# Physics 4C Chapter 33: Electromagnetic Waves

Save this PDF as:

Size: px
Start display at page:

Download "Physics 4C Chapter 33: Electromagnetic Waves"

## Transcription

1 Physics 4C Chapter 33: Electromagnetic Waves Our greatest glory is not in never failing, but in rising up every time we fail. Ralph Waldo Emerson If you continue to do what you've always done, you'll continue to get what you've always got. Yogi Berra Failure is only the opportunity to begin again, this time more wisely. unknown "Keep in mind that neither success nor failure is ever final." Roger Ward Babson Reading: pages ; Outline: electromagnetic spectrum properties of electromagnetic waves intensity radiation pressure total absorption total reflection polarization one-half rule cosine-squared rule reflection and refraction law of reflection law of refraction total internal reflection polarization by reflection Brewster s law Problem Solving Techniques For an electromagnetic wave, you should know that and are perpendicular to each other, and that the direction of propagation is given by. The last statement implies that both and are perpendicular to the direction of propagation. You should know that intensity is the energy per unit area per unit time that crosses an area that is perpendicular to the direction of propagation. For a point source that radiates uniformly in all

2 directions, the intensity at a point is proportional to the inverse square of the distance from the P s source to the point, I = 2 4π r You should also know that when an object absorbs electromagnetic radiation, it receives momentum: p = U/c, where U is the energy absorbed. When the radiation is reflected back along the path of incidence, the momentum received is p = 2 U/c, where U is the reflected energy. For total absorption, the radiation pressure is p r = I/c and the force on the object is F = IA/c, where A is the area struck by radiation. If the radiation is reflected back on its path of incidence, the radiation pressure and force are both twice as great. Some problems deal with polarization. You should know how to identify the direction and plane of polarization. You should also know how to compute the intensity of radiation transmitted by a polarizing sheet. Remember that the exiting radiation is polarized in the polarizing direction of the sheet. Many problems deal with refraction at a single plane surface and with total internal reflection. For refraction problems, use Snell's law: n 1 sinθ 1 = n 2 sinθ 2. Remember to measure the angle from the surface normal. For total internal reflection, remember that n 1 sinθ > n 2, where n 1 is the index of refraction for the medium of incidence and n 2 is the index of refraction for the medium beyond the surface. Other problems ask you to calculate the Brewster angle. Use tanθ B = n 2 /n 1, where n 1 is the index of refraction for the medium of incidence and n 2 is the index of refraction for the medium of the refracted light. In some cases, you will also need to use geometry to trace rays. Questions and Example Problems from Chapter 33 Question 1 The figure shows the electric and magnetic fields of an electromagnetic wave at a certain instant. Is the wave traveling into the page or out of it? Question 2 Each part of the figure below shows light that refracts through an interface between two materials. The incident ray (shown gray in the figure) consists of red and blue light. The approximate index of refraction for visible light is indicated for each material. Which of the three parts show physically possible refraction?

3 Problem 1 About how far apart must you hold your hands for them to be separated by 1.0 nano-lightsecond? Problem 2 Frank D. Drake, an investigator in the SETI (Search for Extra-Terrestrial Intelligence) program, once said that the large radio telescope (see the figure below) in Arecibo, Puerto Rico, can detect a signal which lays down on the entire surface of the earth a power of only one picowatt. (a) What is the power that would be received by the Arecibo antenna for such a signal? The antenna diameter is 300 m. (b) What would be the power of a source at the center of our galaxy that could provide such a signal? The galactic center is ly away. Take the source as radiating uniformly in all directions. Problem 3 An airplane flying at a distance of 10 km from a radio transmitter receives a signal of intensity 10 µw/m 2. Calculate the total power of the transmitter assuming that the transmitter radiates uniformly in all directions.

4 Problem 4 In the figure to the right, a laser beam of power 4.60 W and diameter 2.60 mm is directed upward at one circular face (of diameter d < 2.60 mm) of a perfectly reflecting cylinder, which is made to hover by the beam's radiation pressure. The cylinder's density is 1.20 g/cm 3. What is the cylinder's height H? Problem 5 A point source of light emits isotropically with a power of 200 W. What is the force due to the light on a totally absorbing sphere of radius 2.0 cm at a distance of 20 m from the source?

5 Problem 6 In the figure below, initially unpolarized light is sent toward a system of three polarizing sheets. What fraction of the initial light intensity emerges from the system? Problem 7 An unpolarized beam of light is sent into a stack of four polarizing sheets, oriented so that the angle between the polarizing sheets is 30 o. What fraction of the incident intensity is transmitted by the system?

6 Problem 8 In the figure below, two light rays pass from air through five transparent layers of plastic whose boundaries are parallel, whose indexes of refraction are as given, and whose thicknesses are unknown. The rays emerge back into air at the right. With respect to a normal to the last interface, what is the angle of (a) emerging ray a and (b) emerging ray b? (c) What are your answers if there is glass, with n = 1.5, instead of air on the left and right sides of the plastic layers? (Hint: Save yourself much time by first solving the problems algebraically.) Problem 9 In the figure below, a 2.00-m-long vertical pole extends from the bottom of a swimming pool to a point 50.0 cm above the water. Sunlight is incident at angle θ = What is the length of the shadow of the pole on the level bottom of the pool?

7 Problem 10 A beam of light is emitted 8.0 cm beneath the surface of a liquid and strikes the surface 7.0 cm from the point directly above the source. If total internal reflection occurs, what can you say about the index of refraction of the liquid? Problem 11 In the figure below, light initially in material 1 refracts into material 2, crosses that material, and is then incident at the critical angle on the interface between materials 2 and 3. The indexes of refraction are n 1 = 1.60, n 2 = 1.40, and n 3 = (a) What is angle θ? (b) If θ is increased, is there refraction of light into material 3?

8 Problem 12 The figure below depicts a simplistic optical fiber: a plastic core (n 1 = 1.58) is surrounded by a plastic sheath (n 2 = 1.53). A light ray is incident on one end of the fiber at angle θ. The ray is to undergo total internal reflection at point A, where it encounters the core sheath boundary. (Thus there is no loss of light through that boundary.) What is the maximum value of θ that allows total internal reflection at A? Problem 13 (a) At what angle of incidence will the light reflected from water be completely polarized? (b) Does this angle depend upon the wavelength of the light?

### specular diffuse reflection.

Lesson 8 Light and Optics The Nature of Light Properties of Light: Reflection Refraction Interference Diffraction Polarization Dispersion and Prisms Total Internal Reflection Huygens s Principle The Nature

More information

### Refraction of Light. c = m / s. n = c v. The index of refraction is never less than 1. Some common indices of refraction are listed below.

Refraction of Light The speed of light in a vacuum is c = 3.00 10 8 m / s In air, the speed is only slightly less. In other transparent materials, such as glass and water, the speed is always less than

More information

### Lecture 7 Notes: 07 / 11. Reflection and refraction

Lecture 7 Notes: 07 / 11 Reflection and refraction When an electromagnetic wave, such as light, encounters the surface of a medium, some of it is reflected off the surface, while some crosses the boundary

More information

### Reflection and Refraction of Light

PC1222 Fundamentals of Physics II Reflection and Refraction of Light 1 Objectives Investigate for reflection of rays from a plane surface, the dependence of the angle of reflection on the angle of incidence.

More information

### Light. Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see

Light Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see Facts About Light The speed of light, c, is constant in a vacuum. Light can be: REFLECTED ABSORBED REFRACTED

More information

### Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc.

Chapter 32 Light: Reflection and Refraction Units of Chapter 32 The Ray Model of Light Reflection; Image Formation by a Plane Mirror Formation of Images by Spherical Mirrors Index of Refraction Refraction:

More information

### Light: Geometric Optics

Light: Geometric Optics The Ray Model of Light Light very often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization, but

More information

### Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics 26.1 The Reflection of Light 26.2 Forming Images With a Plane Mirror 26.3 Spherical Mirrors 26.4 Ray Tracing and the Mirror Equation 26.5 The Refraction of Light 26.6 Ray

More information

### Reflection, Refraction and Polarization of Light Physics 246

Reflection, Refraction and Polarization of Light Physics 46 In today's laboratory several properties of light, including the laws of reflection, refraction, total internal reflection and polarization,

More information

### What is it? How does it work? How do we use it?

What is it? How does it work? How do we use it? Dual Nature http://www.youtube.com/watch?v=dfpeprq7ogc o Electromagnetic Waves display wave behavior o Created by oscillating electric and magnetic fields

More information

### Dispersion Polarization

Dispersion Polarization Phys Phys 2435: 22: Chap. 33, 31, Pg 1 Dispersion New Topic Phys 2435: Chap. 33, Pg 2 The Visible Spectrum Remember that white light contains all the colors of the s p e c t r u

More information

### Refraction and Polarization of Light

Chapter 9 Refraction and Polarization of Light Name: Lab Partner: Section: 9.1 Purpose The purpose of this experiment is to demonstrate several consequences of the fact that materials have di erent indexes

More information

### Refraction and Polarization of Light

Chapter 9 Refraction and Polarization of Light Name: Lab Partner: Section: 9.1 Purpose The purpose of this experiment is to demonstrate several consequences of the fact that materials have di erent indexes

More information

### normal angle of incidence increases special angle no light is reflected

Reflection from transparent materials (Chapt. 33 last part) When unpolarized light strikes a transparent surface like glass there is both transmission and reflection, obeying Snell s law and the law of

More information

### PHYSICS 213 PRACTICE EXAM 3*

PHYSICS 213 PRACTICE EXAM 3* *The actual exam will contain EIGHT multiple choice quiz-type questions covering concepts from lecture (16 points), ONE essay-type question covering an important fundamental

More information

### (Equation 24.1: Index of refraction) We can make sense of what happens in Figure 24.1

24-1 Refraction To understand what happens when light passes from one medium to another, we again use a model that involves rays and wave fronts, as we did with reflection. Let s begin by creating a short

More information

### Chapter 33 Continued Properties of Light. Law of Reflection Law of Refraction or Snell s Law Chromatic Dispersion Brewsters Angle

Chapter 33 Continued Properties of Light Law of Reflection Law of Refraction or Snell s Law Chromatic Dispersion Brewsters Angle Dispersion: Different wavelengths have different velocities and therefore

More information

### Diffraction. Single-slit diffraction. Diffraction by a circular aperture. Chapter 38. In the forward direction, the intensity is maximal.

Diffraction Chapter 38 Huygens construction may be used to find the wave observed on the downstream side of an aperture of any shape. Diffraction The interference pattern encodes the shape as a Fourier

More information

### LECTURE 13 REFRACTION. Instructor: Kazumi Tolich

LECTURE 13 REFRACTION Instructor: Kazumi Tolich Lecture 13 2 Reading chapter 26.5 Index of refraction Snell s law Total internal reflection Total polarization Index of refraction 3 The speed of light in

More information

### Reflection, Refraction and Polarization of Light

Reflection, Refraction and Polarization of Light Physics 246/Spring2012 In today's laboratory several properties of light, including the laws of reflection, refraction, total internal reflection and polarization,

More information

### Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics The Reflection of Light: Mirrors: Mirrors produce images because the light that strikes them is reflected, rather than absorbed. Reflected light does much more than produce

More information

### AP Practice Test ch 22

AP Practice Test ch 22 Multiple Choice 1. Tripling the wavelength of the radiation from a monochromatic source will change the energy content of the individually radiated photons by what factor? a. 0.33

More information

### Internal Reflection. Total Internal Reflection. Internal Reflection in Prisms. Fiber Optics. Pool Checkpoint 3/20/2013. Physics 1161: Lecture 18

Physics 1161: Lecture 18 Internal Reflection Rainbows, Fiber Optics, Sun Dogs, Sun Glasses sections 26-8 & 25-5 Internal Reflection in Prisms Total Internal Reflection Recall Snell s Law: n 1 sin( 1 )=

More information

### PHYSICS. Chapter 34 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 34 Lecture RANDALL D. KNIGHT Chapter 34 Ray Optics IN THIS CHAPTER, you will learn about and apply the ray model of light Slide 34-2

More information

### College Physics 150. Chapter 25 Interference and Diffraction

College Physics 50 Chapter 5 Interference and Diffraction Constructive and Destructive Interference The Michelson Interferometer Thin Films Young s Double Slit Experiment Gratings Diffraction Resolution

More information

### Midterm II Physics 9B Summer 2002 Session I

Midterm II Physics 9B Summer 00 Session I Name: Last 4 digits of ID: Total Score: ) Two converging lenses, L and L, are placed on an optical bench, 6 cm apart. L has a 0 cm focal length and is placed to

More information

### Chapter 33. The Nature of Light and Propagation of Light (lecture 1) Dr. Armen Kocharian

Chapter 33 The Nature of Light and Propagation of Light (lecture 1) Dr. Armen Kocharian The Nature of Light Before the beginning of the nineteenth century, light was considered to be a stream of particles

More information

### Name Section Date. Experiment Reflection and Refraction

Name Section Date Introduction: Experiment Reflection and Refraction The travel of light is often represented in geometric optics by a light ray, a line that is drawn to represent the straight-line movement

More information

### REFLECTION & REFRACTION

REFLECTION & REFRACTION OBJECTIVE: To study and verify the laws of reflection and refraction using a plane mirror and a glass block. To see the virtual images that can be formed by the reflection and refraction

More information

### Lecture 14: Refraction

Lecture 14: Refraction We know from experience that there are several transparent substances through which light can travel air, water, and glass are three examples When light passes from one such medium

More information

### INTRODUCTION REFLECTION AND REFRACTION AT BOUNDARIES. Introduction. Reflection and refraction at boundaries. Reflection at a single surface

Chapter 8 GEOMETRICAL OPTICS Introduction Reflection and refraction at boundaries. Reflection at a single surface Refraction at a single boundary Dispersion Summary INTRODUCTION It has been shown that

More information

### Interference, Diffraction & Polarization

Interference, Diffraction & Polarization PHY232 Remco Zegers zegers@nscl.msu.edu Room W109 cyclotron building http://www.nscl.msu.edu/~zegers/phy232.html light as waves so far, light has been treated as

More information

### Optics INTRODUCTION DISCUSSION OF PRINCIPLES. Reflection by a Plane Mirror

Optics INTRODUCTION Geometric optics is one of the oldest branches of physics, dealing with the laws of reflection and refraction. Reflection takes place on the surface of an object, and refraction occurs

More information

### The liquid s index of refraction is. v liquid = nm = = 460 nm 1.38

HMWK 5 Ch 17: P 6, 11, 30, 31, 34, 42, 50, 56, 58, 60 Ch 18: P 7, 16, 22, 27, 28, 30, 51, 52, 59, 61 Ch. 17 P17.6. Prepare: The laser beam is an electromagnetic wave that travels with the speed of light.

More information

### Chapter 33 The Nature and Propagation of Light by C.-R. Hu

Chapter 33 The Nature and Propagation of Light by C.-R. Hu Light is a transverse wave of the electromagnetic field. In 1873, James C. Maxwell predicted it from the Maxwell equations. The speed of all electromagnetic

More information

### Basic Waves, Sound & Light Waves, and the E & M Spectrum

Basic Waves, Sound & Light Waves, and the E & M Spectrum 1. What are the amplitude and wavelength of the wave shown below? A) amplitude = 0.10 m, wavelength = 0.30 m B) amplitude = 0.10 m, wavelength =

More information

### Chapter 5 Mirrors and Lenses

Chapter 5 Notes: Mirrors and Lenses Name: Block: The Ray Model of Light The ray model of light represents light as a line, or ray, indicating the path of a beam of light. Light travels in straight lines

More information

### 1. What is the law of reflection?

Name: Skill Sheet 7.A The Law of Reflection The law of reflection works perfectly with light and the smooth surface of a mirror. However, you can apply this law to other situations. For example, how would

More information

### Polarization. Bởi: OpenStaxCollege

Polarization Bởi: OpenStaxCollege Polaroid sunglasses are familiar to most of us. They have a special ability to cut the glare of light reflected from water or glass (see [link]). Polaroids have this ability

More information

### Unit 11 Light and Optics Holt Chapter 14 Student Outline Light and Refraction

Holt Chapter 14 Student Outline Light and Refraction Variables introduced or used in chapter: Quantity Symbol Units Speed of light frequency wavelength angle Object Distance Image Distance Radius of Curvature

More information

### Polarization of Light

Polarization of Light Introduction Light, viewed classically, is a transverse electromagnetic wave. Namely, the underlying oscillation (in this case oscillating electric and magnetic fields) is along directions

More information

### Human Retina. Sharp Spot: Fovea Blind Spot: Optic Nerve

Chapter 35 I am Watching YOU!! Human Retina Sharp Spot: Fovea Blind Spot: Optic Nerve Human Vision An optical Tuning Fork Optical Antennae: Rods & Cones Rods: Intensity Cones: Color Where does light actually

More information

### Inaugural University of Michigan Science Olympiad Invitational Tournament. Optics

Inaugural University of Michigan Science Olympiad Invitational Tournament Test length: 50 Minutes Optics Team number: Team name: Student names: Instructions: Do not open this test until told to do so.

More information

### Refraction Ch. 29 in your text book

Refraction Ch. 29 in your text book Objectives Students will be able to: 1) Identify incident and refracted angles 2) Explain what the index of refraction tells about a material 3) Calculate the index

More information

### AP* Optics Free Response Questions

AP* Optics Free Response Questions 1978 Q5 MIRRORS An object 6 centimeters high is placed 30 centimeters from a concave mirror of focal length 10 centimeters as shown above. (a) On the diagram above, locate

More information

### Review Session 1. Dr. Flera Rizatdinova

Review Session 1 Dr. Flera Rizatdinova Summary of Chapter 23 Index of refraction: Angle of reflection equals angle of incidence Plane mirror: image is virtual, upright, and the same size as the object

More information

### Understanding the Propagation of Light

[ Assignment View ] [ Eðlisfræði 2, vor 2007 33. The Nature and Propagation of Light Assignment is due at 2:00am on Wednesday, January 17, 2007 Credit for problems submitted late will decrease to 0% after

More information

### PY106 Class31. Index of refraction. Refraction. Index of refraction. Sample values of n. Rays and wavefronts. index of refraction: n v.

Refraction Index of refraction When an EM wave travels in a vacuum, its speed is: c = 3.00 x 10 8 m/s. In any other medium, light generally travels at a slower speed. The speed of light v in a material

More information

### ONE MARK QUESTIONS GEOMETRICAL OPTICS QUESTION BANK

ONE MARK QUESTIONS 1. What is lateral shift? 2. What should be the angle of incidence to have maximum lateral shift? 3. For what angle, lateral shift is minimum? 4. What is Normal shift? 5. What is total

More information

### 4.5 Images Formed by the Refraction of Light

Figure 89: Practical structure of an optical fibre. Absorption in the glass tube leads to a gradual decrease in light intensity. For optical fibres, the glass used for the core has minimum absorption at

More information

### Light II. Physics 2415 Lecture 32. Michael Fowler, UVa

Light II Physics 2415 Lecture 32 Michael Fowler, UVa Today s Topics Huygens principle and refraction Snell s law and applications Dispersion Total internal reflection Huygens Principle Newton s contemporary

More information

### Refraction of Light Finding the Index of Refraction and the Critical Angle

Finding the Index of Refraction and the Critical Angle OBJECTIVE Students will verify the law of refraction for light passing from water into air. Measurements of the angle of incidence and the angle of

More information

### Chapter 22. Reflection and Refraction of Light

Chapter 22 Reflection and Refraction of Light Nature of Light Light has a dual nature. Particle Wave Wave characteristics will be discussed in this chapter. Reflection Refraction These characteristics

More information

### Polarization. Components of Polarization: Malus Law. VS203B Lecture Notes Spring, Topic: Polarization

VS03B Lecture Notes Spring, 013 011 Topic: Polarization Polarization Recall that I stated that we had to model light as a transverse wave so that we could use the model to explain polarization. The electric

More information

### Be careful not to leave your fingerprints on the optical surfaces of lenses or Polaroid sheets.

POLARIZATION OF LIGHT REFERENCES Halliday, D. and Resnick, A., Physics, 4 th edition, New York: John Wiley & Sons, Inc, 1992, Volume II, Chapter 48-1, 48-2, 48-3. (2weights) (1weight-exercises 1 and 3

More information

### Light: Geometric Optics (Chapter 23)

Light: Geometric Optics (Chapter 23) Units of Chapter 23 The Ray Model of Light Reflection; Image Formed by a Plane Mirror Formation of Images by Spherical Index of Refraction Refraction: Snell s Law 1

More information

### Light: Geometric Optics

Light: Geometric Optics 23.1 The Ray Model of Light Light very often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization,

More information

### PHY 112: Light, Color and Vision. Lecture 11. Prof. Clark McGrew Physics D 134. Review for Exam. Lecture 11 PHY 112 Lecture 1

PHY 112: Light, Color and Vision Lecture 11 Prof. Clark McGrew Physics D 134 Review for Exam Lecture 11 PHY 112 Lecture 1 From Last Time Lenses Ray tracing a Convex Lens Announcements The midterm is Thursday

More information

### Physics 11 Chapter 18: Ray Optics

Physics 11 Chapter 18: Ray Optics "... Everything can be taken from a man but one thing; the last of the human freedoms to choose one s attitude in any given set of circumstances, to choose one s own way.

More information

### FLAP P6.2 Rays and geometrical optics COPYRIGHT 1998 THE OPEN UNIVERSITY S570 V1.1

F1 The ray approximation in optics assumes that light travels from one point to another along a narrow path called a ray that may be represented by a directed line (i.e. a line with an arrow on it). In

More information

### University Physics 227N/232N Chapters 30-32: Optics Homework Optics 1 Due This Friday at Class Time Quiz This Friday

University Physics 227N/232N Chapters 30-32: Optics Homework Optics 1 Due This Friday at Class Time Quiz This Friday Dr. Todd Satogata (ODU/Jefferson Lab) satogata@jlab.org http://www.toddsatogata.net/2014-odu

More information

### 16/05/2016. Book page 110 and 112 Syllabus 3.18, Snell s Law. cgrahamphysics.com 2016

16/05/2016 Snell s Law cgrahamphysics.com 2016 Book page 110 and 112 Syllabus 3.18, 3.19 Match the words to the objects absorbs transmits emits diffracts disperses refracts reflects Fibre optics Totally

More information

### REFLECTION AND REFRACTION OF LIGHT

PHYSICS LAB REFLECTION AND REFRACTION OF LIGHT Printed Names: Signatures: Date: Lab Section: Instructor: GRADE: PHYSICS DEPARTMENT JAMES MADISON UNIVERSITY Revision Spring 2002 REF 45 blank page REF 46

More information

### θ =θ i r n sinθ = n sinθ

θ i = θ r n = 1 sinθ1 n sin θ Total Internal Reflection Consider light moving from glass (n 1 =1.5) to air (n =1.0) n 1 incident ray θ 1 θ r reflected ray GLASS sinθ sinθ 1 > 1 = n n 1 θ > θ 1 n θ refracted

More information

### Optics Final Exam Name

Instructions: Place your name on all of the pages. Do all of your work in this booklet. Do not tear off any sheets. Show all of your steps in the problems for full credit. Be clear and neat in your work.

More information

### AP Physics Problems -- Waves and Light

AP Physics Problems -- Waves and Light 1. 1975-4 (Physical Optics) a. Light of a single wavelength is incident on a single slit of width w. (w is a few wavelengths.) Sketch a graph of the intensity as

More information

### Ray Optics. Ray model Reflection Refraction, total internal reflection Color dispersion Lenses Image formation Magnification Spherical mirrors

Ray Optics Ray model Reflection Refraction, total internal reflection Color dispersion Lenses Image formation Magnification Spherical mirrors 1 Ray optics Optical imaging and color in medicine Integral

More information

### EXPERIMENT 8 PFUND REFRACTION

EXPERIMENT 8 PFUND REFRACTION A narrow beam of light passes through the face of a glass plate, then undergoes a diffuse reflection from the rear surface of the plate. The diffused light travels back toward

More information

### Unit 5.C Physical Optics Essential Fundamentals of Physical Optics

Unit 5.C Physical Optics Essential Fundamentals of Physical Optics Early Booklet E.C.: + 1 Unit 5.C Hwk. Pts.: / 25 Unit 5.C Lab Pts.: / 20 Late, Incomplete, No Work, No Units Fees? Y / N 1. Light reflects

More information

### Conceptual Physics Fundamentals

Conceptual Physics Fundamentals Chapter 14: PROPERTIES OF LIGHT This lecture will help you understand: Reflection Refraction Dispersion Total Internal Reflection Lenses Polarization Properties of Light

More information

### Optics Test Science What are some devices that you use in everyday life that require optics?

Optics Test Science 8 Introduction to Optics 1. What are some devices that you use in everyday life that require optics? Light Energy and Its Sources 308-8 identify and describe properties of visible light

More information

### Experiment 6. Snell s Law. Use Snell s Law to determine the index of refraction of Lucite.

Experiment 6 Snell s Law 6.1 Objectives Use Snell s Law to determine the index of refraction of Lucite. Observe total internal reflection and calculate the critical angle. Explain the basis of how optical

More information

### Chapter 7: Geometrical Optics

Chapter 7: Geometrical Optics 7. Reflection at a Spherical Surface L.O 7.. State laws of reflection Laws of reflection state: L.O The incident ray, the reflected ray and the normal all lie in the same

More information

### TEAMS National Competition High School Version Photometry 25 Questions

TEAMS National Competition High School Version Photometry 25 Questions Page 1 of 14 Telescopes and their Lenses Although telescopes provide us with the extraordinary power to see objects miles away, the

More information

### Reflection and Refraction

Reflection and Refraction Theory: Whenever a wave traveling in some medium encounters an interface or boundary with another medium either (or both) of the processes of (1) reflection and (2) refraction

More information

### 9. Polarization. 1) General observations [Room 310]

9. Polarization In this lab we are going to study the various phenomena related to the polarization of light. We will also learn how to analyze, control and transfer the polarization state of light. This

More information

### Interference Effects. 6.2 Interference. Coherence. Coherence. Interference. Interference

Effects 6.2 Two-Slit Thin film is a general property of waves. A condition for is that the wave source is coherent. between two waves gives characteristic patterns due to constructive and destructive.

More information

### Lesson Plan Outline for Rainbow Science

Lesson Plan Outline for Rainbow Science Lesson Title: Rainbow Science Target Grades: Middle and High School Time Required: 120 minutes Background Information for Teachers and Students Rainbows are fascinating

More information

### Physics 202 Homework 9

Physics 202 Homework 9 May 29, 2013 1. A sheet that is made of plastic (n = 1.60) covers one slit of a double slit 488 nm (see Figure 1). When the double slit is illuminated by monochromatic light (wavelength

More information

### Reflection and Refraction

Reflection and Refraction INTRODUCTION Geometric optics is one of the oldest branches of physics, dealing with the laws of refraction and reflection. The law of reflection 1 was known to the ancient Greeks

More information

### Physics 1C. Lecture 22A. "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton

Physics 1C Lecture 22A "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton The Nature of Light An interesting question developed as to the nature of

More information

### ConcepTest PowerPoints

ConcepTest PowerPoints Chapter 24 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

More information

### Lecture Outline Chapter 26. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 26 Physics, 4 th Edition James S. Walker Chapter 26 Geometrical Optics Units of Chapter 26 The Reflection of Light Forming Images with a Plane Mirror Spherical Mirrors Ray Tracing

More information

### TEAMS National Competition Middle School Version Photometry 25 Questions

TEAMS National Competition Middle School Version Photometry 25 Questions Page 1 of 13 Telescopes and their Lenses Although telescopes provide us with the extraordinary power to see objects miles away,

More information

### θ =θ i r n sinθ = n sinθ

θ i = θ r n = 1 sinθ1 n2 sin θ 2 Index of Refraction Speed of light, c, in vacuum is 3x10 8 m/s Speed of light, v, in different medium can be v < c. index of refraction, n = c/v. frequency, f, does not

More information

### The image is virtual and erect. When a mirror is rotated through a certain angle, the reflected ray is rotated through twice this angle.

1 Class XII: Physics Chapter 9: Ray optics and Optical Instruments Top Concepts 1. Laws of Reflection. The reflection at a plane surface always takes place in accordance with the following two laws: (i)

More information

### PHYSICS 116 POLARIZATION AND LIGHT MEASUREMENTS

Name Date Lab Time Lab TA PHYSICS 116 POLARIZATION AND LIGHT MEASUREMENTS I. POLARIZATION Natural unpolarized light is made up of waves vibrating in all directions. When a beam of unpolarized light is

More information

### Physics 11 - Waves Extra Practice Questions

Physics - Waves xtra Practice Questions. Wave motion in a medium transfers ) energy, only ) mass, only. both mass and energy. neither mass nor energy. single vibratory disturbance that moves from point

More information

### Waves-Refraction. 5. A change in the speed of a wave as it enters a new medium produces a change in 1. frequency 2. period 3. wavelength 4.

1. In which way does blue light change as it travels from diamond into crown glass? 1. Its frequency decreases. 2. Its frequency increases. 3. Its speed decreases. 4. Its speed increases. Base your answers

More information

### Light and Lenses Notes

Light and Lenses Notes Refraction The change in speed and direction of a wave Due to change in medium Must cross boundary at an angle other than 90 o, otherwise no change in direction I R (unlike reflection)

More information

### Total Internal Reflection

Total nternal Reflection Consider light moving from glass (n.5) to air (n.) i r n sin n sin n n incident ra r refracted ra reflected ra GLASS AR sin n sin n >.e., light is bent awa from the normal. as

More information

### 13. Brewster angle measurement

13. Brewster angle measurement Brewster angle measurement Objective: 1. Verification of Malus law 2. Measurement of reflection coefficient of a glass plate for p- and s- polarizations 3. Determination

More information

### The Question. What are the 4 types of interactions that waves can have when they encounter an object?

The Question What are the 4 types of interactions that waves can have when they encounter an object? Waves, Wave fronts and Rays Wave Front: Crests of the waves. Rays: Lines that are perpendicular to the

More information

### Office Hours. Scattering and Polarization

Office Hours Office hours are posted on the website. Molly: Tuesdays 2-4pm Dr. Keister: Wednesdays 10am-12 Prof. Goldman: Wednesdays 2-3:30pm All office hours are in the help room downstairs If none of

More information

### Optics: Reflection and Refraction (approx. completion time: 2.5 h) (3/28/11)

Optics: Reflection and Refraction (approx. completion time: 2.5 h) (3/28/11) Introduction In this lab you will investigate the reflection and refraction of light. Reflection of light from a surface is

More information

### L. R. & S. M. VISSANJI ACADEMY SECONDARY SECTION PHYSICS - GRADE: VIII REFRACTION OF LIGHT

L. R. & S. M. VISSANJI ACADEMY SECONDARY SECTION - 2016-17 PHYSICS - GRADE: VIII REFRACTION OF LIGHT REFRACTION When light travels from one transparent medium to another transparent medium, it bends from

More information

### Conceptual Physics 11 th Edition

Conceptual Physics 11 th Edition Chapter 28: REFLECTION & REFRACTION This lecture will help you understand: Reflection Principle of Least Time Law of Reflection Refraction Cause of Refraction Dispersion

More information

### Gaussian Beam Calculator for Creating Coherent Sources

Gaussian Beam Calculator for Creating Coherent Sources INTRODUCTION Coherent sources are represented in FRED using a superposition of Gaussian beamlets. The ray grid spacing of the source is used to determine

More information

### Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics 1 Overview of Chapter 26 The Reflection of Light Forming Images with a Plane Mirror Spherical Mirrors Ray Tracing and the Mirror Equation The Refraction of Light Ray Tracing

More information

### Ray Optics. Lecture 23. Chapter 34. Physics II. Course website:

Lecture 23 Chapter 34 Physics II Ray Optics Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Today we are going to discuss: Chapter 34: Section 34.1-3 Ray Optics Ray Optics Wave

More information