# Illumination. Illumination CMSC 435/634

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Illumination CMSC 435/634

2 Illumination Interpolation

3 Illumination Illumination Interpolation

4 Illumination Illumination Effect of light on objects Mostly look just at intensity Apply to each color channel independently Good for most objects Not fluorescent Not phosphorescent

5 Illumination Local vs. Global Local Light sources shining directly on object Global Lights bouncing from objects onto other objects Ambient Illumination Approximate global illumination as constant color Typically 1% of direct illumination

6 Illumination BRDF Rendering Equation Models Interpolation

7 BRDF BRDF Bidirectional Reflectance Distribution Function How much light reflects from L i to L o Surface normal L o Outgoing radiance v^ n^ L i l^ x Incoming radiance

8 BRDF Physically Plausible BRDF Positive Reciprocity Same light from L i to L o as from L o to L i Conservation of Energy Don t reflect more energy than comes in Surface L i Incoming normal radiance L o Outgoing radiance v^ n^ l^ x

9 BRDF Plotting BRDFs Polar plot of reflectance strength For one view direction, showing light directions For one light direction, showing view directions Reciprocity same if you swap view and light

10 Rendering Equation Rendering Equation Integral of all Incoming Light L o (ˆv) = L i (ˆl) f r (ˆv,ˆl) ˆn ˆl dω(ˆl) Parts of this equation: Ω(ˆn) L o (ˆv) Ω(ˆn) L i (ˆl) f r (ˆv,ˆl) ˆn ˆl dω(ˆl) outgoing light in direction ˆv hemisphere above ˆn that can see this point incoming light from direction ˆl BRDF from ˆl to ˆv projection of differential solid angle onto surface

11 Rendering Equation Rendering Equation for Point Lights Sum for Each Light L o (ˆv) = i L i f r (ˆv,ˆl i ) ˆn ˆl i Parts of this equation: L o (ˆv) outgoing light in direction ˆv i lights that can see this point (where ˆn ˆl i > 0) ˆl i light direction to light i L i incoming light for light i f r (ˆv,ˆl) BRDF from ˆl i to ˆv

12 Rendering Equation Results Integrating full environment Light at one point, black elsewhere

13 Rendering Equation Decomposing BRDFs Decompose BRDF into convenient parts Typical breakdown: Diffuse (view independent) Specular (view dependent near reflection) Others less common, often ignored (e.g. retro reflection) + = L o (ˆv) = i ) L i (f d (ˆv,ˆl i ) + f s (ˆv,ˆl i ) ˆn ˆl i L o (ˆv) = i L i f d (ˆv,ˆl i ) ˆn ˆl i + i L i f s (ˆv,ˆl i ) ˆn ˆl i

14 Models Important directions ˆn: Unit surface normal

15 Models Important directions ˆv: Unit vector from surface toward viewer

16 Models Important directions ˆl: Unit vector from surface toward light

17 Models Important directions ˆR v = 2ˆn(ˆn ˆv) ˆv: Direction of mirror reflection of view

18 Models Important directions ˆR l = 2ˆn(ˆn ˆl) ˆl: Direction of mirror reflection of light

19 Models Important directions ĥ = (ˆv + ˆl)/ ˆv + ˆl : Normal direction that would reflect ˆv to ˆl

20 Models Diffuse Also called Lambertian or Matte Total reflectance: i L i Kd ˆn ˆl i BRDF: Kd

21 Models Phong Strongest where ˆR l lines up with ˆv or ˆR v lines up with ˆl Total reflectance: i L i Ks ( ˆR v ˆl i ) e Physically plausible version: i L i Ks ( ˆR v ˆl i ) e ˆn ˆl With energy-conserving Ks

22 Models Specular Microfacets Imagine random mirrored microfacets Normal Distribution Function (NDF) Probability facet has normal ĥ Only facets to reflect ˆl to ˆv Proportion of light or view blocked (geometry term) Blocked light = shadowing Blocked view = masking Fresnel term Reflection from non-metals is stronger at glancing angles

23 Models Cook-Torrance Beckmann Distribution = Gaussian distribution of slope Shadow/Mask based on symmetric V-shaped microfacets BRDF: D(ˆn, ĥ) G(ˆn,ˆv,ˆl) 4 ˆn ˆv ˆn ˆl F (ˆv,ˆl), Total reflectance: i L i Ks D(ˆn, ĥ i ) G(ˆn,ˆv,ˆl i ) 4 ˆn ˆv ˆn ˆl F (ˆv, ˆl i ) ˆn ˆl

24 Models Blinn-Phong Alternate formulation for Phong, similar behavior Strongest where ĥ lines up with ˆn Function of ĥ, behaves like NDF Total reflectance (original form): i L i Ks (ˆn ĥ i ) e As NDF: D(ˆn, ĥ i ) = e+2 2π (ˆn ĥ i ) e

25 Interpolation Illumination Interpolation

26 Interpolation When to Compute Gouraud Shading = Compute per-vertex & interpolate Lose sharp highlights Subject to Mach banding Phong Shading = Interpolate normals & compute per-pixel Gouraud Phong

27 Interpolation Phong Shading Phong shading can refer to lighting model or interpolation To save confusion: Phong lighting Phong interpolation

Shading w Foley, Section16.1 Reading Introduction So far, we ve talked exclusively about geometry. w What is the shape of an object? w How do I place it in a virtual 3D space? w How do I know which pixels

### CS 5625 Lec 2: Shading Models

CS 5625 Lec 2: Shading Models Kavita Bala Spring 2013 Shading Models Chapter 7 Next few weeks Textures Graphics Pipeline Light Emission To compute images What are the light sources? Light Propagation Fog/Clear?

Computergrafik Matthias Zwicker Universität Bern Herbst 2009 Today Introduction Local shading models Light sources strategies Compute interaction of light with surfaces Requires simulation of physics Global

Illumination Models & Shading Lighting vs. Shading Lighting Interaction between materials and light sources Physics Shading Determining the color of a pixel Computer Graphics ZBuffer(Scene) PutColor(x,y,Col(P));

Illumination and Shading Computer Graphics COMP 770 (236) Spring 2007 Instructor: Brandon Lloyd 2/14/07 1 From last time Texture mapping overview notation wrapping Perspective-correct interpolation Texture

### CS5620 Intro to Computer Graphics

So Far wireframe hidden surfaces Next step 1 2 Light! Need to understand: How lighting works Types of lights Types of surfaces How shading works Shading algorithms What s Missing? Lighting vs. Shading

Computergrafik Thomas Buchberger, Matthias Zwicker Universität Bern Herbst 2008 Today Introduction Local shading models Light sources strategies Compute interaction of light with surfaces Requires simulation

### Sung-Eui Yoon ( 윤성의 )

CS380: Computer Graphics Illumination and Shading Sung-Eui Yoon ( 윤성의 ) Course URL: http://sglab.kaist.ac.kr/~sungeui/cg/ Course Objectives (Ch. 10) Know how to consider lights during rendering models

### Reading. Shading. An abundance of photons. Introduction. Required: Angel , 6.5, Optional: Angel 6.4 OpenGL red book, chapter 5.

Reading Required: Angel 6.1-6.3, 6.5, 6.7-6.8 Optional: Shading Angel 6.4 OpenGL red book, chapter 5. 1 2 Introduction An abundance of photons So far, we ve talked exclusively about geometry. Properly

### CS-184: Computer Graphics. Today

CS-184: Computer Graphics Lecture #8: Shading Prof. James O Brien University of California, Berkeley V2006-S-08-2.0 Today Local Illumination & Shading The BRDF Simple diffuse and specular approximations

### Introduction. Lighting model Light reflection model Local illumination model Reflectance model BRDF

Shading Introduction Affine transformations help us to place objects into a scene. Before creating images of these objects, we ll look at models for how light interacts with their surfaces. Such a model

### Shading, lighting, & BRDF Theory. Cliff Lindsay, PHD

Shading, lighting, & BRDF Theory Cliff Lindsay, PHD Overview of today s lecture BRDF Characteristics Lights in terms of BRDFs Classes of BRDFs Ambient light & Shadows in terms of BRDFs Decomposing Reflection

### Lecture 4: Reflection Models

Lecture 4: Reflection Models CS 660, Spring 009 Kavita Bala Computer Science Cornell University Outline Light sources Light source characteristics Types of sources Light reflection Physics-based models

Complex Shading Algorithms CPSC 414 Overview So far Rendering Pipeline including recent developments Today Shading algorithms based on the Rendering Pipeline Arbitrary reflection models (BRDFs) Bump mapping

### Local Reflection Models

Local Reflection Models Illumination Thus Far Simple Illumination Models Ambient + Diffuse + Attenuation + Specular Additions Texture, Shadows, Used in global algs! (Ray tracing) Problem: Different materials

### Timothy Walsh. Reflection Models

Timothy Walsh Reflection Models Outline Reflection Models Geometric Setting Fresnel Reflectance Specular Refletance & Transmission Microfacet Models Lafortune Model Fresnel Incidence Effects Diffuse Scatter

### rendering equation computer graphics rendering equation 2009 fabio pellacini 1

rendering equation computer graphics rendering equation 2009 fabio pellacini 1 physically-based rendering synthesis algorithms that compute images by simulation the physical behavior of light computer

### Computer Vision Systems. Viewing Systems Projections Illuminations Rendering Culling and Clipping Implementations

Computer Vision Systems Viewing Systems Projections Illuminations Rendering Culling and Clipping Implementations Viewing Systems Viewing Transformation Projective Transformation 2D Computer Graphics Devices

### Reading. Shading. Introduction. An abundance of photons. Required: Angel , Optional: OpenGL red book, chapter 5.

Reading Required: Angel 6.1-6.5, 6.7-6.8 Optional: Shading OpenGL red book, chapter 5. 1 2 Introduction So far, we ve talked exclusively about geometry. What is the shape of an obect? How do I place it

### Shading. Brian Curless CSE 557 Autumn 2017

Shading Brian Curless CSE 557 Autumn 2017 1 Reading Optional: Angel and Shreiner: chapter 5. Marschner and Shirley: chapter 10, chapter 17. Further reading: OpenGL red book, chapter 5. 2 Basic 3D graphics

Computer Graphics (Fall 2008) COMS 4160, Lecture 19: Illumination and Shading 2 http://www.cs.columbia.edu/~cs4160 Radiance Power per unit projected area perpendicular to the ray per unit solid angle in

### Shading / Light. Thanks to Srinivas Narasimhan, Langer-Zucker, Henrik Wann Jensen, Ravi Ramamoorthi, Hanrahan, Preetham

Shading / Light Thanks to Srinivas Narasimhan, Langer-Zucker, Henrik Wann Jensen, Ravi Ramamoorthi, Hanrahan, Preetham Phong Illumination Model See Shirley, Ch 10 and http://en.wikipedia.org/wiki/phong_shading

### Shading. Brian Curless CSE 457 Spring 2017

Shading Brian Curless CSE 457 Spring 2017 1 Reading Optional: Angel and Shreiner: chapter 5. Marschner and Shirley: chapter 10, chapter 17. Further reading: OpenGL red book, chapter 5. 2 Basic 3D graphics

### CT5510: Computer Graphics. Illumination and Shading

CT5510: Computer Graphics Illumination and Shading BOCHANG MOON Photorealism The ultimate goal of rendering is to produce photo realistic images. i.e., rendered images should be indistinguishable from

### Interactive Real-Time Raycasting

Interactive Real-Time Raycasting CS184 AS4 Due 2009-02-26 11:00pm We start our exploration of Rendering - the process of converting a high-level object-based description into a graphical image for display.

### CPSC 314 LIGHTING AND SHADING

CPSC 314 LIGHTING AND SHADING UGRAD.CS.UBC.CA/~CS314 slide credits: Mikhail Bessmeltsev et al 1 THE RENDERING PIPELINE Vertices and attributes Vertex Shader Modelview transform Per-vertex attributes Vertex

### BRDF Computer Graphics (Spring 2008)

BRDF Computer Graphics (Spring 2008) COMS 4160, Lecture 20: Illumination and Shading 2 http://www.cs.columbia.edu/~cs4160 Reflected Radiance proportional to Irradiance Constant proportionality: BRDF [CW

### Overview. Radiometry and Photometry. Foundations of Computer Graphics (Spring 2012)

Foundations of Computer Graphics (Spring 2012) CS 184, Lecture 21: Radiometry http://inst.eecs.berkeley.edu/~cs184 Overview Lighting and shading key in computer graphics HW 2 etc. ad-hoc shading models,

### Illumination and Shading - II

Illumination and Shading - II Computer Graphics COMP 770 (236) Spring 2007 Instructor: Brandon Lloyd 2/19/07 1 From last time Light Sources Empirical Illumination Shading Local vs Global Illumination 2/19/07

### CS-184: Computer Graphics. Announcements. Lecture #3: Shading. 03-Shading.key - January 28, 2014

CS-184: Computer Graphics Lecture #3: Shading!! Prof. James O Brien University of California, Berkeley! V2014-S-03-1.0! Announcements Assignment 0: due this Friday Homework 1: due this Thursday Assignment

### Shading. Reading. Pinhole camera. Basic 3D graphics. Brian Curless CSE 557 Fall Required: Shirley, Chapter 10

Reading Required: Shirley, Chapter 10 Shading Brian Curless CSE 557 Fall 2014 1 2 Basic 3D graphics With affine matrices, we can now transform virtual 3D objects in their local coordinate systems into

### How do we draw a picture?

1 How do we draw a picture? Define geometry. Now what? We can draw the edges of the faces. Wireframe. We can only draw the edges of faces that are visible. We can fill in the faces. Giving each object

### Recollection. Models Pixels. Model transformation Viewport transformation Clipping Rasterization Texturing + Lights & shadows

Recollection Models Pixels Model transformation Viewport transformation Clipping Rasterization Texturing + Lights & shadows Can be computed in different stages 1 So far we came to Geometry model 3 Surface

Ray Tracing: shading CS 4620 Lecture 6 2018 Steve Marschner 1 Image so far With eye ray generation and scene intersection for 0

### Game Technology. Lecture Physically Based Rendering. Dipl-Inform. Robert Konrad Polona Caserman, M.Sc.

Game Technology Lecture 7 4.12.2017 Physically Based Rendering Dipl-Inform. Robert Konrad Polona Caserman, M.Sc. Prof. Dr.-Ing. Ralf Steinmetz KOM - Multimedia Communications Lab PPT-for-all v.3.4_office2010

### Topic 9: Lighting & Reflection models 9/10/2016. Spot the differences. Terminology. Two Components of Illumination. Ambient Light Source

Topic 9: Lighting & Reflection models Lighting & reflection The Phong reflection model diffuse component ambient component specular component Spot the differences Terminology Illumination The transport

### CSE 167: Lecture #7: Color and Shading. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011

CSE 167: Introduction to Computer Graphics Lecture #7: Color and Shading Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 Announcements Homework project #3 due this Friday,

### Light Reflection Models

Light Reflection Models Visual Imaging in the Electronic Age Donald P. Greenberg October 21, 2014 Lecture #15 Goal of Realistic Imaging From Strobel, Photographic Materials and Processes Focal Press, 186.

### CS-184: Computer Graphics. Announcements. Lecture #3: Shading. Wednesday, August 31, 11

CS-184: Computer Graphics Lecture #3: Shading Prof. James O Brien University of California, Berkeley V2011-F-03-1.0 Announcements Assignment 1: due Friday, Sept 2 Assignment 2: due Tuesday, Sept 6 Assignment

### Topic 9: Lighting & Reflection models. Lighting & reflection The Phong reflection model diffuse component ambient component specular component

Topic 9: Lighting & Reflection models Lighting & reflection The Phong reflection model diffuse component ambient component specular component Spot the differences Terminology Illumination The transport

### Simple Lighting/Illumination Models

Simple Lighting/Illumination Models Scene rendered using direct lighting only Photograph Scene rendered using a physically-based global illumination model with manual tuning of colors (Frederic Drago and

### Shading 1: basics Christian Miller CS Fall 2011

Shading 1: basics Christian Miller CS 354 - Fall 2011 Picking colors Shading is finding the right color for a pixel This color depends on several factors: The material of the surface itself The color and

### CSE 167: Introduction to Computer Graphics Lecture #6: Lights. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016

CSE 167: Introduction to Computer Graphics Lecture #6: Lights Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016 Announcements Thursday in class: midterm #1 Closed book Material

### Lights, Surfaces, and Cameras. Light sources emit photons Surfaces reflect & absorb photons Cameras measure photons

Reflectance 1 Lights, Surfaces, and Cameras Light sources emit photons Surfaces reflect & absorb photons Cameras measure photons 2 Light at Surfaces Many effects when light strikes a surface -- could be:

### Computer Graphics (CS 543) Lecture 7b: Intro to lighting, Shading and Materials + Phong Lighting Model

Computer Graphics (CS 543) Lecture 7b: Intro to lighting, Shading and Materials + Phong Lighting Model Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) Why do we need Lighting

### OpenGl Pipeline. triangles, lines, points, images. Per-vertex ops. Primitive assembly. Texturing. Rasterization. Per-fragment ops.

OpenGl Pipeline Individual Vertices Transformed Vertices Commands Processor Per-vertex ops Primitive assembly triangles, lines, points, images Primitives Fragments Rasterization Texturing Per-fragment

### M jrs M jgs M jbs Intensity of light reflected from surface j when illuminated by source i: I ijr

Lighting Basics: ADS Model The ADS (ambient, diffuse, specular) model simulates shading in terms of these three components Light source i is modeled as emitting L ira L iga L iba L i = L ird L igd L ibd

### Illumination & Shading: Part 1

Illumination & Shading: Part 1 Light Sources Empirical Illumination Shading Local vs Global Illumination Lecture 10 Comp 236 Spring 2005 Computer Graphics Jargon: Illumination Models Illumination - the

Reflection models and radiometry Advanced Graphics Rafał Mantiuk Computer Laboratory, University of Cambridge Applications To render realistic looking materials Applications also in computer vision, optical

CT4510: Computer Graphics Illumination and Shading BOCHANG MOON Photorealism The ultimate goal of rendering is to produce photo realistic images. i.e., rendered images should be indistinguishable from

### Raytracing CS148 AS3. Due :59pm PDT

Raytracing CS148 AS3 Due 2010-07-25 11:59pm PDT We start our exploration of Rendering - the process of converting a high-level object-based description of scene into an image. We will do this by building

Radiometry and reflectance http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 16 Course announcements Homework 4 is still ongoing - Any questions?

### Here I ll present a brief summary of the important aspects and then dive into improvements we made on Black Ops II.

We started pursuing Physically Based Shading during Black Ops, details of which I presented at SIGGRAPH 2011, as part of the Advances in Real-Time Rendering course. Here I ll present a brief summary of

### Shading. Brian Curless CSE 457 Spring 2015

Shading Brian Curless CSE 457 Spring 2015 1 Reading Required: Angel chapter 5. Optional: OpenGL red book, chapter 5. 2 Basic 3D graphics With affine matrices, we can now transform virtual 3D objects in

### Rendering Light Reflection Models

Rendering Light Reflection Models Visual Imaging in the Electronic Age Donald P. Greenberg October 27, 2015 Lecture #18 Goal of Realistic Imaging The resulting images should be physically accurate and

### Computer Graphics (CS 4731) Lecture 16: Lighting, Shading and Materials (Part 1)

Computer Graphics (CS 4731) Lecture 16: Lighting, Shading and Materials (Part 1) Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) Why do we need Lighting & shading? Sphere

### CS6670: Computer Vision

CS6670: Computer Vision Noah Snavely Lecture 21: Light, reflectance and photometric stereo Announcements Final projects Midterm reports due November 24 (next Tuesday) by 11:59pm (upload to CMS) State the

Lighting and Shading Today: Local Illumination Solving the rendering equation is too expensive First do local illumination Then hack in reflections and shadows Local Shading: Notation light intensity in,

### Illumination in Computer Graphics

Illumination in Computer Graphics Ann McNamara Illumination in Computer Graphics Definition of light sources. Analysis of interaction between light and objects in a scene. Rendering images that are faithful

### Color and Light. CSCI 4229/5229 Computer Graphics Summer 2008

Color and Light CSCI 4229/5229 Computer Graphics Summer 2008 Solar Spectrum Human Trichromatic Color Perception Are A and B the same? Color perception is relative Transmission,Absorption&Reflection Light

### Visual Appearance and Color. Gianpaolo Palma

Visual Appearance and Color Gianpaolo Palma LIGHT MATERIAL Visual Appearance Color due to the interaction between the lighting environment (intensity, position, ) and the properties of the object surface

### Path Tracing part 2. Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017

Path Tracing part 2 Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017 Monte Carlo Integration Monte Carlo Integration The rendering (& radiance) equation is an infinitely recursive integral

### Shading. CSE 457 Winter 2015

Shading CSE 457 Winter 2015 Reading Required: Angel chapter 5. Optional: OpenGL red book, chapter 5. 2 Basic 3D graphics With affine matrices, we can now transform virtual 3D objects in their local coordinate

### Rendering. Illumination Model. Wireframe rendering simple, ambiguous Color filling flat without any 3D information

llumination Model Wireframe rendering simple, ambiguous Color filling flat without any 3D information Requires modeling interaction of light with the object/surface to have a different color (shade in

### CENG 477 Introduction to Computer Graphics. Ray Tracing: Shading

CENG 477 Introduction to Computer Graphics Ray Tracing: Shading Last Week Until now we learned: How to create the primary rays from the given camera and image plane parameters How to intersect these rays

### Lighting affects appearance

Lighting affects appearance 1 Source emits photons Light And then some reach the eye/camera. Photons travel in a straight line When they hit an object they: bounce off in a new direction or are absorbed

### Radiometry & BRDFs CS295, Spring 2017 Shuang Zhao

Radiometry & BRDFs CS295, Spring 2017 Shuang Zhao Computer Science Department University of California, Irvine CS295, Spring 2017 Shuang Zhao 1 Today s Lecture Radiometry Physics of light BRDFs How materials

### Global Illumination. CMPT 361 Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller

Global Illumination CMPT 361 Introduction to Computer Graphics Torsten Möller Reading Foley, van Dam (better): Chapter 16.7-13 Angel: Chapter 5.11, 11.1-11.5 2 Limitation of local illumination A concrete

### Rendering Light Reflection Models

Rendering Light Reflection Models Visual Imaging in the Electronic Age Donald P. Greenberg October 3, 2017 Lecture #13 Program of Computer Graphics, Cornell University General Electric - 167 Cornell in

### Computer Graphics. Illumination and Shading

Rendering Pipeline modelling of geometry transformation into world coordinates placement of cameras and light sources transformation into camera coordinates backface culling projection clipping w.r.t.

### Lecture 22: Basic Image Formation CAP 5415

Lecture 22: Basic Image Formation CAP 5415 Today We've talked about the geometry of scenes and how that affects the image We haven't talked about light yet Today, we will talk about image formation and

### Lighting and Shading. Slides: Tamar Shinar, Victor Zordon

Lighting and Shading Slides: Tamar Shinar, Victor Zordon Why we need shading Suppose we build a model of a sphere using many polygons and color each the same color. We get something like But we want 2

### Ambien Occlusion. Lighting: Ambient Light Sources. Lighting: Ambient Light Sources. Summary

Summary Ambien Occlusion Kadi Bouatouch IRISA Email: kadi@irisa.fr 1. Lighting 2. Definition 3. Computing the ambient occlusion 4. Ambient occlusion fields 5. Dynamic ambient occlusion 1 2 Lighting: Ambient

### Introduction to Computer Graphics 3. Shading

Introduction to Computer Graphics 3. Shading I-Chen Lin, Assistant Professor National Chiao Tung Univ, Taiwan Textbook: E.Angel, Interactive Computer Graphics, 5 th Ed., Addison Wesley Ref: Hearn and Baker,

### Advanced d Computer Graphics CS 563: Real Time Ocean Rendering

Advanced d Computer Graphics CS 563: Real Time Ocean Rendering [Real Time Realistic Ocean Lighting using Seamless Transitions from Geometry to BRDF] Xin Wang March, 20, 2012 Computer Science Dept. Worcester

### Introduction to Computer Graphics 3. Shading

Introduction to Computer Graphics 3. Shading National Chiao Tung Univ, Taiwan By: I-Chen Lin, Assistant Professor Textbook: E.Angel, Interactive Computer Graphics, 5 th Ed., Addison Wesley Ref: Hearn and

### University of Victoria CSC 305 Shading. Brian Wyvill 2016

University of Victoria CSC 305 Shading Brian Wyvill 2016 The illuminating Hemisphere Energy and Intensity Energy is the intensity integrated over the solid angle through which it acts. Intensity is not

### Introduction to Computer Graphics 7. Shading

Introduction to Computer Graphics 7. Shading National Chiao Tung Univ, Taiwan By: I-Chen Lin, Assistant Professor Textbook: Hearn and Baker, Computer Graphics, 3rd Ed., Prentice Hall Ref: E.Angel, Interactive

### Color and Light CSCI 4229/5229 Computer Graphics Fall 2016

Color and Light CSCI 4229/5229 Computer Graphics Fall 2016 Solar Spectrum Human Trichromatic Color Perception Color Blindness Present to some degree in 8% of males and about 0.5% of females due to mutation

### CS130 : Computer Graphics Lecture 8: Lighting and Shading. Tamar Shinar Computer Science & Engineering UC Riverside

CS130 : Computer Graphics Lecture 8: Lighting and Shading Tamar Shinar Computer Science & Engineering UC Riverside Why we need shading Suppose we build a model of a sphere using many polygons and color

### Color and Light CSCI 4229/5229 Computer Graphics Summer 2017

Color and Light CSCI 4229/5229 Computer Graphics Summer 2017 Solar Spectrum Human Trichromatic Color Perception Color Blindness Present to some degree in 8% of males and about 0.5% of females due to mutation

### Comp 410/510 Computer Graphics. Spring Shading

Comp 410/510 Computer Graphics Spring 2017 Shading Why we need shading Suppose we build a model of a sphere using many polygons and then color it using a fixed color. We get something like But we rather

Illumination & Shading Goals Introduce the types of light-material interactions Build a simple reflection model---the Phong model--- that can be used with real time graphics hardware Why we need Illumination

### Lighting and Materials

http://graphics.ucsd.edu/~henrik/images/global.html Lighting and Materials Introduction The goal of any graphics rendering app is to simulate light Trying to convince the viewer they are seeing the real

### Lighting affects appearance

Lighting affects appearance 1 Source emits photons Light And then some reach the eye/camera. Photons travel in a straight line When they hit an object they: bounce off in a new direction or are absorbed

### Fundamentals of Rendering - Reflectance Functions

Fundamentals of Rendering - Reflectance Functions Image Synthesis Torsten Möller Mike Phillips Reading Chapter 8 of Physically Based Rendering by Pharr&Humphreys Chapter 16 in Foley, van Dam et al. Chapter

### Experimental Validation of Analytical BRDF Models

Experimental Validation of Analytical BRDF Models Addy Ngan, Frédo Durand, Wojciech Matusik Massachusetts Institute of Technology Goal Evaluate and analyze the performance of analytical reflectance models

### surface: reflectance transparency, opacity, translucency orientation illumination: location intensity wavelength point-source, diffuse source

walters@buffalo.edu CSE 480/580 Lecture 18 Slide 1 Illumination and Shading Light reflected from nonluminous objects depends on: surface: reflectance transparency, opacity, translucency orientation illumination:

### Mach band effect. The Mach band effect increases the visual unpleasant representation of curved surface using flat shading.

Mach band effect The Mach band effect increases the visual unpleasant representation of curved surface using flat shading. A B 320322: Graphics and Visualization 456 Mach band effect The Mach band effect

### Shading I Computer Graphics I, Fall 2008

Shading I 1 Objectives Learn to shade objects ==> images appear threedimensional Introduce types of light-material interactions Build simple reflection model Phong model Can be used with real time graphics

### CPSC / Illumination and Shading

CPSC 599.64 / 601.64 Rendering Pipeline usually in one step modelling of geometry transformation into world coordinate system placement of cameras and light sources transformation into camera coordinate

### Computer Graphics. Illumination and Shading

() Illumination and Shading Dr. Ayman Eldeib Lighting So given a 3-D triangle and a 3-D viewpoint, we can set the right pixels But what color should those pixels be? If we re attempting to create a realistic

Illumination and Shading Illumination and Shading z Illumination Models y Ambient y Diffuse y Attenuation y Specular Reflection z Interpolated Shading Models y Flat, Gouraud, Phong y Problems CS4451: Fall

### Surface Reflection Models

Surface Reflection Models Frank Losasso (flosasso@nvidia.com) Introduction One of the fundamental topics in lighting is how the light interacts with the environment. The academic community has researched