3D Shape Segmentation with Projective Convolutional Networks

Size: px
Start display at page:

Download "3D Shape Segmentation with Projective Convolutional Networks"

Transcription

1 3D Shape Segmentation with Projective Convolutional Networks Evangelos Kalogerakis 1 Melinos Averkiou 2 Subhransu Maji 1 Siddhartha Chaudhuri 3 1 University of Massachusetts Amherst 2 University of Cyprus 3 IIT Bombay

2 Goal: learn to segment & label parts in 3D shapes 3D Geometric representation

3 Goal: learn to segment & label parts in 3D shapes ShapePFCN 3D Geometric representation

4 Goal: learn to segment & label parts in 3D shapes ShapePFCN 3D Geometric representation Labeled 3D shape back seat base armrest

5 Goal: learn to segment & label parts in 3D shapes ShapePFCN 3D Geometric representation Training Dataset... Labeled 3D shape back seat base armrest

6 Motivation: Parsing RGBD data... back seat base armrest RGBD data from A Large Dataset of Object Scans Choi, Zhou, Miller, Koltun 2016 Our result

7 Motivation: 3D Modeling & Animation Ear Head Torso Back Upper arm Lower arm Hand Upper leg Lower leg Foot Tail Animation Texturing 3D Models Kalogerakis, Hertzmann, Singh, SIGGRAPH 2010 Simari, Nowrouzezahrai, Kalogerakis, Singh, SGP 2009

8 Related Work Train classifiers on hand engineered descriptors e.g., Kalogerakis et al. 2010, Guo et al curvature shape contexts geodesic dist.

9 Related Work Train classifiers on hand engineered descriptors e.g., Kalogerakis et al. 2010, Guo et al Concurrent approaches: Volumetric / octree based methods: Riegler et al (OctNet), Wang et al (O CNN), Klokov et al (kd net) Point based networks: Qi et al (PointNet / PointNet++) Graph based / spectral networks: Yi et al (SyncSpecCNN) Surface embedding networks: Maron et al curvature shape contexts geodesic dist.

10 Related Work Train classifiers on hand engineered descriptors e.g., Kalogerakis et al. 2010, Guo et al Concurrent approaches: Volumetric / octree based methods: Riegler et al (OctNet), Wang et al (O CNN), Klokov et al (kd net) Point based networks: Qi et al (PointNet / PointNet++) Graph based / spectral networks: Yi et al (SyncSpecCNN) Surface embedding networks: Maron et al curvature shape contexts geodesic dist. Our method: view based network

11 Key Observations 3D models are often designed for viewing.

12 Key Observations 3D models are often designed for viewing.

13 Key Observations 3D models are often designed for viewing. Empty inside!

14 3D scans capture the surface. Key Observations + noise, missing regions etc

15 Key Observations 3D models are often designed for viewing. Parts do not touch! (not easily noticeable to the viewer, yet geometric implications on topology, connectedness...)

16 Key Observations Shape renderings can be treated as photos of objects (without texture) Image based network Chair! Airplane! Shape renderings can be processed by powerful image based architectures through transfer learning from massive image datasets. (Su, Maji, Kalogerakis, Learned Miller, ICCV 2015)

17 Key Idea Deep architecture that combines view based convnets for part reasoning on rendered shape images & prob. graphical models for surface processing.

18 Key Idea Deep architecture that combines view based convnets for part reasoning on rendered shape images & prob. graphical models for surface processing. Key challenges: Select views to avoid surface information loss & deal with occlusions

19 Key Idea Deep architecture that combines view based convnets for part reasoning on rendered shape images & prob. graphical models for surface processing. Key challenges: Select views to avoid surface information loss & deal with occlusions Promote invariance under 3D shape rotations

20 Key Idea Deep architecture that combines view based convnets for part reasoning on rendered shape images & prob. graphical models for surface processing. Key challenges: Select views to avoid surface information loss & deal with occlusions Promote invariance under 3D shape rotations Joint reasoning about parts across multiple views +surface

21 Pipeline View selection ShapePFCN fuselage wing vert. stabilizer horiz. stabilizer

22 Pipeline View selection ShapePFCN fuselage wing vert. stabilizer horiz. stabilizer

23 Input: shape as a collection of rendered views For each input shape, infer a set of viewpoints that maximally cover its surface across multiple distances.

24 Input: shape as a collection of rendered views Render shaded images (normal dot view vector) encoding surface normals. Shaded images

25 Input: shape as a collection of rendered views Render also depth images encoding surface position relative to the camera. Shaded images Depth images

26 Input: shape as a collection of rendered views Perform in plane camera rotations for rotational invariance. 0 o,90 o, 180 o, 270 o rotations Shaded images Depth images

27 Projective convnet architecture Each pair of depth & shaded images is processed by a FCN. Views are not ordered (no view correspondence across shapes). [Long, Shelhamer, and Darrell 2015] FCN FCN Surface confidence maps Shaded images Depth images FCN

28 Projective convnet architecture Each pair of depth & shaded images is processed by a FCN. Views are not ordered (no view correspondence across shapes). [Long, Shelhamer, and Darrell 2015] FCN FCN Surface confidence maps Shaded images Depth images FCN shared filters

29 Projective convnet architecture The output of each FCN branch is a view based confidence map per part label. hor. stabilizer FCN FCN Surface confidence maps Shaded images Depth images FCN shared filters View based map

30 Projective convnet architecture The output of each FCN branch is a view based confidence map per part label. wing FCN FCN Shaded images Depth images FCN shared filters View based map

31 Projective convnet architecture Aggregate & project the image confidence maps from all views on the surface. FCN FCN Surface based map Shaded images Depth images FCN shared filters View based map

32 Image2Surface projection layer For each surface element (triangle), find all pixels that include it in all views. Surface confidence: use max of these pixel confidences per label. FCN FCN max Surface based map Shaded images Depth images FCN shared filters View based map

33 Image2Surface projection layer For each surface element (triangle), find all pixels that include it in all views. Surface confidence: use max of these pixel confidences per label. FCN FCN max Surface based map Shaded images Depth images FCN shared filters View based map

34 Image2Surface projection layer For each surface element (triangle), find all pixels that include it in all views. Surface confidence: use max of these pixel confidences per label. FCN FCN max Surface based map Shaded images Depth images FCN shared filters View based map

35 CRF layer for spatially coherent labeling Last layer performs inference in a probabilistic model defined on the surface. R 1 R 2 R 3 R 4 R 1, R 2, R 3, R 4 random variables taking values: fuselage wing vert. stabilizer horiz. stabilizer

36 CRF layer for spatially coherent labeling Conditional Random Field: unary factors based on surface based confidences R 1 R 2 R 3 R 4 1 P( R, R, R, R... shape) P( R views) P( R, R surface) f f f ' Z f 1.. n f, f ' Unary factors (FCN confidences)

37 Projective convnet architecture: CRF layer Pairwise terms favor same label for triangles with: (a) similar surface normals (b) small geodesic distance R 2 R 1 R 3 R 4 1 P( R, R, R, R... shape) P( R views) P( R, R surface) f f f ' Z f 1.. n f, f ' Pairwise factors (geodesic+normal distance)

38 Projective convnet architecture: CRF layer Infer most likely joint assignment to all surface random variables (mean field) max 1 P( R, R, R, R... shape) P( R views) P( R, R surface) f f f ' Z f 1.. n f, f ' MAP assignment (mean field inference) R 2 R 1 R 3 R 4

39 Forward pass inference (convnet+crf) CRF FCN

40 Training The architecture is trained end to end with analytic gradients. CRF FCN Backpropagation / joint training (convnet+crf)

41 Training The architecture is trained end to end with analytic gradients. Training starts from a pretrained image based net (VGG16), then fine tune. CRF FCN Pre trained Backpropagation / joint training (convnet+crf)

42 Dataset used in experiments Evaluation on ShapeNet + LPSB + COSEG (46 classes of shapes) 50% used for training / 50% used for test split per Shapenet category Max 250 shapes for training. No assumption on shape orientation. [Yi et al. 2016]

43 Dataset used in experiments Evaluation on ShapeNet + LPSB + COSEG (46 classes of shapes) 50% used for training / 50% used for test split per Shapenet category Max 250 shapes for training. No assumption on shape orientation. [Yi et al. 2016]

44 Results Labeling accuracy on ShapeNet test dataset: ShapeBoost Guo et al. ShapePFCN

45 Results Ignore easy classes (2 or 3 part labels) Labeling accuracy on ShapeNet test dataset: ShapeBoost Guo et al. ShapePFCN % improvement in labeling accuracy for complex categories (vehicles, furniture)

46 Results Ignore easy classes (2 or 3 part labels) Labeling accuracy on ShapeNet test dataset: ShapeBoost Guo et al. ShapePFCN % improvement in labeling accuracy for complex categories (vehicles, furniture) Labeling accuracy on LPSB+COSEG test dataset: ShapeBoost Guo et al. ShapePFCN

47 ground-truth ShapeBoost ShapePFCN

48 ShapeBoost ShapePFCN Object scans from A Large Dataset of Object Scans Choi et al. 2016

49 Summary Deep architecture combining view based FCN & surface based CRF Multi scale view selection to avoid loss of surface information Transfer learning from massive image datasets Robust to geometric representation artifacts Acknowledgements: NSF (CHS , CHS , IIS ) Experiments were performed in the UMass GPU cluster (400 GPUs!) obtained under a grant by the MassTech Collaborative

50 Project page:

51 Auxiliary slides

52 What are the filters doing? Activated in the presence of certain patterns of surface patches conv4 conv5 fc6

53 What are the filters doing? Activated in the presence of certain patterns of surface patches conv4 conv5 fc6

54 What are the filters doing? Activated in the presence of certain patterns of surface patches conv4 conv5 fc6

55 Input: shape as a collection of rendered views For each input shape, infer a set of viewpoints that maximally cover its surface across multiple distances.

56 Input: shape as a collection of rendered views For each input shape, infer a set of viewpoints that maximally cover its surface across multiple distances.

57 Input: shape as a collection of rendered views For each input shape, infer a set of viewpoints that maximally cover its surface across multiple distances.

58 Input: shape as a collection of rendered views For each input shape, infer a set of viewpoints that maximally cover its surface across multiple distances.

59 Input: shape as a collection of rendered views For each input shape, infer a set of viewpoints that maximally cover its surface across multiple distances.

60 Input: shape as a collection of rendered views For each input shape, infer a set of viewpoints that maximally cover its surface across multiple distances.

61 FCN FCN max Surface based map Shaded images Depth images FCN shared filters View based map

62 Training The architecture is trained end to end with analytic gradients. CRF FCN Backpropagation / joint training (convnet+crf)

63 Challenges 3D models have missing or non photorealistic texture

64 Challenges 3D models have missing or non photorealistic texture (focus on shape instead)

65 ShapeNetCore: 8% improvement in labeling accuracy for complex categories (vehicles, furniture etc)

66

67 Key Observations 3D models have arbitrary orientation in the wild. Consistent shape orientation only in specific, well engineered datasets (often with manual intervention, no perfect alignment algorithm)

68 Comparisons pitfalls Method A assumes consistent shape alignment (or upright orientation), method B doesn t. Well, you may get much better numbers for B by changing its input! Convnet A has orders of magnitude more parameters than Convnet B. It might also be easy to get better numbers for B, if you increase its number of filters! Convnet A has an architectural trick that Convnet B could also have (e.g., U net, ensemble). Why not apply the same trick to B? Methods are largely tested on training data because of duplicate or near duplicate shapes. The more you overfit, the better! Ouch! 3DShapeNet has many identical models, or models with tiny differences (e.g., same airplane with different rockets)...

3D Shape Analysis with Multi-view Convolutional Networks. Evangelos Kalogerakis

3D Shape Analysis with Multi-view Convolutional Networks. Evangelos Kalogerakis 3D Shape Analysis with Multi-view Convolutional Networks Evangelos Kalogerakis 3D model repositories [3D Warehouse - video] 3D geometry acquisition [KinectFusion - video] 3D shapes come in various flavors

More information

Data driven 3D shape analysis and synthesis

Data driven 3D shape analysis and synthesis Data driven 3D shape analysis and synthesis Head Neck Torso Leg Tail Ear Evangelos Kalogerakis UMass Amherst 3D shapes for computer aided design Architecture Interior design 3D shapes for information visualization

More information

Analysis and Synthesis of 3D Shape Families via Deep Learned Generative Models of Surfaces

Analysis and Synthesis of 3D Shape Families via Deep Learned Generative Models of Surfaces Analysis and Synthesis of 3D Shape Families via Deep Learned Generative Models of Surfaces Haibin Huang, Evangelos Kalogerakis, Benjamin Marlin University of Massachusetts Amherst Given an input 3D shape

More information

arxiv: v3 [cs.cv] 13 Nov 2017

arxiv: v3 [cs.cv] 13 Nov 2017 3D Shape Segmentation with Projective Convolutional Networks Evangelos Kalogerakis 1 Melinos Averkiou 2 Subhransu Maji 1 Siddhartha Chaudhuri 3 1 University of Massachusetts Amherst 2 University of Cyprus

More information

Machine Learning for Shape Analysis and Processing. Evangelos Kalogerakis

Machine Learning for Shape Analysis and Processing. Evangelos Kalogerakis Machine Learning for Shape Analysis and Processing Evangelos Kalogerakis 3D shapes for computer aided design Architecture Interior design 3D shapes for information visualization Geo visualization Scientific

More information

3D Shape Segmentation with Projective Convolutional Networks

3D Shape Segmentation with Projective Convolutional Networks 3D Shape Segmentation with Projective Convolutional Networks Evangelos Kalogerakis 1 Melinos Averkiou 2 Subhransu Maji 1 Siddhartha Chaudhuri 3 1 University of Massachusetts Amherst 2 University of Cyprus

More information

CS468: 3D Deep Learning on Point Cloud Data. class label part label. Hao Su. image. May 10, 2017

CS468: 3D Deep Learning on Point Cloud Data. class label part label. Hao Su. image. May 10, 2017 CS468: 3D Deep Learning on Point Cloud Data class label part label Hao Su image. May 10, 2017 Agenda Point cloud generation Point cloud analysis CVPR 17, Point Set Generation Pipeline render CVPR 17, Point

More information

Detecting and Parsing of Visual Objects: Humans and Animals. Alan Yuille (UCLA)

Detecting and Parsing of Visual Objects: Humans and Animals. Alan Yuille (UCLA) Detecting and Parsing of Visual Objects: Humans and Animals Alan Yuille (UCLA) Summary This talk describes recent work on detection and parsing visual objects. The methods represent objects in terms of

More information

ECCV Presented by: Boris Ivanovic and Yolanda Wang CS 331B - November 16, 2016

ECCV Presented by: Boris Ivanovic and Yolanda Wang CS 331B - November 16, 2016 ECCV 2016 Presented by: Boris Ivanovic and Yolanda Wang CS 331B - November 16, 2016 Fundamental Question What is a good vector representation of an object? Something that can be easily predicted from 2D

More information

Learning to generate 3D shapes

Learning to generate 3D shapes Learning to generate 3D shapes Subhransu Maji College of Information and Computer Sciences University of Massachusetts, Amherst http://people.cs.umass.edu/smaji August 10, 2018 @ Caltech Creating 3D shapes

More information

Learning from 3D Data

Learning from 3D Data Learning from 3D Data Thomas Funkhouser Princeton University* * On sabbatical at Stanford and Google Disclaimer: I am talking about the work of these people Shuran Song Andy Zeng Fisher Yu Yinda Zhang

More information

Encoder-Decoder Networks for Semantic Segmentation. Sachin Mehta

Encoder-Decoder Networks for Semantic Segmentation. Sachin Mehta Encoder-Decoder Networks for Semantic Segmentation Sachin Mehta Outline > Overview of Semantic Segmentation > Encoder-Decoder Networks > Results What is Semantic Segmentation? Input: RGB Image Output:

More information

Su et al. Shape Descriptors - III

Su et al. Shape Descriptors - III Su et al. Shape Descriptors - III Siddhartha Chaudhuri http://www.cse.iitb.ac.in/~cs749 Funkhouser; Feng, Liu, Gong Recap Global A shape descriptor is a set of numbers that describes a shape in a way that

More information

3D Deep Learning on Geometric Forms. Hao Su

3D Deep Learning on Geometric Forms. Hao Su 3D Deep Learning on Geometric Forms Hao Su Many 3D representations are available Candidates: multi-view images depth map volumetric polygonal mesh point cloud primitive-based CAD models 3D representation

More information

Volumetric and Multi-View CNNs for Object Classification on 3D Data Supplementary Material

Volumetric and Multi-View CNNs for Object Classification on 3D Data Supplementary Material Volumetric and Multi-View CNNs for Object Classification on 3D Data Supplementary Material Charles R. Qi Hao Su Matthias Nießner Angela Dai Mengyuan Yan Leonidas J. Guibas Stanford University 1. Details

More information

Seeing the unseen. Data-driven 3D Understanding from Single Images. Hao Su

Seeing the unseen. Data-driven 3D Understanding from Single Images. Hao Su Seeing the unseen Data-driven 3D Understanding from Single Images Hao Su Image world Shape world 3D perception from a single image Monocular vision a typical prey a typical predator Cited from https://en.wikipedia.org/wiki/binocular_vision

More information

... arxiv: v2 [cs.cv] 5 Sep Learning local shape descriptors from part correspondences with multi-view convolutional networks

... arxiv: v2 [cs.cv] 5 Sep Learning local shape descriptors from part correspondences with multi-view convolutional networks Learning local shape descriptors from part correspondences with multi-view convolutional networks HAIBIN HUANG, University of Massachusetts Amherst EVANGELOS KALOGERAKIS, University of Massachusetts Amherst

More information

Multiresolution Tree Networks for 3D Point Cloud Processing

Multiresolution Tree Networks for 3D Point Cloud Processing Multiresolution Tree Networks for 3D Point Cloud Processing Matheus Gadelha, Rui Wang and Subhransu Maji College of Information and Computer Sciences, University of Massachusetts - Amherst {mgadelha, ruiwang,

More information

3D Object Classification via Spherical Projections

3D Object Classification via Spherical Projections 3D Object Classification via Spherical Projections Zhangjie Cao 1,QixingHuang 2,andRamaniKarthik 3 1 School of Software Tsinghua University, China 2 Department of Computer Science University of Texas at

More information

LEARNING TO GENERATE CHAIRS WITH CONVOLUTIONAL NEURAL NETWORKS

LEARNING TO GENERATE CHAIRS WITH CONVOLUTIONAL NEURAL NETWORKS LEARNING TO GENERATE CHAIRS WITH CONVOLUTIONAL NEURAL NETWORKS Alexey Dosovitskiy, Jost Tobias Springenberg and Thomas Brox University of Freiburg Presented by: Shreyansh Daftry Visual Learning and Recognition

More information

JOINT DETECTION AND SEGMENTATION WITH DEEP HIERARCHICAL NETWORKS. Zhao Chen Machine Learning Intern, NVIDIA

JOINT DETECTION AND SEGMENTATION WITH DEEP HIERARCHICAL NETWORKS. Zhao Chen Machine Learning Intern, NVIDIA JOINT DETECTION AND SEGMENTATION WITH DEEP HIERARCHICAL NETWORKS Zhao Chen Machine Learning Intern, NVIDIA ABOUT ME 5th year PhD student in physics @ Stanford by day, deep learning computer vision scientist

More information

Pixels to Voxels: Modeling Visual Representation in the Human Brain

Pixels to Voxels: Modeling Visual Representation in the Human Brain Pixels to Voxels: Modeling Visual Representation in the Human Brain Authors: Pulkit Agrawal, Dustin Stansbury, Jitendra Malik, Jack L. Gallant Presenters: JunYoung Gwak, Kuan Fang Outlines Background Motivation

More information

Deep Learning For Video Classification. Presented by Natalie Carlebach & Gil Sharon

Deep Learning For Video Classification. Presented by Natalie Carlebach & Gil Sharon Deep Learning For Video Classification Presented by Natalie Carlebach & Gil Sharon Overview Of Presentation Motivation Challenges of video classification Common datasets 4 different methods presented in

More information

Deep Models for 3D Reconstruction

Deep Models for 3D Reconstruction Deep Models for 3D Reconstruction Andreas Geiger Autonomous Vision Group, MPI for Intelligent Systems, Tübingen Computer Vision and Geometry Group, ETH Zürich October 12, 2017 Max Planck Institute for

More information

Separating Objects and Clutter in Indoor Scenes

Separating Objects and Clutter in Indoor Scenes Separating Objects and Clutter in Indoor Scenes Salman H. Khan School of Computer Science & Software Engineering, The University of Western Australia Co-authors: Xuming He, Mohammed Bennamoun, Ferdous

More information

Machine Learning Techniques for Geometric Modeling. Evangelos Kalogerakis

Machine Learning Techniques for Geometric Modeling. Evangelos Kalogerakis Machine Learning Techniques for Geometric Modeling Evangelos Kalogerakis 3D models for digital entertainment Limit Theory 3D models for printing MakerBot Industries 3D models for architecture Architect:

More information

Object Localization, Segmentation, Classification, and Pose Estimation in 3D Images using Deep Learning

Object Localization, Segmentation, Classification, and Pose Estimation in 3D Images using Deep Learning Allan Zelener Dissertation Proposal December 12 th 2016 Object Localization, Segmentation, Classification, and Pose Estimation in 3D Images using Deep Learning Overview 1. Introduction to 3D Object Identification

More information

POINT CLOUD DEEP LEARNING

POINT CLOUD DEEP LEARNING POINT CLOUD DEEP LEARNING Innfarn Yoo, 3/29/28 / 57 Introduction AGENDA Previous Work Method Result Conclusion 2 / 57 INTRODUCTION 3 / 57 2D OBJECT CLASSIFICATION Deep Learning for 2D Object Classification

More information

Learning 3D Part Detection from Sparsely Labeled Data: Supplemental Material

Learning 3D Part Detection from Sparsely Labeled Data: Supplemental Material Learning 3D Part Detection from Sparsely Labeled Data: Supplemental Material Ameesh Makadia Google New York, NY 10011 makadia@google.com Mehmet Ersin Yumer Carnegie Mellon University Pittsburgh, PA 15213

More information

Fully Convolutional Networks for Semantic Segmentation

Fully Convolutional Networks for Semantic Segmentation Fully Convolutional Networks for Semantic Segmentation Jonathan Long* Evan Shelhamer* Trevor Darrell UC Berkeley Chaim Ginzburg for Deep Learning seminar 1 Semantic Segmentation Define a pixel-wise labeling

More information

3D Deep Learning

3D Deep Learning 3D Deep Learning Tutorial@CVPR2017 Hao Su (UCSD) Leonidas Guibas (Stanford) Michael Bronstein (Università della Svizzera Italiana) Evangelos Kalogerakis (UMass) Jimei Yang (Adobe Research) Charles Qi (Stanford)

More information

3D Semantic Segmentation with Submanifold Sparse Convolutional Networks

3D Semantic Segmentation with Submanifold Sparse Convolutional Networks 3D Semantic Segmentation with Submanifold Sparse Convolutional Networks Benjamin Graham Facebook AI Research benjamingraham@fb.com Martin Engelcke University of Oxford martin@robots.ox.ac.uk Laurens van

More information

Photo-realistic Renderings for Machines Seong-heum Kim

Photo-realistic Renderings for Machines Seong-heum Kim Photo-realistic Renderings for Machines 20105034 Seong-heum Kim CS580 Student Presentations 2016.04.28 Photo-realistic Renderings for Machines Scene radiances Model descriptions (Light, Shape, Material,

More information

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution and Fully Connected CRFs

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution and Fully Connected CRFs DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution and Fully Connected CRFs Zhipeng Yan, Moyuan Huang, Hao Jiang 5/1/2017 1 Outline Background semantic segmentation Objective,

More information

Lecture 7: Semantic Segmentation

Lecture 7: Semantic Segmentation Semantic Segmentation CSED703R: Deep Learning for Visual Recognition (207F) Segmenting images based on its semantic notion Lecture 7: Semantic Segmentation Bohyung Han Computer Vision Lab. bhhanpostech.ac.kr

More information

CMU Lecture 18: Deep learning and Vision: Convolutional neural networks. Teacher: Gianni A. Di Caro

CMU Lecture 18: Deep learning and Vision: Convolutional neural networks. Teacher: Gianni A. Di Caro CMU 15-781 Lecture 18: Deep learning and Vision: Convolutional neural networks Teacher: Gianni A. Di Caro DEEP, SHALLOW, CONNECTED, SPARSE? Fully connected multi-layer feed-forward perceptrons: More powerful

More information

arxiv: v1 [cs.cv] 13 Feb 2018

arxiv: v1 [cs.cv] 13 Feb 2018 Recurrent Slice Networks for 3D Segmentation on Point Clouds Qiangui Huang Weiyue Wang Ulrich Neumann University of Southern California Los Angeles, California {qianguih,weiyuewa,uneumann}@uscedu arxiv:180204402v1

More information

Semantic Segmentation

Semantic Segmentation Semantic Segmentation UCLA:https://goo.gl/images/I0VTi2 OUTLINE Semantic Segmentation Why? Paper to talk about: Fully Convolutional Networks for Semantic Segmentation. J. Long, E. Shelhamer, and T. Darrell,

More information

An Empirical Study of Generative Adversarial Networks for Computer Vision Tasks

An Empirical Study of Generative Adversarial Networks for Computer Vision Tasks An Empirical Study of Generative Adversarial Networks for Computer Vision Tasks Report for Undergraduate Project - CS396A Vinayak Tantia (Roll No: 14805) Guide: Prof Gaurav Sharma CSE, IIT Kanpur, India

More information

Supplementary A. Overview. C. Time and Space Complexity. B. Shape Retrieval. D. Permutation Invariant SOM. B.1. Dataset

Supplementary A. Overview. C. Time and Space Complexity. B. Shape Retrieval. D. Permutation Invariant SOM. B.1. Dataset Supplementary A. Overview This supplementary document provides more technical details and experimental results to the main paper. Shape retrieval experiments are demonstrated with ShapeNet Core55 dataset

More information

Machine Learning. Deep Learning. Eric Xing (and Pengtao Xie) , Fall Lecture 8, October 6, Eric CMU,

Machine Learning. Deep Learning. Eric Xing (and Pengtao Xie) , Fall Lecture 8, October 6, Eric CMU, Machine Learning 10-701, Fall 2015 Deep Learning Eric Xing (and Pengtao Xie) Lecture 8, October 6, 2015 Eric Xing @ CMU, 2015 1 A perennial challenge in computer vision: feature engineering SIFT Spin image

More information

arxiv: v1 [cs.cv] 28 Nov 2018

arxiv: v1 [cs.cv] 28 Nov 2018 MeshNet: Mesh Neural Network for 3D Shape Representation Yutong Feng, 1 Yifan Feng, 2 Haoxuan You, 1 Xibin Zhao 1, Yue Gao 1 1 BNRist, KLISS, School of Software, Tsinghua University, China. 2 School of

More information

A Deeper Look at 3D Shape Classifiers

A Deeper Look at 3D Shape Classifiers A Deeper Look at 3D Shape Classifiers Jong-Chyi Su, Matheus Gadelha, Rui Wang, Subhransu Maji University of Massachusetts, Amherst {jcsu,mgadelha,ruiwang,smaji}@cs.umass.edu Abstract. We investigate the

More information

Shape Co-analysis. Daniel Cohen-Or. Tel-Aviv University

Shape Co-analysis. Daniel Cohen-Or. Tel-Aviv University Shape Co-analysis Daniel Cohen-Or Tel-Aviv University 1 High-level Shape analysis [Fu et al. 08] Upright orientation [Mehra et al. 08] Shape abstraction [Kalograkis et al. 10] Learning segmentation [Mitra

More information

Learning and Inferring Depth from Monocular Images. Jiyan Pan April 1, 2009

Learning and Inferring Depth from Monocular Images. Jiyan Pan April 1, 2009 Learning and Inferring Depth from Monocular Images Jiyan Pan April 1, 2009 Traditional ways of inferring depth Binocular disparity Structure from motion Defocus Given a single monocular image, how to infer

More information

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Shaoqing Ren Kaiming He Ross Girshick Jian Sun Present by: Yixin Yang Mingdong Wang 1 Object Detection 2 1 Applications Basic

More information

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009 Analysis: TextonBoost and Semantic Texton Forests Daniel Munoz 16-721 Februrary 9, 2009 Papers [shotton-eccv-06] J. Shotton, J. Winn, C. Rother, A. Criminisi, TextonBoost: Joint Appearance, Shape and Context

More information

Multi-view Stereo. Ivo Boyadzhiev CS7670: September 13, 2011

Multi-view Stereo. Ivo Boyadzhiev CS7670: September 13, 2011 Multi-view Stereo Ivo Boyadzhiev CS7670: September 13, 2011 What is stereo vision? Generic problem formulation: given several images of the same object or scene, compute a representation of its 3D shape

More information

Know your data - many types of networks

Know your data - many types of networks Architectures Know your data - many types of networks Fixed length representation Variable length representation Online video sequences, or samples of different sizes Images Specific architectures for

More information

PARTIAL STYLE TRANSFER USING WEAKLY SUPERVISED SEMANTIC SEGMENTATION. Shin Matsuo Wataru Shimoda Keiji Yanai

PARTIAL STYLE TRANSFER USING WEAKLY SUPERVISED SEMANTIC SEGMENTATION. Shin Matsuo Wataru Shimoda Keiji Yanai PARTIAL STYLE TRANSFER USING WEAKLY SUPERVISED SEMANTIC SEGMENTATION Shin Matsuo Wataru Shimoda Keiji Yanai Department of Informatics, The University of Electro-Communications, Tokyo 1-5-1 Chofugaoka,

More information

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. Charles R. Qi* Hao Su* Kaichun Mo Leonidas J. Guibas

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. Charles R. Qi* Hao Su* Kaichun Mo Leonidas J. Guibas PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation Charles R. Qi* Hao Su* Kaichun Mo Leonidas J. Guibas Big Data + Deep Representation Learning Robot Perception Augmented Reality

More information

arxiv: v1 [cs.cv] 28 Nov 2017

arxiv: v1 [cs.cv] 28 Nov 2017 3D Semantic Segmentation with Submanifold Sparse Convolutional Networks arxiv:1711.10275v1 [cs.cv] 28 Nov 2017 Abstract Benjamin Graham, Martin Engelcke, Laurens van der Maaten Convolutional networks are

More information

Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture David Eigen, Rob Fergus

Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture David Eigen, Rob Fergus Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture David Eigen, Rob Fergus Presented by: Rex Ying and Charles Qi Input: A Single RGB Image Estimate

More information

Conditional Random Fields as Recurrent Neural Networks

Conditional Random Fields as Recurrent Neural Networks BIL722 - Deep Learning for Computer Vision Conditional Random Fields as Recurrent Neural Networks S. Zheng, S. Jayasumana, B. Romera-Paredes V. Vineet, Z. Su, D. Du, C. Huang, P.H.S. Torr Introduction

More information

Bilinear Models for Fine-Grained Visual Recognition

Bilinear Models for Fine-Grained Visual Recognition Bilinear Models for Fine-Grained Visual Recognition Subhransu Maji College of Information and Computer Sciences University of Massachusetts, Amherst Fine-grained visual recognition Example: distinguish

More information

Accurate 3D Face and Body Modeling from a Single Fixed Kinect

Accurate 3D Face and Body Modeling from a Single Fixed Kinect Accurate 3D Face and Body Modeling from a Single Fixed Kinect Ruizhe Wang*, Matthias Hernandez*, Jongmoo Choi, Gérard Medioni Computer Vision Lab, IRIS University of Southern California Abstract In this

More information

CS395T paper review. Indoor Segmentation and Support Inference from RGBD Images. Chao Jia Sep

CS395T paper review. Indoor Segmentation and Support Inference from RGBD Images. Chao Jia Sep CS395T paper review Indoor Segmentation and Support Inference from RGBD Images Chao Jia Sep 28 2012 Introduction What do we want -- Indoor scene parsing Segmentation and labeling Support relationships

More information

Three-Dimensional Object Detection and Layout Prediction using Clouds of Oriented Gradients

Three-Dimensional Object Detection and Layout Prediction using Clouds of Oriented Gradients ThreeDimensional Object Detection and Layout Prediction using Clouds of Oriented Gradients Authors: Zhile Ren, Erik B. Sudderth Presented by: Shannon Kao, Max Wang October 19, 2016 Introduction Given an

More information

SPLATNet: Sparse Lattice Networks for Point Cloud Processing

SPLATNet: Sparse Lattice Networks for Point Cloud Processing SPLATNet: Sparse Lattice Networks for Point Cloud Processing Hang Su UMass Amherst Varun Jampani NVIDIA Evangelos Kalogerakis UMass Amherst Deqing Sun NVIDIA Ming-Hsuan Yang UC Merced Subhransu Maji UMass

More information

COMP 551 Applied Machine Learning Lecture 16: Deep Learning

COMP 551 Applied Machine Learning Lecture 16: Deep Learning COMP 551 Applied Machine Learning Lecture 16: Deep Learning Instructor: Ryan Lowe (ryan.lowe@cs.mcgill.ca) Slides mostly by: Class web page: www.cs.mcgill.ca/~hvanho2/comp551 Unless otherwise noted, all

More information

Exploring Collections of 3D Models using Fuzzy Correspondences

Exploring Collections of 3D Models using Fuzzy Correspondences Exploring Collections of 3D Models using Fuzzy Correspondences Vladimir G. Kim Wilmot Li Niloy J. Mitra Princeton University Adobe UCL Stephen DiVerdi Adobe Thomas Funkhouser Princeton University Motivating

More information

3D Scanning. Qixing Huang Feb. 9 th Slide Credit: Yasutaka Furukawa

3D Scanning. Qixing Huang Feb. 9 th Slide Credit: Yasutaka Furukawa 3D Scanning Qixing Huang Feb. 9 th 2017 Slide Credit: Yasutaka Furukawa Geometry Reconstruction Pipeline This Lecture Depth Sensing ICP for Pair-wise Alignment Next Lecture Global Alignment Pairwise Multiple

More information

arxiv: v1 [cs.cv] 31 Mar 2016

arxiv: v1 [cs.cv] 31 Mar 2016 Object Boundary Guided Semantic Segmentation Qin Huang, Chunyang Xia, Wenchao Zheng, Yuhang Song, Hao Xu and C.-C. Jay Kuo arxiv:1603.09742v1 [cs.cv] 31 Mar 2016 University of Southern California Abstract.

More information

DeepIM: Deep Iterative Matching for 6D Pose Estimation - Supplementary Material

DeepIM: Deep Iterative Matching for 6D Pose Estimation - Supplementary Material DeepIM: Deep Iterative Matching for 6D Pose Estimation - Supplementary Material Yi Li 1, Gu Wang 1, Xiangyang Ji 1, Yu Xiang 2, and Dieter Fox 2 1 Tsinghua University, BNRist 2 University of Washington

More information

3D Object Classification using Shape Distributions and Deep Learning

3D Object Classification using Shape Distributions and Deep Learning 3D Object Classification using Shape Distributions and Deep Learning Melvin Low Stanford University mwlow@cs.stanford.edu Abstract This paper shows that the Absolute Angle shape distribution (AAD) feature

More information

arxiv: v1 [cs.cv] 30 Sep 2018

arxiv: v1 [cs.cv] 30 Sep 2018 3D-PSRNet: Part Segmented 3D Point Cloud Reconstruction From a Single Image Priyanka Mandikal, Navaneet K L, and R. Venkatesh Babu arxiv:1810.00461v1 [cs.cv] 30 Sep 2018 Indian Institute of Science, Bangalore,

More information

3D model classification using convolutional neural network

3D model classification using convolutional neural network 3D model classification using convolutional neural network JunYoung Gwak Stanford jgwak@cs.stanford.edu Abstract Our goal is to classify 3D models directly using convolutional neural network. Most of existing

More information

Real-Time Depth Estimation from 2D Images

Real-Time Depth Estimation from 2D Images Real-Time Depth Estimation from 2D Images Jack Zhu Ralph Ma jackzhu@stanford.edu ralphma@stanford.edu. Abstract ages. We explore the differences in training on an untrained network, and on a network pre-trained

More information

The SIFT (Scale Invariant Feature

The SIFT (Scale Invariant Feature The SIFT (Scale Invariant Feature Transform) Detector and Descriptor developed by David Lowe University of British Columbia Initial paper ICCV 1999 Newer journal paper IJCV 2004 Review: Matt Brown s Canonical

More information

3D CONVOLUTIONAL NEURAL NETWORKS BY MODAL FUSION

3D CONVOLUTIONAL NEURAL NETWORKS BY MODAL FUSION 3D CONVOLUTIONAL NEURAL NETWORKS BY MODAL FUSION Yusuke Yoshiyasu, Eiichi Yoshida AIST Soeren Pirk, Leonidas Guibas Stanford University ABSTRACT We propose multi-view and volumetric convolutional neural

More information

An Exploration of Computer Vision Techniques for Bird Species Classification

An Exploration of Computer Vision Techniques for Bird Species Classification An Exploration of Computer Vision Techniques for Bird Species Classification Anne L. Alter, Karen M. Wang December 15, 2017 Abstract Bird classification, a fine-grained categorization task, is a complex

More information

Applications: Sampling/Reconstruction. Sampling and Reconstruction of Visual Appearance. Motivation. Monte Carlo Path Tracing.

Applications: Sampling/Reconstruction. Sampling and Reconstruction of Visual Appearance. Motivation. Monte Carlo Path Tracing. Sampling and Reconstruction of Visual Appearance CSE 274 [Fall 2018], Lecture 5 Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir Applications: Sampling/Reconstruction Monte Carlo Rendering (biggest application)

More information

Using Machine Learning for Classification of Cancer Cells

Using Machine Learning for Classification of Cancer Cells Using Machine Learning for Classification of Cancer Cells Camille Biscarrat University of California, Berkeley I Introduction Cell screening is a commonly used technique in the development of new drugs.

More information

Modeling and Analyzing 3D Shapes using Clues from 2D Images. Minglun Gong Dept. of CS, Memorial Univ.

Modeling and Analyzing 3D Shapes using Clues from 2D Images. Minglun Gong Dept. of CS, Memorial Univ. Modeling and Analyzing 3D Shapes using Clues from 2D Images Minglun Gong Dept. of CS, Memorial Univ. Modeling Flowers from Images Reconstructing 3D flower petal shapes from a single image is difficult

More information

Dynamic Routing Between Capsules

Dynamic Routing Between Capsules Report Explainable Machine Learning Dynamic Routing Between Capsules Author: Michael Dorkenwald Supervisor: Dr. Ullrich Köthe 28. Juni 2018 Inhaltsverzeichnis 1 Introduction 2 2 Motivation 2 3 CapusleNet

More information

Detecting Object Instances Without Discriminative Features

Detecting Object Instances Without Discriminative Features Detecting Object Instances Without Discriminative Features Edward Hsiao June 19, 2013 Thesis Committee: Martial Hebert, Chair Alexei Efros Takeo Kanade Andrew Zisserman, University of Oxford 1 Object Instance

More information

Unsupervised Deep Learning. James Hays slides from Carl Doersch and Richard Zhang

Unsupervised Deep Learning. James Hays slides from Carl Doersch and Richard Zhang Unsupervised Deep Learning James Hays slides from Carl Doersch and Richard Zhang Recap from Previous Lecture We saw two strategies to get structured output while using deep learning With object detection,

More information

CRF Based Point Cloud Segmentation Jonathan Nation

CRF Based Point Cloud Segmentation Jonathan Nation CRF Based Point Cloud Segmentation Jonathan Nation jsnation@stanford.edu 1. INTRODUCTION The goal of the project is to use the recently proposed fully connected conditional random field (CRF) model to

More information

arxiv: v4 [cs.cv] 29 Mar 2019

arxiv: v4 [cs.cv] 29 Mar 2019 PartNet: A Recursive Part Decomposition Network for Fine-grained and Hierarchical Shape Segmentation Fenggen Yu 1 Kun Liu 1 * Yan Zhang 1 Chenyang Zhu 2 Kai Xu 2 1 Nanjing University 2 National University

More information

Transfer Learning. Style Transfer in Deep Learning

Transfer Learning. Style Transfer in Deep Learning Transfer Learning & Style Transfer in Deep Learning 4-DEC-2016 Gal Barzilai, Ram Machlev Deep Learning Seminar School of Electrical Engineering Tel Aviv University Part 1: Transfer Learning in Deep Learning

More information

Learning Material-Aware Local Descriptors for 3D Shapes

Learning Material-Aware Local Descriptors for 3D Shapes Learning Material-Aware Local Descriptors for 3D Shapes Hubert Lin 1 Melinos Averkiou 2 Evangelos Kalogerakis 3 Balazs Kovacs 4 Siddhant Ranade 5 Vladimir G. Kim 6 Siddhartha Chaudhuri 6,7 Kavita Bala

More information

INF 5860 Machine learning for image classification. Lecture 11: Visualization Anne Solberg April 4, 2018

INF 5860 Machine learning for image classification. Lecture 11: Visualization Anne Solberg April 4, 2018 INF 5860 Machine learning for image classification Lecture 11: Visualization Anne Solberg April 4, 2018 Reading material The lecture is based on papers: Deep Dream: https://research.googleblog.com/2015/06/inceptionism-goingdeeper-into-neural.html

More information

Deep Learning in Image and Face Intrinsics

Deep Learning in Image and Face Intrinsics Deep Learning in Image and Face Intrinsics Theo Gevers Professor in Computer Vision: University of Amsterdam Co-founder: Sightcorp 3DUniversum Scanm WIC, Eindhoven, February 24th, 2018 Amsterdam A.I. -

More information

Structured Prediction using Convolutional Neural Networks

Structured Prediction using Convolutional Neural Networks Overview Structured Prediction using Convolutional Neural Networks Bohyung Han bhhan@postech.ac.kr Computer Vision Lab. Convolutional Neural Networks (CNNs) Structured predictions for low level computer

More information

Lecture 13 Segmentation and Scene Understanding Chris Choy, Ph.D. candidate Stanford Vision and Learning Lab (SVL)

Lecture 13 Segmentation and Scene Understanding Chris Choy, Ph.D. candidate Stanford Vision and Learning Lab (SVL) Lecture 13 Segmentation and Scene Understanding Chris Choy, Ph.D. candidate Stanford Vision and Learning Lab (SVL) http://chrischoy.org Stanford CS231A 1 Understanding a Scene Objects Chairs, Cups, Tables,

More information

Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform. Xintao Wang Ke Yu Chao Dong Chen Change Loy

Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform. Xintao Wang Ke Yu Chao Dong Chen Change Loy Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform Xintao Wang Ke Yu Chao Dong Chen Change Loy Problem enlarge 4 times Low-resolution image High-resolution image Previous

More information

arxiv: v1 [cs.gr] 13 Sep 2018

arxiv: v1 [cs.gr] 13 Sep 2018 Learning to Group and Label Fine-Grained Shape Components XIAOGANG WANG, Beihang University BIN ZHOU, Beihang University HAIYUE FANG, Beihang University XIAOWU CHEN, Beihang University QINPING ZHAO, Beihang

More information

Intrinsic3D: High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting

Intrinsic3D: High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting Intrinsic3D: High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting R. Maier 1,2, K. Kim 1, D. Cremers 2, J. Kautz 1, M. Nießner 2,3 Fusion Ours 1

More information

Shape Constancy and Shape Recovery: wherein Human and Computer Vision Meet

Shape Constancy and Shape Recovery: wherein Human and Computer Vision Meet Shape Constancy and Shape Recovery: wherein Human and Computer Vision Meet Zygmunt Pizlo Purdue University, U.S.A. Acknowledgments: Y. Li, T. Sawada, R.M. Steinman Support: NSF, US Department of Energy,

More information

CS 112 The Rendering Pipeline. Slide 1

CS 112 The Rendering Pipeline. Slide 1 CS 112 The Rendering Pipeline Slide 1 Rendering Pipeline n Input 3D Object/Scene Representation n Output An image of the input object/scene n Stages (for POLYGON pipeline) n Model view Transformation n

More information

Alternatives to Direct Supervision

Alternatives to Direct Supervision CreativeAI: Deep Learning for Graphics Alternatives to Direct Supervision Niloy Mitra Iasonas Kokkinos Paul Guerrero Nils Thuerey Tobias Ritschel UCL UCL UCL TUM UCL Timetable Theory and Basics State of

More information

Structure-oriented Networks of Shape Collections

Structure-oriented Networks of Shape Collections Structure-oriented Networks of Shape Collections Noa Fish 1 Oliver van Kaick 2 Amit Bermano 3 Daniel Cohen-Or 1 1 Tel Aviv University 2 Carleton University 3 Princeton University 1 pplementary material

More information

arxiv: v1 [cs.cv] 19 Sep 2018

arxiv: v1 [cs.cv] 19 Sep 2018 Deep Part Induction from Articulated Object Pairs LI YI, Stanford University HAIBIN HUANG, Megvii (Face++) Research DIFAN LIU, University of Massachusetts Amherst EVANGELOS KALOGERAKIS, University of Massachusetts

More information

Multi-view 3D Models from Single Images with a Convolutional Network

Multi-view 3D Models from Single Images with a Convolutional Network Multi-view 3D Models from Single Images with a Convolutional Network Maxim Tatarchenko University of Freiburg Skoltech - 2nd Christmas Colloquium on Computer Vision Humans have prior knowledge about 3D

More information

Bus Detection and recognition for visually impaired people

Bus Detection and recognition for visually impaired people Bus Detection and recognition for visually impaired people Hangrong Pan, Chucai Yi, and Yingli Tian The City College of New York The Graduate Center The City University of New York MAP4VIP Outline Motivation

More information

Machine Learning for Medical Image Analysis. A. Criminisi

Machine Learning for Medical Image Analysis. A. Criminisi Machine Learning for Medical Image Analysis A. Criminisi Overview Introduction to machine learning Decision forests Applications in medical image analysis Anatomy localization in CT Scans Spine Detection

More information

Deep Face Recognition. Nathan Sun

Deep Face Recognition. Nathan Sun Deep Face Recognition Nathan Sun Why Facial Recognition? Picture ID or video tracking Higher Security for Facial Recognition Software Immensely useful to police in tracking suspects Your face will be an

More information

Semantic Segmentation. Zhongang Qi

Semantic Segmentation. Zhongang Qi Semantic Segmentation Zhongang Qi qiz@oregonstate.edu Semantic Segmentation "Two men riding on a bike in front of a building on the road. And there is a car." Idea: recognizing, understanding what's in

More information

arxiv: v1 [cs.cv] 2 Nov 2018

arxiv: v1 [cs.cv] 2 Nov 2018 3D Pick & Mix: Object Part Blending in Joint Shape and Image Manifolds Adrian Penate-Sanchez 1,2[0000 0003 2876 3301] Lourdes Agapito 1[0000 0002 6947 1092] arxiv:1811.01068v1 [cs.cv] 2 Nov 2018 1 University

More information

Computer Vision: Summary and Discussion

Computer Vision: Summary and Discussion 12/05/2011 Computer Vision: Summary and Discussion Computer Vision CS 143, Brown James Hays Many slides from Derek Hoiem Announcements Today is last day of regular class Second quiz on Wednesday (Dec 7

More information