeling With Hierarchical Spatial Caching Ryan Schmidt University of Calgary Computer Science rms@cpsc.ucalgary.ca Brian Wyvill University of Calgary Computer Science blob@cpsc.ucalgary.ca

More information

Temporal Face Normal Interpolation

Temporal Face Normal Interpolation Temporal Face Normal Interpolation Jindřich Parus Centre of Computer Graphics and Data Visualization, University of West Bohemia, Pilsen, Czech Republic Anders Hast Creative Media Lab, University of Gävle,

More information

REINER HORST. License or copyright restrictions may apply to redistribution; see

REINER HORST. License or copyright restrictions may apply to redistribution; see MATHEMATICS OF COMPUTATION Volume 66, Number 218, April 1997, Pages 691 698 S 0025-5718(97)00809-0 ON GENERALIZED BISECTION OF n SIMPLICES REINER HORST Abstract. A generalized procedure of bisection of

More information

Geometric Modeling Mortenson Chapter 11. Complex Model Construction

Geometric Modeling Mortenson Chapter 11. Complex Model Construction Geometric Modeling 91.580.201 Mortenson Chapter 11 Complex Model Construction Topics Topology of Models Connectivity and other intrinsic properties Graph-Based Models Emphasize topological structure Boolean

More information

' This work has been supported by the Ministry of Education of the Czech Republic - project MSM

' This work has been supported by the Ministry of Education of the Czech Republic - project MSM ... The Hash Function and the Principle of Duality Vhclav Skala, Martin KuchaP Department of Computer Science and Engineering' University of West Bohemia, Univerzitni 9, Box 314 306 14 Plzeri, Czech Republic

More information

CMSC 425: Lecture 9 Geometric Data Structures for Games: Geometric Graphs Thursday, Feb 21, 2013

CMSC 425: Lecture 9 Geometric Data Structures for Games: Geometric Graphs Thursday, Feb 21, 2013 CMSC 425: Lecture 9 Geometric Data Structures for Games: Geometric Graphs Thursday, Feb 21, 2013 Reading: Today s materials is presented in part in Computational Geometry: Algorithms and Applications (3rd

More information

G 6i try. On the Number of Minimal 1-Steiner Trees* Discrete Comput Geom 12:29-34 (1994)

G 6i try. On the Number of Minimal 1-Steiner Trees* Discrete Comput Geom 12:29-34 (1994) Discrete Comput Geom 12:29-34 (1994) G 6i try 9 1994 Springer-Verlag New York Inc. On the Number of Minimal 1-Steiner Trees* B. Aronov, 1 M. Bern, 2 and D. Eppstein 3 Computer Science Department, Polytechnic

More information

Multi-level Partition of Unity Implicits

Multi-level Partition of Unity Implicits Multi-level Partition of Unity Implicits Diego Salume October 23 rd, 2013 Author: Ohtake, et.al. Overview Goal: Use multi-level partition of unity (MPU) implicit surface to construct surface models. 3

More information

STRENGTH ANALYSIS OF PIN CONNECTIONS USING COMPUTER AIDED SYSTEMS

STRENGTH ANALYSIS OF PIN CONNECTIONS USING COMPUTER AIDED SYSTEMS STRENGTH ANALYSIS OF PIN CONNECTIONS USING COMPUTER AIDED SYSTEMS PETR BERNARDIN, VACLAVA LASOVA, FRANTISEK SEDLACEK University of West Bohemia in Pilsen RTI Regional Technological Institute Pilsen, Czech

More information

Implicit Surfaces. Misha Kazhdan CS598b

Implicit Surfaces. Misha Kazhdan CS598b Implicit Surfaces Misha Kazhdan CS598b Definition: Given a function F the implicit surface S generated by this function is the set of zero points of F: S ( ) { p F = } = p The interior I is the set of

More information

Central issues in modelling

Central issues in modelling Central issues in modelling Construct families of curves, surfaces and volumes that can represent common objects usefully; are easy to interact with; interaction includes: manual modelling; fitting to

More information

Dual-Primal Mesh Optimization for Polygonized Implicit Surfaces with Sharp Features

Dual-Primal Mesh Optimization for Polygonized Implicit Surfaces with Sharp Features Dual-Primal Mesh Optimization for Polygonized Implicit Surfaces with Sharp Features Yutaka Ohtake Ý and Alexander G. Belyaev Ý Þ Ý Computer Graphics Group, Max-Planck-Institut für Informatik, 66123 Saarbrücken,

More information

Dual/Primal Mesh Optimization for Polygonized Implicit Surfaces

Dual/Primal Mesh Optimization for Polygonized Implicit Surfaces Dual/Primal Mesh Optimization for Polygonized Implicit Surfaces Yutaka Ohtake y and Alexander G. Belyaev y;z y Computer Graphics Group, Max-Planck-Institut für Informatik, 66123 Saarbrücken, Germany z

More information

Simulation Details for 2D

Simulation Details for 2D Appendix B Simulation Details for 2D In this appendix we add some details two-dimensional simulation method. The details provided here describe the method used to obtain results reported in Chapters 3

More information

Curriculum Catalog

Curriculum Catalog 2018-2019 Curriculum Catalog Table of Contents MATHEMATICS 800 COURSE OVERVIEW... 1 UNIT 1: THE REAL NUMBER SYSTEM... 1 UNIT 2: MODELING PROBLEMS IN INTEGERS... 3 UNIT 3: MODELING PROBLEMS WITH RATIONAL

More information

CSG obj. oper3. obj1 obj2 obj3. obj5. obj4

CSG obj. oper3. obj1 obj2 obj3. obj5. obj4 Solid Modeling Solid: Boundary + Interior Volume occupied by geometry Solid representation schemes Constructive Solid Geometry (CSG) Boundary representations (B-reps) Space-partition representations Operations

More information

Surface Mesh Generation

Surface Mesh Generation Surface Mesh Generation J.-F. Remacle Université catholique de Louvain September 22, 2011 0 3D Model For the description of the mesh generation process, let us consider the CAD model of a propeller presented

More information

An Adaptive Triangulation Refinement Scheme and Construction

An Adaptive Triangulation Refinement Scheme and Construction An Adaptive Triangulation Refinement Scheme and Construction Ronaldo Marinho Persiano João Luiz Dihl Comba Valéria Barbalho Laboratório de Computação Gráfica COPPE/UFRJ C.P. 68511 Rio de Janeiro 21945

More information

Point Location in Delaunay Triangulations

Point Location in Delaunay Triangulations Point Location in Delaunay Triangulations Inspiration: Graphics software wants to light a model and needs to know which face a light ray hits You moved the mouse and the windowing system would like to

More information

Line segment intersection. Family of intersection problems

Line segment intersection. Family of intersection problems CG Lecture 2 Line segment intersection Intersecting two line segments Line sweep algorithm Convex polygon intersection Boolean operations on polygons Subdivision overlay algorithm 1 Family of intersection

More information

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation Optimization Methods: Introduction and Basic concepts 1 Module 1 Lecture Notes 2 Optimization Problem and Model Formulation Introduction In the previous lecture we studied the evolution of optimization

More information

Accelerating Geometric Queries. Computer Graphics CMU /15-662, Fall 2016

Accelerating Geometric Queries. Computer Graphics CMU /15-662, Fall 2016 Accelerating Geometric Queries Computer Graphics CMU 15-462/15-662, Fall 2016 Geometric modeling and geometric queries p What point on the mesh is closest to p? What point on the mesh is closest to p?

More information

1. Meshes. D7013E Lecture 14

1. Meshes. D7013E Lecture 14 D7013E Lecture 14 Quadtrees Mesh Generation 1. Meshes Input: Components in the form of disjoint polygonal objects Integer coordinates, 0, 45, 90, or 135 angles Output: A triangular mesh Conforming: A triangle

More information

Intersection of an Oriented Box and a Cone

Intersection of an Oriented Box and a Cone Intersection of an Oriented Box and a Cone David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution 4.0 International

More information

Lecture 17: Solid Modeling.... a cubit on the one side, and a cubit on the other side Exodus 26:13

Lecture 17: Solid Modeling.... a cubit on the one side, and a cubit on the other side Exodus 26:13 Lecture 17: Solid Modeling... a cubit on the one side, and a cubit on the other side Exodus 26:13 Who is on the LORD's side? Exodus 32:26 1. Solid Representations A solid is a 3-dimensional shape with

More information

Dover-Sherborn High School Mathematics Curriculum Geometry Level 1/CP

Dover-Sherborn High School Mathematics Curriculum Geometry Level 1/CP Mathematics Curriculum A. DESCRIPTION This is the traditional geometry course with emphasis on the student s understanding of the characteristics and properties of two- and three-dimensional geometry.

More information

Space Subdivision to Speed-up Convex Hull Construction in E 3

Space Subdivision to Speed-up Convex Hull Construction in E 3 Space Subdivision to Speed-up Convex Hull Construction in E 3 Vaclav Skala, Zuzana Majdisova, Michal Smolik Faculty of Applied Sciences, University of West Bohemia, Univerzitni 8, CZ 30614 Plzen, Czech

More information

Interactive Math Glossary Terms and Definitions

Interactive Math Glossary Terms and Definitions Terms and Definitions Absolute Value the magnitude of a number, or the distance from 0 on a real number line Addend any number or quantity being added addend + addend = sum Additive Property of Area the

More information

Computational Geometry. Algorithm Design (10) Computational Geometry. Convex Hull. Areas in Computational Geometry

Computational Geometry. Algorithm Design (10) Computational Geometry. Convex Hull. Areas in Computational Geometry Computational Geometry Algorithm Design (10) Computational Geometry Graduate School of Engineering Takashi Chikayama Algorithms formulated as geometry problems Broad application areas Computer Graphics,

More information

A Comparison of Fundamental Methods for Iso-surface Extraction

A Comparison of Fundamental Methods for Iso-surface Extraction A Comparison of Fundamental Methods for Iso-surface Extraction JAN PATERA 1, VÁCLAV SKALA Department of Computer Science and Engineering Faculty of Applied Sciences, University of West Bohemia Univerzitní,

More information

This image cannot currently be displayed. Course Catalog. Pre-algebra Glynlyon, Inc.

This image cannot currently be displayed. Course Catalog. Pre-algebra Glynlyon, Inc. This image cannot currently be displayed. Course Catalog Pre-algebra 2016 Glynlyon, Inc. Table of Contents COURSE OVERVIEW... 1 UNIT 1: THE REAL NUMBER SYSTEM... 1 UNIT 2: MODELING PROBLEMS IN INTEGERS...

More information

Geodesic Paths on Triangular Meshes

Geodesic Paths on Triangular Meshes Geodesic Paths on Triangular Meshes Dimas Martínez Luiz Velho Paulo Cezar Carvalho IMPA Instituto Nacional de Matemática Pura e Aplicada Estrada Dona Castorina, 110, 22460-320 Rio de Janeiro, RJ, Brasil

More information

Middle School Math Course 3

Middle School Math Course 3 Middle School Math Course 3 Correlation of the ALEKS course Middle School Math Course 3 to the Texas Essential Knowledge and Skills (TEKS) for Mathematics Grade 8 (2012) (1) Mathematical process standards.

More information

Physically-Based Modeling and Animation. University of Missouri at Columbia

Physically-Based Modeling and Animation. University of Missouri at Columbia Overview of Geometric Modeling Overview 3D Shape Primitives: Points Vertices. Curves Lines, polylines, curves. Surfaces Triangle meshes, splines, subdivision surfaces, implicit surfaces, particles. Solids

More information

Isotopic Approximation of Implicit Curves and Surfaces (Extended Abstract)

Isotopic Approximation of Implicit Curves and Surfaces (Extended Abstract) Isotopic Approximation of Implicit Curves and Surfaces (Extended Abstract) Simon Plantinga and Gert Vegter Institute for Mathematics and Computing Science University of Groningen simon@cs.rug.nl gert@cs.rug.nl

More information

Curriculum Catalog

Curriculum Catalog 2017-2018 Curriculum Catalog 2017 Glynlyon, Inc. Table of Contents MATHEMATICS 800 FUNDAMENTALS COURSE OVERVIEW... 1 UNIT 1: THE REAL NUMBER SYSTEM... 1 UNIT 2: MODELING PROBLEMS IN INTEGERS... 2 UNIT

More information

Artistic Rendering of Function-based Shape Models

Artistic Rendering of Function-based Shape Models Artistic Rendering of Function-based Shape Models by Shunsuke Suzuki Faculty of Computer and Information Science Hosei University n00k1021@k.hosei.ac.jp Supervisor: Alexander Pasko March 2004 1 Abstract

More information

Using Semi-Regular 4 8 Meshes for Subdivision Surfaces

Using Semi-Regular 4 8 Meshes for Subdivision Surfaces Using Semi-Regular 8 Meshes for Subdivision Surfaces Luiz Velho IMPA Instituto de Matemática Pura e Aplicada Abstract. Semi-regular 8 meshes are refinable triangulated quadrangulations. They provide a

More information

Automatic Mesh Generation from 3D Internal Sketch and Topological Constraints

Automatic Mesh Generation from 3D Internal Sketch and Topological Constraints Automatic Mesh Generation from 3D Internal Sketch and Topological Constraints Jean-Luc Mari Information and System Science Laboratory (LSIS) - Computer Graphics Dept. (I&M), University of Marseille II

More information

Generalizing the C 4 Four-directional Box Spline to Surfaces of Arbitrary Topology Luiz Velho Abstract. In this paper we introduce a new scheme that g

Generalizing the C 4 Four-directional Box Spline to Surfaces of Arbitrary Topology Luiz Velho Abstract. In this paper we introduce a new scheme that g Generalizing the C 4 Four-directional Box Spline to Surfaces of Arbitrary Topology Luiz Velho Abstract. In this paper we introduce a new scheme that generalizes the four-directional box spline of class

More information

Delaunay Triangulations

Delaunay Triangulations Delaunay Triangulations (slides mostly by Glenn Eguchi) Motivation: Terrains Set of data points A R 2 Height ƒ(p) defined at each point p in A How can we most naturally approximate height of points not

More information

Cecil Jones Academy Mathematics Fundamentals

Cecil Jones Academy Mathematics Fundamentals Year 10 Fundamentals Core Knowledge Unit 1 Unit 2 Estimate with powers and roots Calculate with powers and roots Explore the impact of rounding Investigate similar triangles Explore trigonometry in right-angled

More information

THE MORTAR FINITE ELEMENT METHOD IN 2D: IMPLEMENTATION IN MATLAB

THE MORTAR FINITE ELEMENT METHOD IN 2D: IMPLEMENTATION IN MATLAB THE MORTAR FINITE ELEMENT METHOD IN D: IMPLEMENTATION IN MATLAB J. Daněk, H. Kutáková Department of Mathematics, University of West Bohemia, Pilsen MECAS ESI s.r.o., Pilsen Abstract The paper is focused

More information

Adjacency Data Structures

Adjacency Data Structures Last Time? Simple Transformations Adjacency Data Structures material from Justin Legakis Classes of Transformations Representation homogeneous coordinates Composition not commutative Orthographic & Perspective

More information

Free-form 3D object reconstruction from range images. C. Schütz, T. Jost, H. Hügli

Free-form 3D object reconstruction from range images. C. Schütz, T. Jost, H. Hügli Free-form 3D object reconstruction from range images C. Schütz, T. Jost, H. Hügli Institute for Microtechnology University of Neuchatel, rue Breguet 2 CH-2000 Neuchatel, Switzerland email: christian.schutz@imt.unine.ch

More information

Optimal Compression of a Polyline with Segments and Arcs

Optimal Compression of a Polyline with Segments and Arcs Optimal Compression of a Polyline with Segments and Arcs Alexander Gribov Esri 380 New York Street Redlands, CA 92373 Email: agribov@esri.com arxiv:1604.07476v5 [cs.cg] 10 Apr 2017 Abstract This paper

More information

Cell Decomposition for Building Model Generation at Different Scales

Cell Decomposition for Building Model Generation at Different Scales Cell Decomposition for Building Model Generation at Different Scales Norbert Haala, Susanne Becker, Martin Kada Institute for Photogrammetry Universität Stuttgart Germany forename.lastname@ifp.uni-stuttgart.de

More information

Barycentric coordinates computation in homogeneous coordinates

Barycentric coordinates computation in homogeneous coordinates Computers & Graphics, Elsevier, ISSN 009-849, Vol., No.1, pp.10-1, 008 Computers & Graphics (008) 10 1 www.elsevier.com/locate/cag Education Barycentric coordinates computation in homogeneous coordinates

More information

CT and MRI Data Processing for Rapid Prototyping

CT and MRI Data Processing for Rapid Prototyping CT and MRI Data Processing for Rapid Prototyping VACLAV SKALA Department of Computer Science and Engineering University of West Bohemia Univerzitni 8, CZ 306 14 Plzen CZECH REPUBLIC skala@kiv.zcu.cz http://www.vaclavskala.eu

More information

Real-Time Space-Time Blending with Improved User Control

Real-Time Space-Time Blending with Improved User Control Real-Time Space-Time Blending with Improved User Control Galina Pasko 1, Denis Kravtsov 2,, and Alexander Pasko 2 1 British Institute of Technology and E-commerce, UK 2 NCCA, Bournemouth University, UK

More information

Outline of the presentation

Outline of the presentation Surface Reconstruction Petra Surynková Charles University in Prague Faculty of Mathematics and Physics petra.surynkova@mff.cuni.cz Outline of the presentation My work up to now Surfaces of Building Practice

More information

Fast Algorithms for Line Segment and Line Clipping in E 2

Fast Algorithms for Line Segment and Line Clipping in E 2 Fast Algorithms for Line Segment and Line Clipping in E 2 Duc Huy Bui, Václav Skala Department of Informatics and Computer Science 1 University of West Bohemia Univerzitní 22, Box 314 306 14 Plzen Czech

More information

arxiv:cs/ v1 [cs.cg] 26 Feb 2002

arxiv:cs/ v1 [cs.cg] 26 Feb 2002 The efficient generation of unstructured control volumes in 2D and 3D Jacek Leszczynski, Sebastian Pluta arxiv:cs/0202038v1 [cs.cg] 26 Feb 2002 Technical University of Czestochowa, Institute of Mathematics

More information

Topology Preserving Tetrahedral Decomposition of Trilinear Cell

Topology Preserving Tetrahedral Decomposition of Trilinear Cell Topology Preserving Tetrahedral Decomposition of Trilinear Cell Bong-Soo Sohn Department of Computer Engineering, Kyungpook National University Daegu 702-701, South Korea bongbong@knu.ac.kr http://bh.knu.ac.kr/

More information

A Flavor of Topology. Shireen Elhabian and Aly A. Farag University of Louisville January 2010

A Flavor of Topology. Shireen Elhabian and Aly A. Farag University of Louisville January 2010 A Flavor of Topology Shireen Elhabian and Aly A. Farag University of Louisville January 2010 In 1670 s I believe that we need another analysis properly geometric or linear, which treats place directly

More information

Duality and Robust Computation

Duality and Robust Computation Duality and Robust Computation VACLAV SKALA Department of Computer Science and Engineering Faculty of Applied Sciences, University of West Bohemia Univerzitni 8, CZ 306 14 Plzen Czech Republic skala@kiv.zcu.cz

More information

INF3320 Computer Graphics and Discrete Geometry

INF3320 Computer Graphics and Discrete Geometry INF3320 Computer Graphics and Discrete Geometry More smooth Curves and Surfaces Christopher Dyken, Michael Floater and Martin Reimers 10.11.2010 Page 1 More smooth Curves and Surfaces Akenine-Möller, Haines

More information

Saab. Kyle McDonald. Polygon Meshes

Saab. Kyle McDonald. Polygon Meshes Saab Kyle McDonald Polygon Meshes Siddhartha Chaudhuri http://www.cse.iitb.ac.in/~cs749 What is a polygon mesh? Like a point cloud, it is a discrete sampling of a surface... but, it adds linear (flat)

More information

University of Ostrava. Fuzzy Transform of a Function on the Basis of Triangulation

University of Ostrava. Fuzzy Transform of a Function on the Basis of Triangulation University of Ostrava Institute for Research and Applications of Fuzzy Modeling Fuzzy Transform of a Function on the Basis of Triangulation Dagmar Plšková Research report No. 83 2005 Submitted/to appear:

More information

COMPUTING CONSTRAINED DELAUNAY

COMPUTING CONSTRAINED DELAUNAY COMPUTING CONSTRAINED DELAUNAY TRIANGULATIONS IN THE PLANE By Samuel Peterson, University of Minnesota Undergraduate The Goal The Problem The Algorithms The Implementation Applications Acknowledgments

More information

SHAPE SEGMENTATION FOR SHAPE DESCRIPTION

SHAPE SEGMENTATION FOR SHAPE DESCRIPTION SHAPE SEGMENTATION FOR SHAPE DESCRIPTION Olga Symonova GraphiTech Salita dei Molini 2, Villazzano (TN), Italy olga.symonova@graphitech.it Raffaele De Amicis GraphiTech Salita dei Molini 2, Villazzano (TN),

More information

LAPLACIAN MESH SMOOTHING FOR TETRAHEDRA BASED VOLUME VISUALIZATION 1. INTRODUCTION

LAPLACIAN MESH SMOOTHING FOR TETRAHEDRA BASED VOLUME VISUALIZATION 1. INTRODUCTION JOURNAL OF MEDICAL INFORMATICS & TECHNOLOGIES Vol.4/2002, ISSN 642-6037 Rafał STĘGIERSKI *, Paweł MIKOŁAJCZAK * volume data,triangle mesh generation, mesh smoothing, marching tetrahedra LAPLACIAN MESH

More information

Dgp _ lecture 2. Curves

Dgp _ lecture 2. Curves Dgp _ lecture 2 Curves Questions? This lecture will be asking questions about curves, their Relationship to surfaces, and how they are used and controlled. Topics of discussion will be: Free form Curves

More information

PRE-ALGEBRA PREP. Textbook: The University of Chicago School Mathematics Project. Transition Mathematics, Second Edition, Prentice-Hall, Inc., 2002.

PRE-ALGEBRA PREP. Textbook: The University of Chicago School Mathematics Project. Transition Mathematics, Second Edition, Prentice-Hall, Inc., 2002. PRE-ALGEBRA PREP Textbook: The University of Chicago School Mathematics Project. Transition Mathematics, Second Edition, Prentice-Hall, Inc., 2002. Course Description: The students entering prep year have

More information

HPISD Eighth Grade Math

HPISD Eighth Grade Math HPISD Eighth Grade Math The student uses mathematical processes to: acquire and demonstrate mathematical understanding Apply mathematics to problems arising in everyday life, society, and the workplace.

More information

Geometry Assessment. Eligible Texas Essential Knowledge and Skills

Geometry Assessment. Eligible Texas Essential Knowledge and Skills Geometry Assessment Eligible Texas Essential Knowledge and Skills STAAR Geometry Assessment Reporting Category 1: Geometric Structure The student will demonstrate an understanding of geometric structure.

More information