AP Physics Problems -- Waves and Light

Size: px
Start display at page:

Download "AP Physics Problems -- Waves and Light"

Transcription

1 AP Physics Problems -- Waves and Light (Physical Optics) a. Light of a single wavelength is incident on a single slit of width w. (w is a few wavelengths.) Sketch a graph of the intensity as a function of position for the pattern formed on a distant screen. b. Repeat for the case in which there are two slits. The slits are of width w and are separated by a distance d (d >> w). Sketch a graph of the intensity as a function of position for the pattern formed on a distant screen (Mechanical Waves/Sound) Two loudspeakers, S 1 and S 2 a distance d apart as shown in the diagram below left, vibrate in phase and emit sound waves of equal amplitude and wavelength λ. a. Describe how sound intensity I varies as a function of position x along the line segment OA. On your own paper, using axes like those above center, sketch the graph of this function. b. Assume d << L. On your own paper, using axes like those above right, sketch a graph of the sound intensity I as a function of position y along the y axis. c. Assume that d = 2.0 meters and that the speed of sound is 360 meters per second. Find the lowest speaker frequency which will yield the minimum sound intensity along the line BB' (Mechanical Waves, Physical Optics) In the pair of graphs to the right, a curve is drawn in the first graph of each pair. For the other graph, sketch the curve showing the relationship between the quantities labeled on the axes. Your graph should be consistent with the first graph in the pair.

2 (Physical Optics) The surface of a glass plate (index of refraction n 3 = 1.50) is coated with a transparent thin film (index of refraction n 2 = 1.25). A beam of monochromatic light of wavelength m traveling in air (index of refraction n 1 = 1.00) is incident normally on surface S 1 as shown above. The beam is partially transmitted and partially reflected. a. Calculate the frequency of the light. b. Calculate the wavelength of the light in the thin film. The beam of light in the film is then partially reflected and partially transmitted at surface S 2. c. Calculate the minimum thickness d 1 of the film such that the resultant intensity of the light reflected back into the air is a minimum. d. Calculate the minimum nonzero thickness d 2 of the film such that the resultant intensity of the light reflected back into the air is a maximum (Physical Optics, Geometric Optics) Light of wavelength m in air is incident normally (perpendicularly) on a double slit. The distance between the slits is m, and the width of each slit is negligible. Bright and dark fringes are observed on a screen 2.0 m away from the slits. a. Calculate the distance between two adjacent bright fringes on the screen. The entire double-slit apparatus, including the slits and the screen, is submerged in water, which has an index of refraction 1.3. b. Determine each of the following for this light in water. i. The wavelength ii. The frequency c. State whether the distance between the fringes on the screen increases, decreases, or remains the same. Justify your answer (Physical Optics) A beam of light from a light source on the bottom of a swimming pool 3.0 m deep strikes the surface of the water 2.0 m to the left of the light source, as shown to the right. The index of refraction of the water in the pool is a. What angle does the reflected ray make with the normal to the surface? b. What angle does the emerging ray make with the normal to the surface? c. What is the minimum depth of water for which the light that strikes the surface of the water 2.0 meters to the left of the light source will be refracted into the air? In one section of the pool, there is a thin film of oil on the surface of the water. The thickness of the film is m and the index of refraction of the oil is 1.5. The light source is now held in the air and illuminates the film at normal incidence, as shown above. d. At which of the interfaces (air-oil and oil-water), if either, does the light undergo a 180 phase change upon reflection? e. For what wavelengths in the visible spectrum will the intensity be a maximum in the reflected beam?

3 (Physical Optics) Light consisting of two wavelengths, λ a = m and λ b = m, is incident normally on a barrier with two slits separated by a distance d. The intensity distribution is measured along a plane that is a distance L = 0.85 m from the slits as shown above. The movable detector contains a photoelectric cell whose position y is measured from the central maximum. The first-order maximum for the longer wavelength λ b occurs at y = 1.2 x 10-2 m. a. Determine the slit separation d. b. At what position y a does the first-order maximum occur for the shorter wavelength λ a? (Physical Optics) Coherent monochromatic light of wavelength λ in air is incident on two narrow slits, the centers of which are 2.0 mm apart, as shown above. The interference pattern observed on a screen 5.0 m away is represented in the figure by the graph of light intensity I as a function of position x on the screen. a. What property of light does this interference experiment demonstrate? b. At point P in the diagram, there is a minimum in the interference pattern. Determine the path difference between the light arriving at this point from the two slits. c. Determine the wavelength, λ, of the light. d. Briefly and qualitatively describe how the interference pattern would change under each of the following separate modifications and explain your reasoning. i. The experiment is performed in water, which has an index of refraction greater than 1. ii. One of the slits is covered. iii. The slits are moved farther apart (Physical Optics) A transmission diffraction grating with 600 lines/mm is used to study the line spectrum of the light produced by a hydrogen discharge tube with the setup shown above. The grating is 1.0 m from the source (a hole at the center of the meter stick). An observer sees the first-order red line at a distance y r = 428 mm from the hole. a. Calculate the wavelength of the red line in the hydrogen spectrum. b. Qualitatively describe how the location of the first-order red line would change if a diffraction grating with 800 lines/mm were used instead of one with 600 lines/mm.

4 (Geometric optics, Physical Optics) You are given the following equipment for use in the optics experiments in parts (a) and (b). A solid rectangular block made of transparent plastic A laser that produces a narrow, bright, monochromatic ray of light A protractor A meterstick A diffraction grating of known slit spacing A white opaque screen a. Briefly describe the procedure you would use to determine the index of refraction of the plastic. Include a labeled diagram to show the experimental setup. Write down the corresponding equation you would use in your calculation and make sure all the variables in this equation are labeled on your diagram. b. Since the index of refraction depends on wavelength, you decide you also want to determine the wavelength of your light source. Draw and label a diagram showing the experimental setup. Show the equation(s) you would use in your calculation and identify all the variables in the equation(s). State and justify any assumptions you make (Geometric Optics, Physical Optics) A sheet of glass has an index of refraction n g = Assume that the index of refraction for air is n a = a. Monochromatic light is incident on the glass sheet, as shown in the figure to the right, at an angle of incidence of 60. On the figure, sketch the path the light takes the first time it strikes each of the two parallel surfaces. Calculate and label the size of each angle (in degrees) on the figure, including angles of incidence, reflection, and refraction at each of the two parallel surfaces shown. b. Next a thin film of material is to be tested on the glass sheet for use in making reflective coatings. The film has an index of refraction n f = White light is incident normal to the surface of the film as shown below. It is observed that at a point where the light is incident on the film, light reflected from the surface appears green (λ = 525 nm). i. What is the frequency of the green light in air? ii. What is the frequency of the green light in the film? iii. What is the wavelength of the green light in the film? iv. Calculate the minimum thickness of film that would produce this green reflection.

5 (Mechanical Waves) Two small speakers S are positioned a distance of 0.75 m from each other, as shown in the diagram above. The two speakers are each emitting a constant 2500 Hz tone, and the sound waves from the speakers are in phase with each other. A student is standing at point P, which is a distance of 5.0 m from the midpoint between the speakers, and hears a maximum as expected. Assume that reflections from nearby objects are negligible. Use 343 m/s for the speed of sound. a. Calculate the wavelength of these sound waves. b. The student moves a distance Y to point Q and notices that the sound intensity has decreased to a minimum. Calculate the shortest distance the student could have moved to hear this minimum. c. Identify another location on the line that passes through P and Q where the student could stand in order to observe a minimum. Justify your answer. d. i. How would your answer to (b) change if the two speakers were moved closer together? Justify your answer. ii. How would your answer to (b) change if the frequency emitted by the two speakers was increased? Justify your answer (Physical Optics) Your teacher gives you a slide with two closely spaced slits on it. She also gives you a laser with a wavelength λ = 632 nm. The laboratory task that you are assigned asks you to determine the spacing between the slits. These slits are so close together that you cannot measure their spacing with a typical measuring device. a. From the list below, select the additional equipment you will need to do your experiment by checking the line next to each item. Meterstick Ruler Tape measure Light-intensity meter Large screen Paper Slide holder Stopwatch b. Draw a labeled diagram of the experimental setup that you would use. On the diagram, use symbols to identify carefully what measurements you will need to make. c. On the axes below, sketch a graph of intensity versus position that would be produced by your setup, assuming that the slits are very narrow compared to their separation. d. Outline the procedure that you would use to make the needed measurements, including how you would use each piece of the additional equipment you checked in a. e. Using equations, show explicitly how you would use your measurements to calculate the slit spacing.

6 b-4 (Mechanical Waves) Your teacher gives you two speakers that are in phase and are emitting the same frequency of sound, which is between 5000 and 10,000 Hz. She asks you to determine this frequency more precisely. She does not have a frequency or wavelength meter in the lab, so she asks you to design an interference experiment to determine the frequency. The speed of sound is 340 m/s at the temperature of the lab room. a. From the list below, select the additional equipment you will need to do your experiment by checking the line next to each item. Speaker stand Meterstick Ruler Tape measure Stopwatch Sound-level meter b. Draw a labeled diagram of the experimental setup that you would use. On the diagram, use symbols to identify what measurements you will need to make. c. Briefly outline the procedure that you would use to make the needed measurements, including how you would use each piece of equipment you checked in a. d. Using equations, show explicitly how you would use your measurements to calculate the frequency of the sound produced by the speakers. e. If the frequency is decreased, describe how this would affect your measurements (Geometric Optics, Physical Optics) A student performs an experiment to determine the index of refraction n of a rectangular glass slab in air. She is asked to use a laser beam to measure angles of incidence θ i in air and corresponding angles of refraction θ r in glass. The measurements of the angles for five trials are given in the table below. a. Complete the last two columns in the table by calculating the quantities that need to be graphed to provide a linear relationship from which the index of refraction can be determined. Label the top of each column. b. On the grid below, plot the quantities calculated in (a) and draw an appropriate graph from which the index of refraction can be determined. Label the axes. c. Using the graph, calculate the index of refraction of the glass slab. The student is also asked to determine the thickness of a film of oil (n = 1.43) on the surface of water (n = 1.33). Light from a variable wavelength source is incident vertically onto the oil film as shown above. The student measures a maximum in the intensity of the reflected light when the incident light has a wavelength of 600 nm. d. At which of the two interfaces does the light undergo a 180 phase change on reflection? The air-oil interface only The oil-water interface only Both interfaces Neither interface e. Calculate the minimum possible thickness of the oil film.

7 b-4 (Geometric Optics, Physical Optics) A ray of red light in air (λ=650 nm) is incident on a semicircular block of clear plastic (n = 1.51 for this light), as shown above. The ray strikes the block at its center of curvature at an angle of incidence of 27. a. Part of the incident ray is reflected and part is refracted at the first interface. i. Determine the angle of reflection at the first interface. Draw and label the reflected ray on the diagram above. ii. Determine the angle of refraction at the first interface. Draw and label the refracted ray on the diagram above. iii. Determine the speed of the light in the plastic block. iv. Determine the wavelength of the light in the plastic block. b. The source of red light is replaced with one that produces blue light ( λ=450 nm ), for which the plastic has a greater index of refraction than for the red light. Qualitatively describe what happens to the reflected and refracted rays. c. The semicircular block is removed and the blue light is directed perpendicularly through a double slit and onto a screen. The distance between the slits is 0.15 mm. The slits are 1.4 m from the screen. i. On the diagram of the screen below, sketch the pattern of light that you should expect to see. ii. Calculate the distance between two adjacent bright fringes b (Physical Optics) A wide beam of white light is incident normal to the surface of a uniform oil film. An observer looking down at the film sees green light that has maximum intensity at a wavelength of m. The index of refraction of the oil is 1.7. a. Calculate the speed at which the light travels within the film. b. Calculate the wavelength of the green light within the film. c. Calculate the minimum possible thickness of the film. d. The oil film now rests on a thick slab of glass with index of refraction 1.4, as shown in the figure below. A light ray is incident on the film at the angle shown. On the figure, sketch the path of the refracted light ray that passes through the film and the glass slab and exits into the air. Clearly show any bending of the ray at each interface. You are NOT expected to calculate the sizes of any angles.

8 (Physical Optics) In a classroom demonstration, a beam of coherent light of wavelength 550 nm is incident perpendicularly onto a pair of slits. Each slit has a width w of m, and the distance d between the centers of the slits is m. The class observes light and dark fringes on a screen that is a distance L of 2.2 m from the slits. Your notebook shows the following setup for the demonstration. a. Calculate the frequency of the light. b. Calculate the distance between two adjacent dark fringes on the screen. The entire apparatus is now immersed in a transparent fluid having index of refraction 1.4. c. What is the frequency of the light in the transparent fluid? d. Does the distance between the dark fringes increase, decrease, or remain the same? Increase Decrease Remain the same Explain your reasoning b (Physical Optics) In a double-slit interference experiment, a parallel beam of monochromatic light is needed to illuminate two narrow parallel slits of width w that are a distance b apart in an opaque card as shown in the figure above. A lens is inserted between the point light source S and the slits in order to produce the parallel beam of light. The interference pattern is formed on a screen a distance D from the slits, where D >> b. a. On the figure above, draw the lens at the appropriate place to produce the parallel beam of light, and label the location of the source relative to the lens with the appropriate optical parameter of the lens. b. Draw two light rays from the source to the slits to show the production of the parallel rays. c. In the interference pattern on the screen, the distance from the central bright fringe to the third bright fringe on one side is measured to be y3. Derive an expression for the wavelength of the light in terms of the given quantities and fundamental constants. d. If the space between the slits and the screen was filled with a material having an index of refraction n > 1, would the distance between the bright fringes increase, decrease, or remain the same? Increase Decrease Remain the same Explain your reasoning.

9 AP Physics B Wave Interference, Physical Optics , single slit diffraction, double slit interference , two source interference (sound) c. 90 Hz , two source interference, multiple slit interference/diffraction grations , thin film interference a Hz b m c m d m , two source interference (light), refraction a m b m, Hz c. decreases d, e, thin film interference a. 34 b. 48 c. 1.8 m d. air-oil e. 600 nm a, b, two source interference (light) a m b m , two source interference (light), refraction a. wave b m ( 3 λ ) c m d. i. pattern is compressed d. ii. single slit diffraction pattern, wide central maximum iii. pattern is compressed , diffraction grating, 2-source interference a. 657 nm b. moves farther away from the principal axis , b. diffraction gratings, 2-source interference a. n 1 sinθ 1 = n 2 sinθ 2 b. nλ = dsinθ or nλ = dx L , b. thin-film interference a. 60.0, 35.3, 35.3, 60.0 b. i Hz ii Hz iii. 380 nm iv. 190 nm , 2-source interference with sound a m b m d. i. Y increases ii. Y decreases , experimental design, 2-source interference 2005b-4, experimental design, 2-source interference with sound e. distance between successive maxima will increase , d, e, thin film interference c. 1.5 d. the air-oil interface only e. 105 nm 2006b-4, c, 2-source interference a. ii iii m/s iv. 431 nm c. 4.2 mm , a Hz b m c Hz d. decreases, decreases, x λ 2009b-5, a m/s b m c m 2010b-5, c. by 3 /3D d. decrease, justification

AP* Optics Free Response Questions

AP* Optics Free Response Questions AP* Optics Free Response Questions 1978 Q5 MIRRORS An object 6 centimeters high is placed 30 centimeters from a concave mirror of focal length 10 centimeters as shown above. (a) On the diagram above, locate

More information

Unit 5.C Physical Optics Essential Fundamentals of Physical Optics

Unit 5.C Physical Optics Essential Fundamentals of Physical Optics Unit 5.C Physical Optics Essential Fundamentals of Physical Optics Early Booklet E.C.: + 1 Unit 5.C Hwk. Pts.: / 25 Unit 5.C Lab Pts.: / 20 Late, Incomplete, No Work, No Units Fees? Y / N 1. Light reflects

More information

CfE Higher Physics. Particles and Waves

CfE Higher Physics. Particles and Waves Wallace Hall Academy CfE Higher Physics Particles and Waves Exam Questions Part 2 P&W: Exam Questions Part 2 Version 2013 Contents Section 5: Interference and Diffraction 1 Section 6: Refraction of Light

More information

index of refraction-light speed

index of refraction-light speed AP Physics Study Guide Chapters 22, 23, 24 Reflection, Refraction and Interference Name Write each of the equations specified below, include units for all quantities. Law of Reflection Lens-Mirror Equation

More information

Particles and Waves Final Revision Exam Questions Part 2

Particles and Waves Final Revision Exam Questions Part 2 Particles and Waves Final Revision Exam Questions Part 2 This illustration shows the dual nature of light, which acts like both particles and waves. In a new experiment reported in November 2012, researchers

More information

EM Waves Practice Problems

EM Waves Practice Problems PSI AP Physics 2 Name 1. Sir Isaac Newton was one of the first physicists to study light. What properties of light did he explain by using the particle model? 2. Who was the first person who was credited

More information

Higher -o-o-o- Past Paper questions o-o-o- 3.2 Refraction

Higher -o-o-o- Past Paper questions o-o-o- 3.2 Refraction Higher -o-o-o- Past Paper questions 2000-2010 -o-o-o- 3.2 Refraction 2000 Q27 A student is investigating the effect that a semicircular glass block has on a ray of monochromatic light. She observes that

More information

Chapter 8: Physical Optics

Chapter 8: Physical Optics Chapter 8: Physical Optics Whether light is a particle or a wave had puzzled physicists for centuries. In this chapter, we only analyze light as a wave using basic optical concepts such as interference

More information

Activity 9.1 The Diffraction Grating

Activity 9.1 The Diffraction Grating PHY385H1F Introductory Optics Practicals Day 9 Diffraction November 29, 2010 Please work in a team of 3 or 4 students. All members should find a way to contribute. Two members have a particular role, and

More information

Diffraction. Factors that affect Diffraction

Diffraction. Factors that affect Diffraction Diffraction What is one common property the four images share? Diffraction: Factors that affect Diffraction TELJR Publications 2017 1 Young s Experiment AIM: Does light have properties of a particle? Or

More information

specular diffuse reflection.

specular diffuse reflection. Lesson 8 Light and Optics The Nature of Light Properties of Light: Reflection Refraction Interference Diffraction Polarization Dispersion and Prisms Total Internal Reflection Huygens s Principle The Nature

More information

University Physics (Prof. David Flory) Chapt_37 Monday, August 06, 2007

University Physics (Prof. David Flory) Chapt_37 Monday, August 06, 2007 Name: Date: 1. If we increase the wavelength of the light used to form a double-slit diffraction pattern: A) the width of the central diffraction peak increases and the number of bright fringes within

More information

College Physics B - PHY2054C

College Physics B - PHY2054C Young College - PHY2054C Wave Optics: 10/29/2014 My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building Outline Young 1 2 3 Young 4 5 Assume a thin soap film rests on a flat glass surface. Young Young

More information

WAVE SUPERPOSITION. Challenging MCQ questions by The Physics Cafe. Compiled and selected by The Physics Cafe

WAVE SUPERPOSITION. Challenging MCQ questions by The Physics Cafe. Compiled and selected by The Physics Cafe WVE SUPERPOSITION hallenging MQ questions by The Physics afe ompiled and selected by The Physics afe 1 Two coherent monochromatic waves of equal amplitude are brought together to form an interference pattern

More information

G3 TWO-SOURCE INTERFERENCE OF WAVES

G3 TWO-SOURCE INTERFERENCE OF WAVES G3 TWO-SOURCE INTERFERENCE OF WAVES G4 DIFFRACTION GRATINGS HW/Study Packet Required: READ Tsokos, pp 624-631 SL/HL Supplemental: Hamper, pp 424-428 DO Questions pp 631-632 #1,3,8,9,10 REMEMBER TO. Work

More information

Lab 12 - Interference-Diffraction of Light Waves

Lab 12 - Interference-Diffraction of Light Waves Lab 12 - Interference-Diffraction of Light Waves Equipment and Safety: No special safety equipment is required for this lab. Do not look directly into the laser. Do not point the laser at other people.

More information

AP Physics - Light Wrap Up

AP Physics - Light Wrap Up AP Physics - Light Wrap Up Here beith the equations for the light/optics deal. There are several of them, but not nearly enough. v f Here we have the equation for the velocity of a wave as a function of

More information

Textbook Reference: Physics (Wilson, Buffa, Lou): Chapter 24

Textbook Reference: Physics (Wilson, Buffa, Lou): Chapter 24 AP Physics-B Physical Optics Introduction: We have seen that the reflection and refraction of light can be understood in terms of both rays and wave fronts of light. Light rays are quite compatible with

More information

Chapter 25. Wave Optics

Chapter 25. Wave Optics Chapter 25 Wave Optics Interference Light waves interfere with each other much like mechanical waves do All interference associated with light waves arises when the electromagnetic fields that constitute

More information

Chapter 24. Wave Optics

Chapter 24. Wave Optics Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric) optics

More information

Intermediate Physics PHYS102

Intermediate Physics PHYS102 Intermediate Physics PHYS102 Dr Richard H. Cyburt Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 384-6006 My email: rcyburt@concord.edu My webpage: www.concord.edu/rcyburt

More information

Page 2. Q1.Electrons and protons in two beams are travelling at the same speed. The beams are diffracted by objects of the same size.

Page 2. Q1.Electrons and protons in two beams are travelling at the same speed. The beams are diffracted by objects of the same size. Q1.Electrons and protons in two beams are travelling at the same speed. The beams are diffracted by objects of the same size. Which correctly compares the de roglie wavelength λ e of the electrons with

More information

Wallace Hall Academy

Wallace Hall Academy Wallace Hall Academy CfE Higher Physics Unit 2 - Waves Notes Name 1 Waves Revision You will remember the following equations related to Waves from National 5. d = vt f = n/t v = f T=1/f They form an integral

More information

Chapter 82 Example and Supplementary Problems

Chapter 82 Example and Supplementary Problems Chapter 82 Example and Supplementary Problems Nature of Polarized Light: 1) A partially polarized beam is composed of 2.5W/m 2 of polarized and 4.0W/m 2 of unpolarized light. Determine the degree of polarization

More information

Chapter 24. Wave Optics

Chapter 24. Wave Optics Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric) optics

More information

1. (25pts) Answer the following questions. Justify your answers. (Use the space provided below and the next page)

1. (25pts) Answer the following questions. Justify your answers. (Use the space provided below and the next page) . (25pts) Answer the following questions. Justify your answers. (Use the space provided below and the next page) a). An object (an arrow) is placed as shown in front of each of the following optical instruments.

More information

Interference and Diffraction of Light

Interference and Diffraction of Light Name Date Time to Complete h m Partner Course/ Section / Grade Interference and Diffraction of Light Reflection by mirrors and refraction by prisms and lenses can be analyzed using the simple ray model

More information

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric) optics

More information

Physical Optics. You can observe a lot just by watching. Yogi Berra ( )

Physical Optics. You can observe a lot just by watching. Yogi Berra ( ) Physical Optics You can observe a lot just by watching. Yogi Berra (1925-2015) OBJECTIVES To observe some interference and diffraction phenomena with visible light. THEORY In a previous experiment you

More information

PHY 222 Lab 11 Interference and Diffraction Patterns Investigating interference and diffraction of light waves

PHY 222 Lab 11 Interference and Diffraction Patterns Investigating interference and diffraction of light waves PHY 222 Lab 11 Interference and Diffraction Patterns Investigating interference and diffraction of light waves Print Your Name Print Your Partners' Names Instructions April 17, 2015 Before lab, read the

More information

OPSE FINAL EXAM Fall CLOSED BOOK. Two pages (front/back of both pages) of equations are allowed.

OPSE FINAL EXAM Fall CLOSED BOOK. Two pages (front/back of both pages) of equations are allowed. CLOSED BOOK. Two pages (front/back of both pages) of equations are allowed. YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. ALL NUMERICAL ANSERS MUST HAVE UNITS INDICATED.

More information

Physics Midterm I

Physics Midterm I Phys121 - February 6, 2009 1 Physics 121 - Midterm I Last Name First Name Student Number Signature Tutorial T.A. (circle one): Ricky Chu Firuz Demir Maysam Emadi Alireza Jojjati Answer ALL 10 questions.

More information

Lab 5: Diffraction and Interference

Lab 5: Diffraction and Interference Lab 5: Diffraction and Interference Light is a wave, an electromagnetic wave, and under the proper circumstances, it exhibits wave phenomena, such as constructive and destructive interference. The wavelength

More information

Interference Effects. 6.2 Interference. Coherence. Coherence. Interference. Interference

Interference Effects. 6.2 Interference. Coherence. Coherence. Interference. Interference Effects 6.2 Two-Slit Thin film is a general property of waves. A condition for is that the wave source is coherent. between two waves gives characteristic patterns due to constructive and destructive.

More information

Physics 214 Midterm Fall 2003 Form A

Physics 214 Midterm Fall 2003 Form A 1. A ray of light is incident at the center of the flat circular surface of a hemispherical glass object as shown in the figure. The refracted ray A. emerges from the glass bent at an angle θ 2 with respect

More information

Diffraction and Interference of Plane Light Waves

Diffraction and Interference of Plane Light Waves PHY 92 Diffraction and Interference of Plane Light Waves Diffraction and Interference of Plane Light Waves Introduction In this experiment you will become familiar with diffraction patterns created when

More information

Past Paper Questions Waves

Past Paper Questions Waves Past Paper Questions Waves Name 1. Explain the differences between an undamped progressive transverse wave and a stationary transverse wave, in terms of amplitude, (ii) phase and (iii) energy transfer.

More information

Michelson Interferometer

Michelson Interferometer Michelson Interferometer The Michelson interferometer uses the interference of two reflected waves The third, beamsplitting, mirror is partially reflecting ( half silvered, except it s a thin Aluminum

More information

Name Section Date. Experiment Reflection and Refraction

Name Section Date. Experiment Reflection and Refraction Name Section Date Introduction: Experiment Reflection and Refraction The travel of light is often represented in geometric optics by a light ray, a line that is drawn to represent the straight-line movement

More information

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric) optics

More information

Physics 1C, Summer 2011 (Session 1) Practice Midterm 2 (50+4 points) Solutions

Physics 1C, Summer 2011 (Session 1) Practice Midterm 2 (50+4 points) Solutions Physics 1C, Summer 2011 (Session 1) Practice Midterm 2 (50+4 points) s Problem 1 (5x2 = 10 points) Label the following statements as True or False, with a one- or two-sentence explanation for why you chose

More information

PHYS 1112L - Introductory Physics Laboratory II

PHYS 1112L - Introductory Physics Laboratory II PHYS 1112L - Introductory Physics Laboratory II Laboratory Advanced Sheet Diffraction 1. Objectives. The objectives of this laboratory are a. To be able use a diffraction grating to measure the wavelength

More information

Physics 1C DIFFRACTION AND INTERFERENCE Rev. 2-AH. Introduction

Physics 1C DIFFRACTION AND INTERFERENCE Rev. 2-AH. Introduction Introduction The material for this chapter is discussed in Hecht, Chapter 25. Light exhibits many of the properties of a transverse wave. Waves that overlap with other waves can reinforce each other or

More information

10.4 Interference in Thin Films

10.4 Interference in Thin Films 0. Interference in Thin Films You have probably noticed the swirling colours of the spectrum that result when gasoline or oil is spilled on water. And you have also seen the colours of the spectrum shining

More information

AP Practice Test ch 22

AP Practice Test ch 22 AP Practice Test ch 22 Multiple Choice 1. Tripling the wavelength of the radiation from a monochromatic source will change the energy content of the individually radiated photons by what factor? a. 0.33

More information

Optics: Laser Light Show Student Advanced Version

Optics: Laser Light Show Student Advanced Version Optics: Laser Light Show Student Advanced Version In this lab, you will explore the behavior of light. You will observe reflection and refraction of a laser beam in jello, and use a diffraction pattern

More information

22.4. (a) (b) (c) (d)

22.4. (a) (b) (c) (d) mλl 22.2. Because ym = increasing λ and L increases the fringe spacing. Increasing d decreases the fringe d spacing. Submerging the experiment in water decreases λ and decreases the fringe spacing. So

More information

The sources must be coherent. This means they emit waves with a constant phase with respect to each other.

The sources must be coherent. This means they emit waves with a constant phase with respect to each other. CH. 24 Wave Optics The sources must be coherent. This means they emit waves with a constant phase with respect to each other. The waves need to have identical wavelengths. Can t be coherent without this.

More information

Chapter 24. Wave Optics

Chapter 24. Wave Optics Chapter 24 Wave Optics hitt1 An upright object is located a distance from a convex mirror that is less than the mirror's focal length. The image formed by the mirror is (1) virtual, upright, and larger

More information

Name: Lab Partner: Section:

Name: Lab Partner: Section: Chapter The Wave Nature of Light - Interference and Di raction Name: Lab Partner: Section:. Purpose This experiment will demonstrate that light can be considered as a wave. If light is a wave, then interference

More information

The liquid s index of refraction is. v liquid = nm = = 460 nm 1.38

The liquid s index of refraction is. v liquid = nm = = 460 nm 1.38 HMWK 5 Ch 17: P 6, 11, 30, 31, 34, 42, 50, 56, 58, 60 Ch 18: P 7, 16, 22, 27, 28, 30, 51, 52, 59, 61 Ch. 17 P17.6. Prepare: The laser beam is an electromagnetic wave that travels with the speed of light.

More information

Stevens High School AP Physics II Work for Not-school

Stevens High School AP Physics II Work for Not-school 1. Gravitational waves are ripples in the fabric of space-time (more on this in the next unit) that travel at the speed of light (c = 3.00 x 10 8 m/s). In 2016, the LIGO (Laser Interferometry Gravitational

More information

Lab 7 Interference and diffraction

Lab 7 Interference and diffraction Prep this lab, as usual. You may paste this entire lab into your notebook, including the data tables. All this should be completed prior to the start of lab on Wednesday, and I will score your completed

More information

A 4. An electromagnetic wave travelling through a transparent medium is given by y. in S units. Then what is the refractive index of the medium?

A 4. An electromagnetic wave travelling through a transparent medium is given by y. in S units. Then what is the refractive index of the medium? SECTION (A) : PRINCIPLE OF SUPERPOSITION, PATH DIFFERENCE, WAVEFRONTS, AND COHERENCE A 1. Two sources of intensity I & 4I are used in an interference experiment. Find the intensity at points where the

More information

Physical Optics. 1 st year physics laboratories. University of Ottawa.

Physical Optics. 1 st year physics laboratories. University of Ottawa. Physical Optics 1 st year physics laboratories University of Ottawa https://uottawa.brightspace.com/d2l/home INTRODUCTION Physical optics deals with light as a wave which can bend around obstacles (diffraction)

More information

Interference of Light

Interference of Light Interference of Light Review: Principle of Superposition When two or more waves interact they interfere. Wave interference is governed by the principle of superposition. The superposition principle says

More information

PY212 Lecture 25. Prof. Tulika Bose 12/3/09. Interference and Diffraction. Fun Link: Diffraction with Ace Ventura

PY212 Lecture 25. Prof. Tulika Bose 12/3/09. Interference and Diffraction. Fun Link: Diffraction with Ace Ventura PY212 Lecture 25 Interference and Diffraction Prof. Tulika Bose 12/3/09 Fun Link: Diffraction with Ace Ventura Summary from last time The wave theory of light is strengthened by the interference and diffraction

More information

Interference. Electric fields from two different sources at a single location add together. The same is true for magnetic fields at a single location.

Interference. Electric fields from two different sources at a single location add together. The same is true for magnetic fields at a single location. Interference Electric fields from two different sources at a single location add together. The same is true for magnetic fields at a single location. Thus, interacting electromagnetic waves also add together.

More information

A Level. A Level Physics. WAVES: Combining Waves (Answers) Edexcel. Name: Total Marks: /30

A Level. A Level Physics. WAVES: Combining Waves (Answers) Edexcel. Name: Total Marks: /30 Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources. Edexcel A Level A Level Physics WAVES: Combining Waves (Answers) Name: Total Marks: /30 Maths Made Easy Complete Tuition Ltd 2017 1.

More information

ConcepTest PowerPoints

ConcepTest PowerPoints ConcepTest PowerPoints Chapter 24 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

More information

Introduction: Experiment 1: Wave Properties of Light

Introduction: Experiment 1: Wave Properties of Light Natural Order Properties of Light Lab Introduction: In this lab we will explore the wave and particle nature of light. In the first experiment we will measure the diffraction pattern of light as it passes

More information

INTERFERENCE. Interf - 1

INTERFERENCE. Interf - 1 INTERFERENCE This laboratory will investigate the phenomenon of interference. The interference and diffraction of light waves will be studied. Specifically, the interference patterns of a single slit,

More information

25-1 Interference from Two Sources

25-1 Interference from Two Sources 25-1 Interference from Two Sources In this chapter, our focus will be on the wave behavior of light, and on how two or more light waves interfere. However, the same concepts apply to sound waves, and other

More information

Lecture 39. Chapter 37 Diffraction

Lecture 39. Chapter 37 Diffraction Lecture 39 Chapter 37 Diffraction Interference Review Combining waves from small number of coherent sources double-slit experiment with slit width much smaller than wavelength of the light Diffraction

More information

Chapter 10 DIFFRACTION GRADING SAFETY NOTES

Chapter 10 DIFFRACTION GRADING SAFETY NOTES Chapter 10 DIFFRACTION GRADING SAFETY NOTES Do not look directly into the laser cavity, or at any reflections of the laser caused by shiny surfaces. Keep beam at bench level so as not to accidentally shine

More information

Interference of Light

Interference of Light Lab 11. Interference of Light Goals To observe the interference patterns for laser light passing through a single narrow slit, through two closely spaced slits, and through multiple closely spaced slits,

More information

Basic Waves, Sound & Light Waves, and the E & M Spectrum

Basic Waves, Sound & Light Waves, and the E & M Spectrum Basic Waves, Sound & Light Waves, and the E & M Spectrum 1. What are the amplitude and wavelength of the wave shown below? A) amplitude = 0.10 m, wavelength = 0.30 m B) amplitude = 0.10 m, wavelength =

More information

Models of Light The wave model: The ray model: The photon model:

Models of Light The wave model: The ray model: The photon model: Models of Light The wave model: under many circumstances, light exhibits the same behavior as sound or water waves. The study of light as a wave is called wave optics. The ray model: The properties of

More information

UNIT 102-9: INTERFERENCE AND DIFFRACTION

UNIT 102-9: INTERFERENCE AND DIFFRACTION Name St.No. - Date(YY/MM/DD) / / Section Group # UNIT 102-9: INTERFERENCE AND DIFFRACTION Patterns created by interference of light in a thin film. OBJECTIVES 1. Understand the creation of double-slit

More information

MDHS Science Department SPH 4U - Student Goal Tracking Sheet

MDHS Science Department SPH 4U - Student Goal Tracking Sheet Name: Unit name: Wave Nature of light Goals for this unit: MDHS Science Department SPH 4U - Student Goal Tracking Sheet 1) I can explain wave behaviour and apply the properties to the Wave Theory of Light.

More information

1. Which diagram best represents the reflection of light from an irregular surface?

1. Which diagram best represents the reflection of light from an irregular surface? waves 6-2-04 Name 02-JUN-04 1. Which diagram best represents the reflection of light from an irregular surface? 1. 1 3. 3 2. 2 4. 4 2. In a vacuum, a monochromatic beam of light as a frequency of 6.3 X

More information

On Fig. 7.1, draw a ray diagram to show the formation of this image.

On Fig. 7.1, draw a ray diagram to show the formation of this image. 1- A small object is placed 30 cm from the centre of a convex lens of focal length 60 cm An enlarged image is observed from the other side of the lens (a) On Fig 71, draw a ray diagram to show the formation

More information

Ray Optics. Lecture 23. Chapter 23. Physics II. Course website:

Ray Optics. Lecture 23. Chapter 23. Physics II. Course website: Lecture 23 Chapter 23 Physics II Ray Optics Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Let s finish talking about a diffraction grating Diffraction Grating Let s improve (more

More information

Review Session 1. Dr. Flera Rizatdinova

Review Session 1. Dr. Flera Rizatdinova Review Session 1 Dr. Flera Rizatdinova Summary of Chapter 23 Index of refraction: Angle of reflection equals angle of incidence Plane mirror: image is virtual, upright, and the same size as the object

More information

Physics 272 Lecture 27 Interference (Ch ) Diffraction (Ch )

Physics 272 Lecture 27 Interference (Ch ) Diffraction (Ch ) Physics 272 Lecture 27 Interference (Ch 35.4-5) Diffraction (Ch 36.1-3) Thin Film Interference 1 2 n 0 =1 (air) t n 1 (thin film) n 2 Get two waves by reflection off of two different interfaces. Ray 2

More information

Which row could be correct for the colours seen at X, at Y and at Z?

Which row could be correct for the colours seen at X, at Y and at Z? 1 The ray diagram shows the image of an formed by a converging lens. converging lens image 50 cm What is the focal length of the lens? 40 cm 72 cm 40 cm 50 cm 72 cm 90 cm 2 The diagram shows the dispersion

More information

Topic 9: Wave phenomena - AHL 9.3 Interference

Topic 9: Wave phenomena - AHL 9.3 Interference Topic 9.3 is an extension of Topic 4.4. Essential idea: Interference patterns from multiple slits and thin films produce accurately repeatable patterns. Nature of science: (1) Curiosity: Observed patterns

More information

Physical optics. Introduction. University of Ottawa Department of Physics

Physical optics. Introduction. University of Ottawa Department of Physics Physical optics Introduction The true nature of light has been, and continues to be, an alluring subject in physics. While predictions of light behaviour can be made with great success and precision, the

More information

PHY132 Introduction to Physics II Class 5 Outline:

PHY132 Introduction to Physics II Class 5 Outline: PHY132 Introduction to Physics II Class 5 Outline: Ch. 22, sections 22.1-22.4 (Note we are skipping sections 22.5 and 22.6 in this course) Light and Optics Double-Slit Interference The Diffraction Grating

More information

Dr. Quantum. General Physics 2 Light as a Wave 1

Dr. Quantum. General Physics 2 Light as a Wave 1 Dr. Quantum General Physics 2 Light as a Wave 1 The Nature of Light When studying geometric optics, we used a ray model to describe the behavior of light. A wave model of light is necessary to describe

More information

Chapter 17. Superposition of waves

Chapter 17. Superposition of waves Chapter 17 Superposition of waves Combining waves In Chapter 15 and Chapter 16, we looked at how to describe the behaviour of waves. We saw how they can be reflected, refracted and polarised. In this chapter

More information

2011 Optical Science & Engineering PhD Qualifying Examination Optical Sciences Track: Advanced Optics Time allowed: 90 minutes

2011 Optical Science & Engineering PhD Qualifying Examination Optical Sciences Track: Advanced Optics Time allowed: 90 minutes 2011 Optical Science & Engineering PhD Qualifying Examination Optical Sciences Track: Advanced Optics Time allowed: 90 minutes Answer all four questions. All questions count equally. 3(a) A linearly polarized

More information

Physics 1CL WAVE OPTICS: INTERFERENCE AND DIFFRACTION Fall 2009

Physics 1CL WAVE OPTICS: INTERFERENCE AND DIFFRACTION Fall 2009 Introduction An important property of waves is interference. You are familiar with some simple examples of interference of sound waves. This interference effect produces positions having large amplitude

More information

Refraction of Light Finding the Index of Refraction and the Critical Angle

Refraction of Light Finding the Index of Refraction and the Critical Angle Finding the Index of Refraction and the Critical Angle OBJECTIVE Students will verify the law of refraction for light passing from water into air. Measurements of the angle of incidence and the angle of

More information

Young s Double Slit Experiment

Young s Double Slit Experiment Young s Double Slit Experiment Light as a Wave? If light behaves like a wave, an experiment similar to a ripple tank using two light sources should reveal bright areas (constructive interference) and dark

More information

Revision Notes. Light

Revision Notes. Light Revision Notes Light Experiments Formulae Definitions MEASUREMENT OF THE FOCAL LENGTH OF A CONCAVE MIRROR Apparatus Concave mirror, screen, lamp-box with crosswire. Concave mirror Crosswire Lamp-box Screen

More information

Optics: Reflection and Refraction (approx. completion time: 2.5 h) (3/28/11)

Optics: Reflection and Refraction (approx. completion time: 2.5 h) (3/28/11) Optics: Reflection and Refraction (approx. completion time: 2.5 h) (3/28/11) Introduction In this lab you will investigate the reflection and refraction of light. Reflection of light from a surface is

More information

Optics Vac Work MT 2008

Optics Vac Work MT 2008 Optics Vac Work MT 2008 1. Explain what is meant by the Fraunhofer condition for diffraction. [4] An aperture lies in the plane z = 0 and has amplitude transmission function T(y) independent of x. It is

More information

AH Division of Wavefront and Amplitude Answers

AH Division of Wavefront and Amplitude Answers AH Division of Wavefront and Amplitude Answers 1. Interference. 2. a) Splitting a single light beam into two beams, a reflected beam and a transmitted beam, at a surface between two media of two different

More information

DIFFRACTION 4.1 DIFFRACTION Difference between Interference and Diffraction Classification Of Diffraction Phenomena

DIFFRACTION 4.1 DIFFRACTION Difference between Interference and Diffraction Classification Of Diffraction Phenomena 4.1 DIFFRACTION Suppose a light wave incident on a slit AB of sufficient width b, as shown in Figure 1. According to concept of rectilinear propagation of light the region A B on the screen should be uniformly

More information

Waves-Refraction. 5. A change in the speed of a wave as it enters a new medium produces a change in 1. frequency 2. period 3. wavelength 4.

Waves-Refraction. 5. A change in the speed of a wave as it enters a new medium produces a change in 1. frequency 2. period 3. wavelength 4. 1. In which way does blue light change as it travels from diamond into crown glass? 1. Its frequency decreases. 2. Its frequency increases. 3. Its speed decreases. 4. Its speed increases. Base your answers

More information

Wave Optics. April 9, 2014 Chapter 34 1

Wave Optics. April 9, 2014 Chapter 34 1 Wave Optics April 9, 2014 Chapter 34 1 Announcements! Remainder of this week: Wave Optics! Next week: Last of biweekly exams, then relativity! Last week: Review of entire course, no exam! Final exam Wednesday,

More information

Chapter 24 - The Wave Nature of Light

Chapter 24 - The Wave Nature of Light Chapter 24 - The Wave Nature of Light Summary Four Consequences of the Wave nature of Light: Diffraction Dispersion Interference Polarization Huygens principle: every point on a wavefront is a source of

More information

Physics 309 Lab 3. where the small angle approximation has been used. This pattern has maxima at. Y Max. n L /d (2)

Physics 309 Lab 3. where the small angle approximation has been used. This pattern has maxima at. Y Max. n L /d (2) Physics 309 Lab 3 Introduction This will be a lab whose purpose is to give you some hands-on experience with optical interference and diffraction, using small green diode lasers as the light sources. Each

More information

CHAPTER 9 TEST -- REVIEW

CHAPTER 9 TEST -- REVIEW IB PHYSICS Name: Period: Date: # Marks: 58 DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 9 TEST -- REVIEW 1. The graph elow shows how the displacement x of a particle undergoing simple harmonic motion

More information

Polarisation and Diffraction

Polarisation and Diffraction 2015 EdExcel A Level Physics 2015 EdExcel A Level Physics Topic Topic 5 5 Polarisation and Diffraction Polarization Polarization is a characteristic of all transverse waves. Oscillation which take places

More information

Title of Lab Class Name Your Name Partners Names Instructor s Name Date Lab was Performed

Title of Lab Class Name Your Name Partners Names Instructor s Name Date Lab was Performed Title of Lab Class Name Your Name Partners Names Instructor s Name Date Lab was Performed Purpose: In this lab, we will reproduce the famous experiment by Thomas Young, which proved that light is a wave.

More information

Laboratory 11: Interference of Light Prelab

Laboratory 11: Interference of Light Prelab Phys 132L Fall 2018 Laboratory 11: Interference of Light Prelab 1 Diffraction grating Light with wavelength 560 nm is incident on a diffraction grating with slit spacing 2.0 10 6 m. Determinetheangles

More information

FINDING THE INDEX OF REFRACTION - WebAssign

FINDING THE INDEX OF REFRACTION - WebAssign Name: Book: Period: Due Date: Lab Partners: FINDING THE INDEX OF REFRACTION - WebAssign Purpose: The theme in this lab is the interaction between light and matter. Matter and light seem very different

More information

: Imaging Systems Laboratory II. Laboratory 2: Snell s Law, Dispersion and the Prism March 19 & 21, n 1 n 2

: Imaging Systems Laboratory II. Laboratory 2: Snell s Law, Dispersion and the Prism March 19 & 21, n 1 n 2 05-3: Imaging Systems Laboratory II Laboratory : Snell s Law, Dispersion and the Prism March 9 &, 00 Abstract. This laboratory exercise will demonstrate two basic properties of the way light interacts

More information