Biomedical Image Analysis. Spatial Filtering

Size: px
Start display at page:

Download "Biomedical Image Analysis. Spatial Filtering"

Transcription

1 Biomedical Image Analysis Contents: Spatial Filtering The mechanics of Spatial Filtering Smoothing and sharpening filters BMIA 15 V. Roth & P. Cattin 1

2 The Mechanics of Spatial Filtering Spatial filter: (i) neighborhood N, (ii) predefined operation w Example: N (3 3): g(x, y) = w( 1, 1)f(x 1, y 1) + + w(1, 1)f(x + 1, y + 1) BMIA 15 V. Roth & P. Cattin 2

3 Correlation and Convolution Correlation: w(x, y) f(x, y) = a b w(s, t)f(x + s, y + t) s= a t= b Correlating w with unit impulse w rotated by 180 deg Convolving w with unit impulse w. Convolve = pre-rotate filter and correlate: w(x, y) f(x, y) = a b w(s, t)f(x s, y t) s= a t= b BMIA 15 V. Roth & P. Cattin 3

4 Correlation and Convolution BMIA 15 V. Roth & P. Cattin 4

5 Correlation and Convolution (2) BMIA 15 V. Roth & P. Cattin 5

6 Vector Representation Let w = (w 1,..., w mn ) T be the coefficients of a m n filter. Its response R is R = w 1 z 1 + w 2 z , +w mn z mn = w T z, where the zs are the corresponding image intensities. BMIA 15 V. Roth & P. Cattin 6

7 Smoothing Spatial Filters Box filter: averaging pixels over neighborhood. Generalization: weighted average. BMIA 15 V. Roth & P. Cattin 7

8 Smoothing Spatial Filters (2) BMIA 15 V. Roth & P. Cattin 8

9 Smoothing Spatial Filters (3) Typical application: blur image to get a gross representation of objects of interest BMIA 15 V. Roth & P. Cattin 9

10 Order-Statistic Filters Response based on ranking the pixels nonlinear. Median filter: response is median of of pixels in N. Salt-and-pepper noise good noise reduction with less blurring than linear filters. BMIA 15 V. Roth & P. Cattin 10

11 Median filter: example BMIA 15 V. Roth & P. Cattin 11

12 Sharpening Spatial Filters First order derivative of digital function: f x = f(x + 1) f(x). Second order: 2 f x 2 = f(x + 1) + f(x 1) 2f(x) Many ramp-like transitions in real images first order gives thick edges second order desirable for enhancing details. BMIA 15 V. Roth & P. Cattin 12

13 Sharpening Spatial Filters: Laplacian Simplest 2nd-order isotropic filter: Laplacian Digital functions: f = 2 f = 2 f x f y 2. f = f(x + 1, y) + f(x 1, y) + f(x, y + 1) + f(x, y 1) 4f(x, y). Additional diagonal directions: ( f) = f + f(x 1, y 1) + f(x 1, y + 1) + f(x + 1, y 1) + f(x + 1, y + 1) 4f(x, y). Sharpening: weighted sum of original + filtered: g(x, y) = f(x, y) + c [ f(x, y)]. BMIA 15 V. Roth & P. Cattin 13

14 Laplacian filter masks BMIA 15 V. Roth & P. Cattin 14

15 Unsharp Masking and Highboost Filtering 1. Blur image f(x, y). 2. Subtract blurred from original mask g m = f(x, y) f(x, y). 3. Add (weighted portion of) mask to original g(x, y) = f(x, y) + k g m (x, y). BMIA 15 V. Roth & P. Cattin 15

16 Highboost: example BMIA 15 V. Roth & P. Cattin 16

17 Sharpening Spatial Filters: Gradient Approximate gradient magnitude by sum of absolute values: M(x, y) f/ x + f/ y = g x + g y. Sobel masks: g x = (z 7 + 2z 8 + z 9 ) (z 1 + 2z 2 + z 3 ), g y = (z 3 + 2z 6 + z 9 ) (z 1 + 2z 4 + z 7 ) y z z z z z z6 x z 7 z 8 z BMIA 15 V. Roth & P. Cattin 17

18 Sharpening Spatial Filters: Gradient (2) BMIA 15 V. Roth & P. Cattin 18

19 Combining Spatial Filters BMIA 15 V. Roth & P. Cattin 19

20 Combining Spatial Filters (2) BMIA 15 V. Roth & P. Cattin 20

21 Biomedical Image Analysis Filtering in the Fourier Domain Contents: Transform Domain Properties of the 2D DFT Practical filtering in the frequency domain BMIA 15 V. Roth & P. Cattin 21

22 Fourier s Idea BMIA 15 V. Roth & P. Cattin 22

23 Filtering in the Transform Domain So far: transformations operated directly on pixels Sometimes it is easier to transform images, filter in the transform domain, and apply inverse transform back to the spatial domain. Important class of 2D-linear transforms: transformed image = input image forward transformation kernel T (u, v) = f(x, y)r(x, y, u, v) x y BMIA 15 V. Roth & P. Cattin 23

24 Filtering in the Transform Domain (2) Inverse transform back into spatial domain uses inverse transformation kernel f(x, y) = T (u, v)s(x, y, u, v) u v Transform and its inverse build a transform pair. Kernel is separable if r(x, y, u, v) = r 1 (x, u)r 2 (y, v) and symmetric if r 1 = r 2. BMIA 15 V. Roth & P. Cattin 24

25 2D-Fourier transform Kernels: r(x, y, u, v) = exp( i2π(ux/m + vy/n)) s(x, y, u, v) = 1/(MN) exp(i2π(ux/m + vy/n)) Discrete Fourier transform pair: T (u, v) = M 1 x=0 f(x, y) = 1 MN N 1 y=0 M 1 u=0 f(x, y) exp N 1 v=0 T (u, v) exp ( i2π( ux M + vy N ) ) ( i2π( ux M + vy N ) ) BMIA 15 V. Roth & P. Cattin 25

26 Sampling 1. Continuous function f(t). 2. Impulse train. 3. Sampled function f(t) = f(t)s T (t) = n= f(t)δ(t n T ). 4. Sample values by integration: f k = f(t)δ(t k T ) dt = f(k T ). BMIA 15 V. Roth & P. Cattin 26

27 FT of sampled function: FT of sampled functions F (µ) = F{ f(t)} = F{f(t)s T (t)} = F (µ) S(µ) = F (µ) 1 T = = 1 T F (µ) S(µ τ) dτ + n= F (µ n T ). + n= δ(µ n T ) Infinite periodic sequence of copies of F (µ), separation 1/ T. BMIA 15 V. Roth & P. Cattin 27

28 FT of sampled functions (2) 1. FT of band-limited function: FT is zero outside [ µ max, µ max ]. 2. Oversampling: copies separated by C µ > Critical sampling: C µ = 0 4. Undersampling: copies overlap. BMIA 15 V. Roth & P. Cattin 28

29 FT of sampled functions (3) F (µ) is continuous periodic function with period 1/ T. Entire transform characterized by one complete period! We can recover f(t) from single period by inverse FT! Sampling theorem: 1/ T > 2µ max. BMIA 15 V. Roth & P. Cattin 29

30 FT of sampled functions (4) BMIA 15 V. Roth & P. Cattin 30

31 Aliasing BMIA 15 V. Roth & P. Cattin 31

32 Aliasing (2) BMIA 15 V. Roth & P. Cattin 32

33 Properties of the 2D DFT Translation: f(x, y)e i2π(u 0x/M+v 0 y/n) F (u u 0, v v 0 ), f(x x 0, y y 0 ) F (u, v)e i2π(x 0u/M+y 0 v/n). Rotation: x = r cos θ, y = r sin θ, u = ω cos φ, v = ω sin φ: f(r, θ + θ 0 ) F (ω, φ + θ 0 ). BMIA 15 V. Roth & P. Cattin 33

34 2D DFT Example BMIA 15 V. Roth & P. Cattin 34

35 Centering the DFT Centering in 2D: f(x, y)( 1) x+y F (u M/2, v N/2). BMIA 15 V. Roth & P. Cattin 35

36 Padding: 1D example BMIA 15 V. Roth & P. Cattin 36

37 Padding: 2D example BMIA 15 V. Roth & P. Cattin 37

38 Padding of a frequency domain filter Our goal: define filters directly in the frequency domain. What about padding?? One strategy: Given: image of size M N. Construct filter of size M N. Compute IFT of filter spatial filter mask. Pad spatial filter. Use FT to return to frequency domain. BMIA 15 V. Roth & P. Cattin 38

39 Padding of a frequency domain filter (2) FT of ideal low pass (box): sinc, frequency components extending to! Ringing artifacts. BMIA 15 V. Roth & P. Cattin 39

40 Practical filtering in the frequency domain Given: image of size M N. Select P = 2M, Q = 2M. Pad image to size P Q (appending zeros). Multiply by ( 1) x+y to center the FT. Compute DFT F (u, v). Construct (real,symmetric) filter H(u, v) of size P Q. Multiply G(u, v) = F (u, v) H(u, v) g p (x, y) = real { F 1 [G(u, v)] } ( 1) x+y. Crop to top left quadrant. BMIA 15 V. Roth & P. Cattin 40

41 Filtering in the frequency domain (2) BMIA 15 V. Roth & P. Cattin 41

42 Spatial- vs Frequency Domain Filtering BMIA 15 V. Roth & P. Cattin 42

43 Spatial- vs Frequency Domain Filtering BMIA 15 V. Roth & P. Cattin 43

44 Smoothing in the frequency domain BMIA 15 V. Roth & P. Cattin 44

45 Smoothing: ideal lowpass BMIA 15 V. Roth & P. Cattin 45

46 Smoothing: Butterworth lowpass 1 H(u, v) = 1 + [D(u, v)/d 0 ] 2n, D(u, v)2 = u 2 + v 2, (assuming centered filter) BMIA 15 V. Roth & P. Cattin 46

47 Smoothing: Butterworth lowpass (2) BMIA 15 V. Roth & P. Cattin 47

48 Smoothing: Gaussian lowpass H(u, v) = exp( 1 2 D(u, v)2 /D 2 0) BMIA 15 V. Roth & P. Cattin 48

49 Smoothing in the frequency domain (4) BMIA 15 V. Roth & P. Cattin 49

50 Sharpening in the frequency domain BMIA 15 V. Roth & P. Cattin 50

51 Sharpening in the frequency domain (2) BMIA 15 V. Roth & P. Cattin 51

52 Sharpening in the frequency domain (3) BMIA 15 V. Roth & P. Cattin 52

53 Sharpening in the frequency domain (4) BMIA 15 V. Roth & P. Cattin 53

54 Sharpening in the frequency domain (5) BMIA 15 V. Roth & P. Cattin 54

55 Sharpening in the frequency domain (6) BMIA 15 V. Roth & P. Cattin 55

Chapter 3: Intensity Transformations and Spatial Filtering

Chapter 3: Intensity Transformations and Spatial Filtering Chapter 3: Intensity Transformations and Spatial Filtering 3.1 Background 3.2 Some basic intensity transformation functions 3.3 Histogram processing 3.4 Fundamentals of spatial filtering 3.5 Smoothing

More information

3.4& Fundamentals& mechanics of spatial filtering(page 166) Spatial filter(mask) Filter coefficients Filter response

3.4& Fundamentals& mechanics of spatial filtering(page 166) Spatial filter(mask) Filter coefficients Filter response Image enhancement in the spatial domain(3.4-3.7) SLIDE 1/21 3.4& 3.4.1 Fundamentals& mechanics of spatial filtering(page 166) Spatial filter(mask) Filter coefficients Filter response Example: 3 3mask Linear

More information

Biomedical Image Analysis. Point, Edge and Line Detection

Biomedical Image Analysis. Point, Edge and Line Detection Biomedical Image Analysis Point, Edge and Line Detection Contents: Point and line detection Advanced edge detection: Canny Local/regional edge processing Global processing: Hough transform BMIA 15 V. Roth

More information

Outlines. Medical Image Processing Using Transforms. 4. Transform in image space

Outlines. Medical Image Processing Using Transforms. 4. Transform in image space Medical Image Processing Using Transforms Hongmei Zhu, Ph.D Department of Mathematics & Statistics York University hmzhu@yorku.ca Outlines Image Quality Gray value transforms Histogram processing Transforms

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Jen-Hui Chuang Department of Computer Science National Chiao Tung University 2 3 Image Enhancement in the Spatial Domain 3.1 Background 3.4 Enhancement Using Arithmetic/Logic Operations

More information

What will we learn? Neighborhood processing. Convolution and correlation. Neighborhood processing. Chapter 10 Neighborhood Processing

What will we learn? Neighborhood processing. Convolution and correlation. Neighborhood processing. Chapter 10 Neighborhood Processing What will we learn? Lecture Slides ME 4060 Machine Vision and Vision-based Control Chapter 10 Neighborhood Processing By Dr. Debao Zhou 1 What is neighborhood processing and how does it differ from point

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 WRI C225 Lecture 04 130131 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Histogram Equalization Image Filtering Linear

More information

Image Processing. Traitement d images. Yuliya Tarabalka Tel.

Image Processing. Traitement d images. Yuliya Tarabalka  Tel. Traitement d images Yuliya Tarabalka yuliya.tarabalka@hyperinet.eu yuliya.tarabalka@gipsa-lab.grenoble-inp.fr Tel. 04 76 82 62 68 Noise reduction Image restoration Restoration attempts to reconstruct an

More information

EEM 463 Introduction to Image Processing. Week 3: Intensity Transformations

EEM 463 Introduction to Image Processing. Week 3: Intensity Transformations EEM 463 Introduction to Image Processing Week 3: Intensity Transformations Fall 2013 Instructor: Hatice Çınar Akakın, Ph.D. haticecinarakakin@anadolu.edu.tr Anadolu University Enhancement Domains Spatial

More information

Classification of image operations. Image enhancement (GW-Ch. 3) Point operations. Neighbourhood operation

Classification of image operations. Image enhancement (GW-Ch. 3) Point operations. Neighbourhood operation Image enhancement (GW-Ch. 3) Classification of image operations Process of improving image quality so that the result is more suitable for a specific application. contrast stretching histogram processing

More information

Sharpening through spatial filtering

Sharpening through spatial filtering Sharpening through spatial filtering Stefano Ferrari Università degli Studi di Milano stefano.ferrari@unimi.it Methods for Image Processing academic year 2017 2018 Sharpening The term sharpening is referred

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu ECG782: Multidimensional Digital Signal Processing Spring 2014 TTh 14:30-15:45 CBC C313 Lecture 03 Image Processing Basics 13/01/28 http://www.ee.unlv.edu/~b1morris/ecg782/

More information

Digital Image Processing. Lecture 6

Digital Image Processing. Lecture 6 Digital Image Processing Lecture 6 (Enhancement in the Frequency domain) Bu-Ali Sina University Computer Engineering Dep. Fall 2016 Image Enhancement In The Frequency Domain Outline Jean Baptiste Joseph

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu ECG782: Multidimensional Digital Signal Processing Spatial Domain Filtering http://www.ee.unlv.edu/~b1morris/ecg782/ 2 Outline Background Intensity

More information

Point and Spatial Processing

Point and Spatial Processing Filtering 1 Point and Spatial Processing Spatial Domain g(x,y) = T[ f(x,y) ] f(x,y) input image g(x,y) output image T is an operator on f Defined over some neighborhood of (x,y) can operate on a set of

More information

Lecture 5: Frequency Domain Transformations

Lecture 5: Frequency Domain Transformations #1 Lecture 5: Frequency Domain Transformations Saad J Bedros sbedros@umn.edu From Last Lecture Spatial Domain Transformation Point Processing for Enhancement Area/Mask Processing Transformations Image

More information

Lecture 4: Image Processing

Lecture 4: Image Processing Lecture 4: Image Processing Definitions Many graphics techniques that operate only on images Image processing: operations that take images as input, produce images as output In its most general form, an

More information

SYDE 575: Introduction to Image Processing

SYDE 575: Introduction to Image Processing SYDE 575: Introduction to Image Processing Image Enhancement and Restoration in Spatial Domain Chapter 3 Spatial Filtering Recall 2D discrete convolution g[m, n] = f [ m, n] h[ m, n] = f [i, j ] h[ m i,

More information

Lecture 4: Spatial Domain Transformations

Lecture 4: Spatial Domain Transformations # Lecture 4: Spatial Domain Transformations Saad J Bedros sbedros@umn.edu Reminder 2 nd Quiz on the manipulator Part is this Fri, April 7 205, :5 AM to :0 PM Open Book, Open Notes, Focus on the material

More information

Computer Vision and Graphics (ee2031) Digital Image Processing I

Computer Vision and Graphics (ee2031) Digital Image Processing I Computer Vision and Graphics (ee203) Digital Image Processing I Dr John Collomosse J.Collomosse@surrey.ac.uk Centre for Vision, Speech and Signal Processing University of Surrey Learning Outcomes After

More information

Filtering and Enhancing Images

Filtering and Enhancing Images KECE471 Computer Vision Filtering and Enhancing Images Chang-Su Kim Chapter 5, Computer Vision by Shapiro and Stockman Note: Some figures and contents in the lecture notes of Dr. Stockman are used partly.

More information

Fourier transform of images

Fourier transform of images Fourier transform of images Stefano Ferrari Università degli Studi di Milano stefano.ferrari@unimi.it Methods for Image Processing academic year 2014 2015 Extension to bidimensional domain The concepts

More information

Digital Image Processing. Image Enhancement - Filtering

Digital Image Processing. Image Enhancement - Filtering Digital Image Processing Image Enhancement - Filtering Derivative Derivative is defined as a rate of change. Discrete Derivative Finite Distance Example Derivatives in 2-dimension Derivatives of Images

More information

2D Image Processing INFORMATIK. Kaiserlautern University. DFKI Deutsches Forschungszentrum für Künstliche Intelligenz

2D Image Processing INFORMATIK. Kaiserlautern University.   DFKI Deutsches Forschungszentrum für Künstliche Intelligenz 2D Image Processing - Filtering Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de 1 What is image filtering?

More information

Computer Vision 2. SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung. Computer Vision 2 Dr. Benjamin Guthier

Computer Vision 2. SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung. Computer Vision 2 Dr. Benjamin Guthier Computer Vision 2 SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung Computer Vision 2 Dr. Benjamin Guthier 1. IMAGE PROCESSING Computer Vision 2 Dr. Benjamin Guthier Content of this Chapter Non-linear

More information

Image Enhancement in Spatial Domain (Chapter 3)

Image Enhancement in Spatial Domain (Chapter 3) Image Enhancement in Spatial Domain (Chapter 3) Yun Q. Shi shi@njit.edu Fall 11 Mask/Neighborhood Processing ECE643 2 1 Point Processing ECE643 3 Image Negatives S = (L 1) - r (3.2-1) Point processing

More information

Digital Image Processing. Prof. P. K. Biswas. Department of Electronic & Electrical Communication Engineering

Digital Image Processing. Prof. P. K. Biswas. Department of Electronic & Electrical Communication Engineering Digital Image Processing Prof. P. K. Biswas Department of Electronic & Electrical Communication Engineering Indian Institute of Technology, Kharagpur Lecture - 21 Image Enhancement Frequency Domain Processing

More information

CHAPTER 3 IMAGE ENHANCEMENT IN THE SPATIAL DOMAIN

CHAPTER 3 IMAGE ENHANCEMENT IN THE SPATIAL DOMAIN CHAPTER 3 IMAGE ENHANCEMENT IN THE SPATIAL DOMAIN CHAPTER 3: IMAGE ENHANCEMENT IN THE SPATIAL DOMAIN Principal objective: to process an image so that the result is more suitable than the original image

More information

Chapter 3 Image Enhancement in the Spatial Domain

Chapter 3 Image Enhancement in the Spatial Domain Chapter 3 Image Enhancement in the Spatial Domain Yinghua He School o Computer Science and Technology Tianjin University Image enhancement approaches Spatial domain image plane itsel Spatial domain methods

More information

C2: Medical Image Processing Linwei Wang

C2: Medical Image Processing Linwei Wang C2: Medical Image Processing 4005-759 Linwei Wang Content Enhancement Improve visual quality of the image When the image is too dark, too light, or has low contrast Highlight certain features of the image

More information

BME I5000: Biomedical Imaging

BME I5000: Biomedical Imaging 1 Lucas Parra, CCNY BME I5000: Biomedical Imaging Lecture 11 Point Spread Function, Inverse Filtering, Wiener Filtering, Sharpening,... Lucas C. Parra, parra@ccny.cuny.edu Blackboard: http://cityonline.ccny.cuny.edu/

More information

Computer Vision I. Announcements. Fourier Tansform. Efficient Implementation. Edge and Corner Detection. CSE252A Lecture 13.

Computer Vision I. Announcements. Fourier Tansform. Efficient Implementation. Edge and Corner Detection. CSE252A Lecture 13. Announcements Edge and Corner Detection HW3 assigned CSE252A Lecture 13 Efficient Implementation Both, the Box filter and the Gaussian filter are separable: First convolve each row of input image I with

More information

JNTUWORLD. 4. Prove that the average value of laplacian of the equation 2 h = ((r2 σ 2 )/σ 4 ))exp( r 2 /2σ 2 ) is zero. [16]

JNTUWORLD. 4. Prove that the average value of laplacian of the equation 2 h = ((r2 σ 2 )/σ 4 ))exp( r 2 /2σ 2 ) is zero. [16] Code No: 07A70401 R07 Set No. 2 1. (a) What are the basic properties of frequency domain with respect to the image processing. (b) Define the terms: i. Impulse function of strength a ii. Impulse function

More information

Announcements. Edge Detection. An Isotropic Gaussian. Filters are templates. Assignment 2 on tracking due this Friday Midterm: Tuesday, May 3.

Announcements. Edge Detection. An Isotropic Gaussian. Filters are templates. Assignment 2 on tracking due this Friday Midterm: Tuesday, May 3. Announcements Edge Detection Introduction to Computer Vision CSE 152 Lecture 9 Assignment 2 on tracking due this Friday Midterm: Tuesday, May 3. Reading from textbook An Isotropic Gaussian The picture

More information

Fall 2015 Dr. Michael J. Reale

Fall 2015 Dr. Michael J. Reale CS 49: Computer Vision MIDTERM REVIEW Fall 25 Dr. Michael J. Reale Midterm Review The Midterm will cover: REVIEW slide decks (inclusive) Quizzes through 4 (inclusive) REVIEW : INTRODUCTION Basic Terms

More information

Lecture: Edge Detection

Lecture: Edge Detection CMPUT 299 Winter 2007 Lecture: Edge Detection Irene Cheng Overview. What is a pixel in an image? 2. How does Photoshop, + human assistance, detect an edge in a picture/photograph? 3. Behind Photoshop -

More information

Image Restoration and Reconstruction

Image Restoration and Reconstruction Image Restoration and Reconstruction Image restoration Objective process to improve an image, as opposed to the subjective process of image enhancement Enhancement uses heuristics to improve the image

More information

Anno accademico 2006/2007. Davide Migliore

Anno accademico 2006/2007. Davide Migliore Robotica Anno accademico 6/7 Davide Migliore migliore@elet.polimi.it Today What is a feature? Some useful information The world of features: Detectors Edges detection Corners/Points detection Descriptors?!?!?

More information

Digital Image Processing. Image Enhancement in the Frequency Domain

Digital Image Processing. Image Enhancement in the Frequency Domain Digital Image Processing Image Enhancement in the Frequency Domain Topics Frequency Domain Enhancements Fourier Transform Convolution High Pass Filtering in Frequency Domain Low Pass Filtering in Frequency

More information

Vivekananda. Collegee of Engineering & Technology. Question and Answers on 10CS762 /10IS762 UNIT- 5 : IMAGE ENHANCEMENT.

Vivekananda. Collegee of Engineering & Technology. Question and Answers on 10CS762 /10IS762 UNIT- 5 : IMAGE ENHANCEMENT. Vivekananda Collegee of Engineering & Technology Question and Answers on 10CS762 /10IS762 UNIT- 5 : IMAGE ENHANCEMENT Dept. Prepared by Harivinod N Assistant Professor, of Computer Science and Engineering,

More information

Review for Exam I, EE552 2/2009

Review for Exam I, EE552 2/2009 Gonale & Woods Review or Eam I, EE55 /009 Elements o Visual Perception Image Formation in the Ee and relation to a photographic camera). Brightness Adaption and Discrimination. Light and the Electromagnetic

More information

Edge detection. Stefano Ferrari. Università degli Studi di Milano Elaborazione delle immagini (Image processing I)

Edge detection. Stefano Ferrari. Università degli Studi di Milano Elaborazione delle immagini (Image processing I) Edge detection Stefano Ferrari Università degli Studi di Milano stefano.ferrari@unimi.it Elaborazione delle immagini (Image processing I) academic year 2011 2012 Image segmentation Several image processing

More information

Neighbourhood Operations

Neighbourhood Operations Neighbourhood Operations Neighbourhood operations simply operate on a larger neighbourhood o piels than point operations Origin Neighbourhoods are mostly a rectangle around a central piel Any size rectangle

More information

Image Restoration and Reconstruction

Image Restoration and Reconstruction Image Restoration and Reconstruction Image restoration Objective process to improve an image Recover an image by using a priori knowledge of degradation phenomenon Exemplified by removal of blur by deblurring

More information

Image processing. Reading. What is an image? Brian Curless CSE 457 Spring 2017

Image processing. Reading. What is an image? Brian Curless CSE 457 Spring 2017 Reading Jain, Kasturi, Schunck, Machine Vision. McGraw-Hill, 1995. Sections 4.2-4.4, 4.5(intro), 4.5.5, 4.5.6, 5.1-5.4. [online handout] Image processing Brian Curless CSE 457 Spring 2017 1 2 What is an

More information

Frequency analysis, pyramids, texture analysis, applications (face detection, category recognition)

Frequency analysis, pyramids, texture analysis, applications (face detection, category recognition) Frequency analysis, pyramids, texture analysis, applications (face detection, category recognition) Outline Measuring frequencies in images: Definitions, properties Sampling issues Relation with Gaussian

More information

ME/CS 132: Introduction to Vision-based Robot Navigation! Low-level Image Processing" Larry Matthies"

ME/CS 132: Introduction to Vision-based Robot Navigation! Low-level Image Processing Larry Matthies ME/CS 132: Introduction to Vision-based Robot Navigation! Low-level Image Processing" Larry Matthies" lhm@jpl.nasa.gov, 818-354-3722" Announcements" First homework grading is done! Second homework is due

More information

Image processing in frequency Domain

Image processing in frequency Domain Image processing in frequency Domain Introduction to Frequency Domain Deal with images in: -Spatial domain -Frequency domain Frequency Domain In the frequency or Fourier domain, the value and location

More information

Digital Image Processing, 2nd ed. Digital Image Processing, 2nd ed. The principal objective of enhancement

Digital Image Processing, 2nd ed. Digital Image Processing, 2nd ed. The principal objective of enhancement Chapter 3 Image Enhancement in the Spatial Domain The principal objective of enhancement to process an image so that the result is more suitable than the original image for a specific application. Enhancement

More information

Lecture 2: 2D Fourier transforms and applications

Lecture 2: 2D Fourier transforms and applications Lecture 2: 2D Fourier transforms and applications B14 Image Analysis Michaelmas 2017 Dr. M. Fallon Fourier transforms and spatial frequencies in 2D Definition and meaning The Convolution Theorem Applications

More information

INTENSITY TRANSFORMATION AND SPATIAL FILTERING

INTENSITY TRANSFORMATION AND SPATIAL FILTERING 1 INTENSITY TRANSFORMATION AND SPATIAL FILTERING Lecture 3 Image Domains 2 Spatial domain Refers to the image plane itself Image processing methods are based and directly applied to image pixels Transform

More information

Image Processing (2) Point Operations and Local Spatial Operations

Image Processing (2) Point Operations and Local Spatial Operations Intelligent Control Systems Image Processing (2) Point Operations and Local Spatial Operations Shingo Kagami Graduate School of Information Sciences, Tohoku University swk(at)ic.is.tohoku.ac.jp http://www.ic.is.tohoku.ac.jp/ja/swk/

More information

EELE 5310: Digital Image Processing. Lecture 2 Ch. 3. Eng. Ruba A. Salamah. iugaza.edu

EELE 5310: Digital Image Processing. Lecture 2 Ch. 3. Eng. Ruba A. Salamah. iugaza.edu EELE 5310: Digital Image Processing Lecture 2 Ch. 3 Eng. Ruba A. Salamah Rsalamah @ iugaza.edu 1 Image Enhancement in the Spatial Domain 2 Lecture Reading 3.1 Background 3.2 Some Basic Gray Level Transformations

More information

Digital Image Processing, 3rd ed.

Digital Image Processing, 3rd ed. Chapter 6 Color Image Processing Chapter 6 Color Image Processing Pseudocolor processing (vs. truecolor) Pseudocolor = false color Is the process of assigning color to a grayscale (or a set of grayscale)

More information

EELE 5310: Digital Image Processing. Ch. 3. Eng. Ruba A. Salamah. iugaza.edu

EELE 5310: Digital Image Processing. Ch. 3. Eng. Ruba A. Salamah. iugaza.edu EELE 531: Digital Image Processing Ch. 3 Eng. Ruba A. Salamah Rsalamah @ iugaza.edu 1 Image Enhancement in the Spatial Domain 2 Lecture Reading 3.1 Background 3.2 Some Basic Gray Level Transformations

More information

COMP 9517 Computer Vision

COMP 9517 Computer Vision COMP 9517 Computer Vision Frequency Domain Techniques 1 Frequency Versus Spa

More information

PSD2B Digital Image Processing. Unit I -V

PSD2B Digital Image Processing. Unit I -V PSD2B Digital Image Processing Unit I -V Syllabus- Unit 1 Introduction Steps in Image Processing Image Acquisition Representation Sampling & Quantization Relationship between pixels Color Models Basics

More information

Babu Madhav Institute of Information Technology Years Integrated M.Sc.(IT)(Semester - 7)

Babu Madhav Institute of Information Technology Years Integrated M.Sc.(IT)(Semester - 7) 5 Years Integrated M.Sc.(IT)(Semester - 7) 060010707 Digital Image Processing UNIT 1 Introduction to Image Processing Q: 1 Answer in short. 1. What is digital image? 1. Define pixel or picture element?

More information

Digital Image Processing. Image Enhancement in the Spatial Domain (Chapter 4)

Digital Image Processing. Image Enhancement in the Spatial Domain (Chapter 4) Digital Image Processing Image Enhancement in the Spatial Domain (Chapter 4) Objective The principal objective o enhancement is to process an images so that the result is more suitable than the original

More information

Efficient Nonlinear Image Processing Algorithms

Efficient Nonlinear Image Processing Algorithms Efficient Nonlinear Image Processing Algorithms SANJIT K. MITRA Department of Electrical & Computer Engineering University of California Santa Barbara, California Outline Introduction Quadratic Volterra

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Third Edition Rafael C. Gonzalez University of Tennessee Richard E. Woods MedData Interactive PEARSON Prentice Hall Pearson Education International Contents Preface xv Acknowledgments

More information

Biomedical Image Analysis. Homomorphic Filtering and applications to PET

Biomedical Image Analysis. Homomorphic Filtering and applications to PET Biomedical Image Analysis Homomorphic Filtering and applications to PET Contents: Image enhancement and correction Brightness normalization and contrast enhancement Applications to SPECT BMIA 15 V. Roth

More information

Image Enhancement: To improve the quality of images

Image Enhancement: To improve the quality of images Image Enhancement: To improve the quality of images Examples: Noise reduction (to improve SNR or subjective quality) Change contrast, brightness, color etc. Image smoothing Image sharpening Modify image

More information

Digital Image Processing. Week 2

Digital Image Processing. Week 2 Geometric spatial transformations and image registration - modify the spatial relationship between pixels in an image - these transformations are often called rubber-sheet transformations (analogous to

More information

Fourier Transform in Image Processing. CS/BIOEN 6640 U of Utah Guido Gerig (slides modified from Marcel Prastawa 2012)

Fourier Transform in Image Processing. CS/BIOEN 6640 U of Utah Guido Gerig (slides modified from Marcel Prastawa 2012) Fourier Transform in Image Processing CS/BIOEN 6640 U of Utah Guido Gerig (slides modified from Marcel Prastawa 2012) 1D: Common Transform Pairs Summary source FT Properties: Convolution See book DIP 4.2.5:

More information

Lecture 6: Edge Detection

Lecture 6: Edge Detection #1 Lecture 6: Edge Detection Saad J Bedros sbedros@umn.edu Review From Last Lecture Options for Image Representation Introduced the concept of different representation or transformation Fourier Transform

More information

Noise Model. Important Noise Probability Density Functions (Cont.) Important Noise Probability Density Functions

Noise Model. Important Noise Probability Density Functions (Cont.) Important Noise Probability Density Functions Others -- Noise Removal Techniques -- Edge Detection Techniques -- Geometric Operations -- Color Image Processing -- Color Spaces Xiaojun Qi Noise Model The principal sources of noise in digital images

More information

Computer Vision. Fourier Transform. 20 January Copyright by NHL Hogeschool and Van de Loosdrecht Machine Vision BV All rights reserved

Computer Vision. Fourier Transform. 20 January Copyright by NHL Hogeschool and Van de Loosdrecht Machine Vision BV All rights reserved Van de Loosdrecht Machine Vision Computer Vision Fourier Transform 20 January 2017 Copyright 2001 2017 by NHL Hogeschool and Van de Loosdrecht Machine Vision BV All rights reserved j.van.de.loosdrecht@nhl.nl,

More information

Image Processing. BITS Pilani. Dr Jagadish Nayak. Dubai Campus

Image Processing. BITS Pilani. Dr Jagadish Nayak. Dubai Campus Image Processing BITS Pilani Dubai Campus Dr Jagadish Nayak Image Segmentation BITS Pilani Dubai Campus Fundamentals Let R be the entire spatial region occupied by an image Process that partitions R into

More information

Filtering Images. Contents

Filtering Images. Contents Image Processing and Data Visualization with MATLAB Filtering Images Hansrudi Noser June 8-9, 010 UZH, Multimedia and Robotics Summer School Noise Smoothing Filters Sigmoid Filters Gradient Filters Contents

More information

Aliasing and Antialiasing. ITCS 4120/ Aliasing and Antialiasing

Aliasing and Antialiasing. ITCS 4120/ Aliasing and Antialiasing Aliasing and Antialiasing ITCS 4120/5120 1 Aliasing and Antialiasing What is Aliasing? Errors and Artifacts arising during rendering, due to the conversion from a continuously defined illumination field

More information

EEE 512 ADVANCED DIGITAL SIGNAL AND IMAGE PROCESSING

EEE 512 ADVANCED DIGITAL SIGNAL AND IMAGE PROCESSING UNIVERSITI SAINS MALAYSIA Semester I Examination Academic Session 27/28 October/November 27 EEE 52 ADVANCED DIGITAL SIGNAL AND IMAGE PROCESSING Time : 3 hours INSTRUCTION TO CANDIDATE: Please ensure that

More information

Edge detection. Gradient-based edge operators

Edge detection. Gradient-based edge operators Edge detection Gradient-based edge operators Prewitt Sobel Roberts Laplacian zero-crossings Canny edge detector Hough transform for detection of straight lines Circle Hough Transform Digital Image Processing:

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Lecture # 6 Image Enhancement in Spatial Domain- II ALI JAVED Lecturer SOFTWARE ENGINEERING DEPARTMENT U.E.T TAXILA Email:: ali.javed@uettaxila.edu.pk Office Room #:: 7 Local/

More information

Tutorial 5. Jun Xu, Teaching Asistant March 2, COMP4134 Biometrics Authentication

Tutorial 5. Jun Xu, Teaching Asistant March 2, COMP4134 Biometrics Authentication Tutorial 5 Jun Xu, Teaching Asistant nankaimathxujun@gmail.com COMP4134 Biometrics Authentication March 2, 2017 Table of Contents Problems Problem 1: Answer The Questions Problem 2: Indeterminate Region

More information

Image Processing Lecture 10

Image Processing Lecture 10 Image Restoration Image restoration attempts to reconstruct or recover an image that has been degraded by a degradation phenomenon. Thus, restoration techniques are oriented toward modeling the degradation

More information

Filtering and Edge Detection. Computer Vision I. CSE252A Lecture 10. Announcement

Filtering and Edge Detection. Computer Vision I. CSE252A Lecture 10. Announcement Filtering and Edge Detection CSE252A Lecture 10 Announcement HW1graded, will be released later today HW2 assigned, due Wed. Nov. 7 1 Image formation: Color Channel k " $ $ # $ I r I g I b % " ' $ ' = (

More information

CoE4TN4 Image Processing. Chapter 5 Image Restoration and Reconstruction

CoE4TN4 Image Processing. Chapter 5 Image Restoration and Reconstruction CoE4TN4 Image Processing Chapter 5 Image Restoration and Reconstruction Image Restoration Similar to image enhancement, the ultimate goal of restoration techniques is to improve an image Restoration: a

More information

EECS 556 Image Processing W 09. Image enhancement. Smoothing and noise removal Sharpening filters

EECS 556 Image Processing W 09. Image enhancement. Smoothing and noise removal Sharpening filters EECS 556 Image Processing W 09 Image enhancement Smoothing and noise removal Sharpening filters What is image processing? Image processing is the application of 2D signal processing methods to images Image

More information

Image Processing. Daniel Danilov July 13, 2015

Image Processing. Daniel Danilov July 13, 2015 Image Processing Daniel Danilov July 13, 2015 Overview 1. Principle of digital images and filters 2. Basic examples of filters 3. Edge detection and segmentation 1 / 25 Motivation For what image processing

More information

Unit - I Computer vision Fundamentals

Unit - I Computer vision Fundamentals Unit - I Computer vision Fundamentals It is an area which concentrates on mimicking human vision systems. As a scientific discipline, computer vision is concerned with the theory behind artificial systems

More information

Point Operations and Spatial Filtering

Point Operations and Spatial Filtering Point Operations and Spatial Filtering Ranga Rodrigo November 3, 20 /02 Point Operations Histogram Processing 2 Spatial Filtering Smoothing Spatial Filters Sharpening Spatial Filters 3 Edge Detection Line

More information

Computer Vision: 4. Filtering. By I-Chen Lin Dept. of CS, National Chiao Tung University

Computer Vision: 4. Filtering. By I-Chen Lin Dept. of CS, National Chiao Tung University Computer Vision: 4. Filtering By I-Chen Lin Dept. of CS, National Chiao Tung University Outline Impulse response and convolution. Linear filter and image pyramid. Textbook: David A. Forsyth and Jean Ponce,

More information

Linear Operations Using Masks

Linear Operations Using Masks Linear Operations Using Masks Masks are patterns used to define the weights used in averaging the neighbors of a pixel to compute some result at that pixel Expressing linear operations on neighborhoods

More information

Other Linear Filters CS 211A

Other Linear Filters CS 211A Other Linear Filters CS 211A Slides from Cornelia Fermüller and Marc Pollefeys Edge detection Convert a 2D image into a set of curves Extracts salient features of the scene More compact than pixels Origin

More information

Texture Segmentation Using Multichannel Gabor Filtering

Texture Segmentation Using Multichannel Gabor Filtering IOSR Journal of Electronics and Communication Engineering (IOSRJECE) ISSN : 2278-2834 Volume 2, Issue 6 (Sep-Oct 2012), PP 22-26 Texture Segmentation Using Multichannel Gabor Filtering M. Sivalingamaiah

More information

Aliasing. Can t draw smooth lines on discrete raster device get staircased lines ( jaggies ):

Aliasing. Can t draw smooth lines on discrete raster device get staircased lines ( jaggies ): (Anti)Aliasing and Image Manipulation for (y = 0; y < Size; y++) { for (x = 0; x < Size; x++) { Image[x][y] = 7 + 8 * sin((sqr(x Size) + SQR(y Size)) / 3.0); } } // Size = Size / ; Aliasing Can t draw

More information

Image Filtering, Warping and Sampling

Image Filtering, Warping and Sampling Image Filtering, Warping and Sampling Connelly Barnes CS 4810 University of Virginia Acknowledgement: slides by Jason Lawrence, Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David

More information

T Digital Image Processing P (5 cr)

T Digital Image Processing P (5 cr) T-61.5100 Digital Image Processing P (5 cr) Autumn 2015 Lecture slides: Jorma Laaksonen LECTURE SLIDES 2015 for self study LECTURE #1........................... 8 1. Course arrangements.....................

More information

Edge detection. Convert a 2D image into a set of curves. Extracts salient features of the scene More compact than pixels

Edge detection. Convert a 2D image into a set of curves. Extracts salient features of the scene More compact than pixels Edge Detection Edge detection Convert a 2D image into a set of curves Extracts salient features of the scene More compact than pixels Origin of Edges surface normal discontinuity depth discontinuity surface

More information

Multimedia Computing: Algorithms, Systems, and Applications: Edge Detection

Multimedia Computing: Algorithms, Systems, and Applications: Edge Detection Multimedia Computing: Algorithms, Systems, and Applications: Edge Detection By Dr. Yu Cao Department of Computer Science The University of Massachusetts Lowell Lowell, MA 01854, USA Part of the slides

More information

Filtering in frequency domain

Filtering in frequency domain Filtering in frequency domain FFT FFT = Inverse FFT Filtering in frequency domain Can be faster than filtering in spatial domain (for large filters) Can help understand effect of filter Algorithm: 1. Convert

More information

image filtration i Ole-Johan Skrede INF Digital Image Processing

image filtration i Ole-Johan Skrede INF Digital Image Processing image filtration i Ole-Johan Skrede 22.02.2017 INF2310 - Digital Image Processing Department of Informatics The Faculty of Mathematics and Natural Sciences University of Oslo After original slides by Fritz

More information

Neighborhood operations

Neighborhood operations Neighborhood operations Generate an output pixel on the basis of the pixel and its neighbors Often involve the convolution of an image with a filter kernel or mask g ( i, j) = f h = f ( i m, j n) h( m,

More information

Image restoration. Lecture 14. Milan Gavrilovic Centre for Image Analysis Uppsala University

Image restoration. Lecture 14. Milan Gavrilovic Centre for Image Analysis Uppsala University Image restoration Lecture 14 Milan Gavrilovic milan@cb.uu.se Centre for Image Analysis Uppsala University Computer Assisted Image Analysis 2009-05-08 M. Gavrilovic (Uppsala University) L14 Image restoration

More information

Lecture 7: Most Common Edge Detectors

Lecture 7: Most Common Edge Detectors #1 Lecture 7: Most Common Edge Detectors Saad Bedros sbedros@umn.edu Edge Detection Goal: Identify sudden changes (discontinuities) in an image Intuitively, most semantic and shape information from the

More information

CMPUT 206. Introduction to Digital Image Processing

CMPUT 206. Introduction to Digital Image Processing CMPUT 206 Introduction to Digital Image Processing Overview. What is a pixel in an image? 2. How does Photoshop, + human assistance, detect an edge in a picture/photograph? 3. Behind Photoshop - How does

More information

Lecture Image Enhancement and Spatial Filtering

Lecture Image Enhancement and Spatial Filtering Lecture Image Enhancement and Spatial Filtering Harvey Rhody Chester F. Carlson Center for Imaging Science Rochester Institute of Technology rhody@cis.rit.edu September 29, 2005 Abstract Applications of

More information

Reading. 2. Fourier analysis and sampling theory. Required: Watt, Section 14.1 Recommended:

Reading. 2. Fourier analysis and sampling theory. Required: Watt, Section 14.1 Recommended: Reading Required: Watt, Section 14.1 Recommended: 2. Fourier analysis and sampling theory Ron Bracewell, The Fourier Transform and Its Applications, McGraw-Hill. Don P. Mitchell and Arun N. Netravali,

More information

Segmentation algorithm for monochrome images generally are based on one of two basic properties of gray level values: discontinuity and similarity.

Segmentation algorithm for monochrome images generally are based on one of two basic properties of gray level values: discontinuity and similarity. Chapter - 3 : IMAGE SEGMENTATION Segmentation subdivides an image into its constituent s parts or objects. The level to which this subdivision is carried depends on the problem being solved. That means

More information