Art Based Rendering of Fur by Instancing Geometry

Size: px
Start display at page:

Download "Art Based Rendering of Fur by Instancing Geometry"

Transcription

1 Art Based Rendering of Fur by Instancing Geometry Abstract Richie Steigerwald In this paper, I describe a non- photorealistic rendering system that uses strokes to render fur and grass in a stylized manner that suggests the complexity of an object without showing it explicitly. I propose an algorithm to procedurally add geometry to a polyhedral model, which when rendered in a non- photorealistic style such as toon shading, can produce effects like grass, fur, or foliage. 1. Introduction Realistic depictions of scenes including grass or fur often require high levels of detail. However, artistic interpretations of these often require only a few strokes in order for the viewer to interpret the underlying detail. Figure 1 Artist s depiction of fur This paper outlines an algorithm that will, given a triangle- based model and a fur density map, attempt to determine the placement of geometry based strokes on the model in order to simulate the effect produced by artists drawing fur. The goal of this work is to provide a simple means of adding complex effects to a multi- frame scene that provides interframe coherence, does not require changing the geometry of existing models, and produces the effect quickly enough for real- time rendering. The primary challenges of this project are: creating a way for a user to specify the location, density, and other properties (stiffness, thickness, etc.) of fur on a model, defining a way to evenly distribute geometric extrusions on a model, determining how external forces (gravity, wind, etc.) affect the fur, and providing continuous levels of detail while maintaining interframe coherence. 2. Prior Work Computer graphics is often motivated by the desire to create artwork, and as such, many works have been produced regarding the creation of artwork. Several other papers have been written with similar goals to this paper. Kowalski- 99 presents an interesting particle- based approach to adding fur to objects in a scene. In their approach, elements called graftals, which represent a single stroke, are added to the scene in appropriate locations and orientations in order to provide density and detail to objects. In figure 2, graftals are added to a scene of truffula trees to create Dr. Seuss- like effect. This project is inspired by Kowalski- 99 and is primarily directed at addressing the shortcomings of their work, primarily that of poor interframe coherence. Additionally, this project utilizes geometry instancing to create the effect quickly. Kajiya- 89 presents a method for generating geometry of fur based on a texture map. The user shouldn t have to specify where each element of fur is on the texture, and the distribution should be based on providing a good- looking non- photorealistic rendering.

2 produced using this model, which limits the creation of geometry that bends or resembles hooks. 3. The Algorithm In a nutshell, the algorithm does the following: One time before the model is rendered, it determines what locations on the mesh will receive geometry strokes. In this context, a geometry stroke is a cone or another piece of geometry that augments the existing mesh. Each frame, a geometry stroke will be instanced at each of the determined locations normal to the surface. A map passed to the shader determines the properties of the geometry stroke including any deformation caused by outside forces. Figure- 2 particle- based approach to adding complex strokes to a scene used in Kowalski- 99 Bhat- 04 demonstrates how to offset geometry using automatically generated texture maps. The algorithm proposed by Bhat- 04 is similar to the one proposed by this work, but this work contains additional enhancements to make the geometry more suitable for non- photorealistic rendering. Figure- 3 texture- synthesis used to generate displacement maps Additionally, Bhat- 04 paper limits the complexity of the geometry that can be added to the mesh. Only geometry that can be defined by a displacement map can be 3.1 Determining Locations of Geometry Strokes Initially, an artist must apply a fur density map to the mesh. The fur density map is a scalar field that specifies the number of geometric strokes that are likely to occur on that area of the mesh. A high density in a certain region in the mesh means that there will be many strokes in that region and a low density means that there will be few, or no strokes in that region. The density mapped mesh is used to determine the total number of strokes that the mesh will have. By computing the surface integral of the map over the mesh, we get the total number of geometry strokes to be placed on the mesh. Once we have determined the number of points to place on the mesh, there are several methods we can use to determine where those points should be placed. The first is called Lloyd s algorithm, which distributes the points randomly and iterates over the points to spread them out uniformly. The second method is called dart throwing, which places points randomly on the mesh and

3 eliminates points in areas that are distributed unevenly Lloyd s Algorithm Points are placed randomly over the mesh as described in [Turk- 90]. Once the points are placed, they are distributed on the model using Vornoi Iteration [Lloyd- 82]. The method of performing Vornoi iteration over the mesh is described in [Turk- 91]. A modification to this algorithm is made for the purpose of this project; we adjust the factor of repulsion of a point on the mesh by the value of the density map at that point. This is so that in areas of higher density, points have lower repulsion and end up being closer together. stroke will be placed in the center of that region and no strokes will be anywhere else in that region. I solve this problem by changing the height of that stroke to zero using a geometry stroke properties map on the mesh, which is described in the next section Dart Throwing Dart throwing randomly places points over the mesh and eliminates points that are close to already placed points as described in [Wonka- 09]. The results of dart throwing as compared to the results of Lloyd s algorithm are visually similar. Dart throwing is in practice much faster than using Lloyd s algorithm. Figure 5 Dart throwing evenly distributing points 3.2 Instancing Geometry Strokes Figure 4 Vornoi Iteration evenly distributes points There is one issue with this method that can probably be resolved more elegantly than my solution. In regions of the mesh that specify that there should be no strokes, a single With each of the points in place on the mesh, a geometry stroke is added to the model at each of those points. This process is done one per frame. At each point on the mesh where there is the point, a stroke (which for our purposes is just a cone), is added to the mesh in the direction with the point of the cone normal to the surface. Other properties of the stroke can be specified using other maps applied to the mesh. Along with the density map, a height map can be applied to the mesh, which specifies the length of geometric strokes at each point on the mesh. A stiffness map would specify how the

4 Each frame a geometry shader instances geometry strokes at each of the locations. Forces acting on the strokes change the shape of the stroke based on physical properties of the object the stroke is attempting to simulate. 3.3 Toon Shading Geometry Cartoon shading has been around for a while. Several techniques for cartoon shading are outlined in [lake- 00]. 4. Implementation My implementation is simpler than the proposed algorithm. It does not distribute the fur based on a density map and the properties of the fur strokes are not used in the geometry shader. To distribute the points on the mesh, I use dart throwing. For ten thousand polygons, adding ten thousand points with my implementation takes about five seconds. Figure 6. Stanford bunny rendered and cartoon shaded with tufts of fur generated by a geometry shader The time it took to produce and render strokes with nine polygons each was negligible. For comparison to the graftals technique, I also implemented a shader similar to the one proposed in [Kowalski- 99]. Figure 6. Stanford bunny rendered and cartoon shaded with tufts of fur generated by a geometry shader

5 5. Bibliography [1] Michael A. Kowalski, Lee Markosian, J. D. Northrup, Lubomir Bourdev, Ronen Barzel, Loring S. Holden, and John Hughes. Art- Based Rendering of Fur, Grass, and Trees. Proceedings of SIGGRAPH 99, pages , August [2] Kajiya, J. and Kay, T. Rendering Fur with Three Dimensional Textures. Computer Graphics 23, 3 (July 1989), [3] Bhat, P., Ingram, S., Turk, G Geometric texture synthesis by example. In Eurographics Symposium on Geometry Processing, [4] Turk, Greg, Generating Random Points in Triangles, in Graphics Gems, edited by Andrew Glassner, Academic Press, [5] Lloyd, Stuart P. (1982), "Least squares quantization in PCM", IEEE Transactions on Information Theory 28 (2): [6] G. Turk, Generating textures on arbitrary surfaces using reaction diffusion, Computer Graphics, Vol. 25, No. 4, , [7] Cline D, Jeschke S, Razdan KW, Wonka P. Dart throwing on surfaces. Computer Graphics Forum 2009;28(4): [8] A. Lake, C. Marshall, M. Harris, and M. Blackstein. Stylized rendering techniques for scalable real- time 3d animation. In NPAR 00: Proceedings of the 1 st international symposium on Non- photorealistic animation and rendering, pages 13 20, New York, NY, USA, ACM Press.

NPR. CS 334 Non-Photorealistic Rendering. Daniel G. Aliaga

NPR. CS 334 Non-Photorealistic Rendering. Daniel G. Aliaga NPR CS 334 Non-Photorealistic Rendering Daniel G. Aliaga 3D Computer Graphics Today Miraculous performance leaps Stunning price cuts Curiously low impact Games Movies * Slides courtesy of Lee Markosian

More information

A model to blend renderings

A model to blend renderings A model to blend renderings Vincent Boyer and Dominique Sobczyk L.I.A.S.D.-Universit Paris 8 September 15, 2006 Abstract. We propose a model to blend renderings. It consists in mixing different kind of

More information

Art-Based Rendering of Fur, Grass, and Trees

Art-Based Rendering of Fur, Grass, and Trees Art-Based Rendering of Fur, Grass, and Trees Michael A. Kowalski Lee Markosian J.D. Northrup Lubomir Bourdev Ronen Barzel Loring S. Holden John F. Hughes Department of Computer Science Advanced Technology

More information

Enhancing Information on Large Scenes by Mixing Renderings

Enhancing Information on Large Scenes by Mixing Renderings Enhancing Information on Large Scenes by Mixing Renderings Vincent Boyer & Dominique Sobczyk [boyer,dom]@ai.univ-paris8.fr L.I.A.S.D. - Université Paris 8 2 rue de la liberté 93526 Saint-Denis Cedex -

More information

Non photorealistic Rendering

Non photorealistic Rendering EECS 487 Non photorealistic Rendering Lee Markosian December 11, 2006 Whether to use photorealism depends on the purpose of the image: Documentation Illustration Story telling Expression Whether to use

More information

View-Dependent Particles for Interactive Non-Photorealistic Rendering

View-Dependent Particles for Interactive Non-Photorealistic Rendering View-Dependent Particles for Interactive Non-Photorealistic Rendering Research Paper 1 Abstract We present a novel framework for non-photorealistic rendering based on view-dependent geometric simplification

More information

Non photorealistic Rendering

Non photorealistic Rendering EECS 487 Non photorealistic Rendering Lee Markosian April 9, 2007 Whether to use photorealism depends on the purpose of the image: Training/simulation Documentation Illustration Story telling Expression

More information

View-Dependent Particles for Interactive Non-Photorealistic Rendering

View-Dependent Particles for Interactive Non-Photorealistic Rendering View-Dependent Particles for Interactive Non-Photorealistic Rendering Derek Cornish 1, Andrea Rowan 2, David Luebke 2 1 2 Intrinsic Graphics University of Virginia Abstract We present a novel framework

More information

Art-based Rendering with Continuous Levels of Detail

Art-based Rendering with Continuous Levels of Detail Art-based Rendering with Continuous Levels of Detail Lee Markosian 1 Barbara J. Meier 1 Michael A. Kowalski 2 Loring S. Holden 1 J.D. Northrup 1 John F. Hughes 1 1 Dept. of Computer Science 2 ATR Media

More information

Non-Photo Realistic Rendering. Jian Huang

Non-Photo Realistic Rendering. Jian Huang Non-Photo Realistic Rendering Jian Huang P and NP Photo realistic has been stated as the goal of graphics during the course of the semester However, there are cases where certain types of non-photo realistic

More information

A GPU-Based Approach to Non-Photorealistic Rendering in the Graphic Style of Mike Mignola

A GPU-Based Approach to Non-Photorealistic Rendering in the Graphic Style of Mike Mignola A GPU-Based Approach to Non-Photorealistic Rendering in the Graphic Style of Mike Mignola Abstract The subject of Non-Photorealistic Rendering (NPR) is one which tends towards a certain, small set of targeted

More information

INSPIRE: An Interactive Image Assisted Non-Photorealistic Rendering System

INSPIRE: An Interactive Image Assisted Non-Photorealistic Rendering System INSPIRE: An Interactive Image Assisted Non-Photorealistic Rendering System Minh X. Nguyen Hui Xu Xiaoru Yuan Baoquan Chen Department of Computer Science and Engineering University of Minnesota at Twin

More information

Detail control in line drawings of 3D meshes

Detail control in line drawings of 3D meshes Visual Comput (2005) 21: 698 706 DOI 10.1007/s00371-005-0323-1 ORIGINAL ARTICLE Kyuman Jeong Alex Ni Seungyong Lee Lee Markosian Detail control in line drawings of 3D meshes Published online: 1 September

More information

NPR.js : A JavaScript library for Interactive Non- Photorealistic Rendering in WebGL. Michael Price ScM Thesis Project Documentation

NPR.js : A JavaScript library for Interactive Non- Photorealistic Rendering in WebGL. Michael Price ScM Thesis Project Documentation NPR.js : A JavaScript library for Interactive Non- Photorealistic Rendering in WebGL. Michael Price ScM Thesis Project Documentation Background and Motivation Non-photorealistic rendering (NPR) is the

More information

3 NON-PHOTOREALISTIC RENDERING FOR OUTDOOR SCENE Irene Liew Suet Fun Mohd Shahrizal Sunar

3 NON-PHOTOREALISTIC RENDERING FOR OUTDOOR SCENE Irene Liew Suet Fun Mohd Shahrizal Sunar 3 NON-PHOTOREALISTIC RENDERING FOR OUTDOOR SCENE Irene Liew Suet Fun Mohd Shahrizal Sunar INTRODUCTION A dvance rendering technique in computer graphics include non-photorealitstic rendering. Non-photorealistic

More information

Employing Approximate 3D Models to Enrich Traditional Computer Assisted Animation

Employing Approximate 3D Models to Enrich Traditional Computer Assisted Animation Copyright c 2002 Institute of Electrical and Electronics Engineers, Inc. All rights reserved. 1 Employing Approximate 3D Models to Enrich Traditional Computer Assisted Animation Fabian Di Fiore Frank Van

More information

Simulation and Rendering of Opus Palladium 3D Mosaics

Simulation and Rendering of Opus Palladium 3D Mosaics Simulation and Rendering of Opus Palladium 3D Mosaics Vladimir Alves dos Passos and Marcelo Walter Centro de Informática - UFPE, Brazil Abstract Mosaic sculptures are a form of art where the sculpture

More information

Real-time non-photorealistic rendering

Real-time non-photorealistic rendering Real-time non-photorealistic rendering Lauri Siljamäki HUT Lauri.Siljamaki@hut.fi Abstract This paper summarizes techniques used for real-time non-photorealistic rendering (NPR). Currently most NPR images

More information

Daniel Keefe. Computer Science Department: Brown University. April 17, 2000

Daniel Keefe. Computer Science Department: Brown University. April 17, 2000 Artistic Metaphors for Interactive Visualization of Multi-Valued 3D Data Research Comp. Proposal Daniel Keefe Computer Science Department: Brown University April 17, 2000 1 Introduction and Motivation

More information

Seamless Integration of Stylized Renditions in Computer-Generated Landscape Visualization

Seamless Integration of Stylized Renditions in Computer-Generated Landscape Visualization Seamless Integration of Stylized Renditions in Computer-Generated Landscape Visualization Liviu Coconu 1, Carsten Colditz 2, Hans-Christian Hege 1 and Oliver Deussen 2 Abstract We propose enhancements

More information

Non-Photorealistic Experimentation Jhon Adams

Non-Photorealistic Experimentation Jhon Adams Non-Photorealistic Experimentation Jhon Adams Danny Coretti Abstract Photo-realistic rendering techniques provide an excellent method for integrating stylized rendering into an otherwise dominated field

More information

12/3/2007. Non-Photorealistic Rendering (NPR) What is NPR exactly? What is NPR exactly? What is NPR exactly? What is NPR exactly?

12/3/2007. Non-Photorealistic Rendering (NPR) What is NPR exactly? What is NPR exactly? What is NPR exactly? What is NPR exactly? Non-Photorealistic Rendering (NPR) aka. Stylized rendering, artistic rendering, expressive graphics Covers any area of graphics where the point is to consciously not produce an image that is as photorealistic

More information

Multiresolution Remeshing Using Weighted Centroidal Voronoi Diagram

Multiresolution Remeshing Using Weighted Centroidal Voronoi Diagram Multiresolution Remeshing Using Weighted Centroidal Voronoi Diagram Chao-Hung Lin 1, Chung-Ren Yan 2, Ji-Hsen Hsu 2, and Tong-Yee Lee 2 1 Dept. of Geomatics, National Cheng Kung University, Taiwan 2 Dept.

More information

Real-Time Non- Photorealistic Rendering

Real-Time Non- Photorealistic Rendering Real-Time Non- Photorealistic Rendering Presented by: Qing Hu LIAO SOCS, McGill Feb 1, 2005 Index Introduction Motivation Appel s Algorithm Improving Schema Rendering Result Economy of line A great deal

More information

A Survey of Pen-and-Ink Illustration in Non-photorealistic

A Survey of Pen-and-Ink Illustration in Non-photorealistic A Survey of Pen-and-Ink Illustration in Non-photorealistic Rendering CS361 Computer Science Department GWU Page 1 of 25 Table of Contents A Survey of Pen-and-Ink Illustration in Non-photorealistic Rendering...

More information

Real-Time Painterly Rendering for MR Applications

Real-Time Painterly Rendering for MR Applications Real-Time Painterly Rendering for MR Applications Michael Haller Upper Austria University of Applied Sciences Media Technology and Design, Austria Daniel Sperl Upper Austria University of Applied Sciences

More information

Stylistic Reuse of View-Dependent Animations

Stylistic Reuse of View-Dependent Animations Stylistic Reuse of View-Dependent Animations Parag Chaudhuri Ashwani Jindal Prem Kalra Subhashis Banerjee Department of Computer Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas,

More information

Cloth Simulation. Tanja Munz. Master of Science Computer Animation and Visual Effects. CGI Techniques Report

Cloth Simulation. Tanja Munz. Master of Science Computer Animation and Visual Effects. CGI Techniques Report Cloth Simulation CGI Techniques Report Tanja Munz Master of Science Computer Animation and Visual Effects 21st November, 2014 Abstract Cloth simulation is a wide and popular area of research. First papers

More information

TSP Art. Craig S. Kaplan School of Computer Science University of Waterloo

TSP Art. Craig S. Kaplan School of Computer Science University of Waterloo TSP Art Craig S. Kaplan School of Computer Science University of Waterloo csk@cgl.uwaterloo.ca Robert Bosch Department of Mathematics Oberlin College bobb@cs.oberlin.edu Abstract Bosch and Herman recently

More information

Artistic Silhouettes: A Hybrid Approach

Artistic Silhouettes: A Hybrid Approach Artistic Silhouettes: A Hybrid Approach J.D. Northrup and Lee Markosian Brown University, Providence, RI 02912 Abstract We present a new algorithm for rendering silhouette outlines of 3D polygonal meshes

More information

Advanced Real- Time Cel Shading Techniques in OpenGL Adam Hutchins Sean Kim

Advanced Real- Time Cel Shading Techniques in OpenGL Adam Hutchins Sean Kim Advanced Real- Time Cel Shading Techniques in OpenGL Adam Hutchins Sean Kim Cel shading, also known as toon shading, is a non- photorealistic rending technique that has been used in many animations and

More information

Rendering Silhouettes with Virtual Lights

Rendering Silhouettes with Virtual Lights Volume 20 (2001), number 4 pp. 271 282 COMPUTER GRAPHICS forum Rendering Silhouettes with Virtual Lights Domingo Martín and Juan Carlos Torres Departamento de Lenguajes y Sistemas Informáticos, Universidad

More information

Non-Photorealistic Rendering

Non-Photorealistic Rendering 15-462 Computer Graphics I Lecture 22 Non-Photorealistic Rendering November 18, 2003 Doug James Carnegie Mellon University http://www.cs.cmu.edu/~djames/15-462/fall03 Pen-and-Ink Illustrations Painterly

More information

I d like to start this section with a quote from David Byrne in an article for Utne. In the article he was mostly talking about 2D design and

I d like to start this section with a quote from David Byrne in an article for Utne. In the article he was mostly talking about 2D design and 1 I d like to start this section with a quote from David Byrne in an article for Utne. In the article he was mostly talking about 2D design and illustration, but I believe his point translates to renderings

More information

Simple Silhouettes for Complex Surfaces

Simple Silhouettes for Complex Surfaces Eurographics Symposium on Geometry Processing(2003) L. Kobbelt, P. Schröder, H. Hoppe (Editors) Simple Silhouettes for Complex Surfaces D. Kirsanov, P. V. Sander, and S. J. Gortler Harvard University Abstract

More information

AC : COMPUTER-BASED NON-PHOTOREALISTIC RENDERING. Marty Fitzgerald, East Tennessee State University

AC : COMPUTER-BASED NON-PHOTOREALISTIC RENDERING. Marty Fitzgerald, East Tennessee State University AC 2007-571: COMPUTER-BASED NON-PHOTOREALISTIC RENDERING Marty Fitzgerald, East Tennessee State University American Society for Engineering Education, 2007 Computer-Based Non-Photorealistic Rendering Abstract

More information

Real-Time Rendering of Watercolor Effects for Virtual Environments

Real-Time Rendering of Watercolor Effects for Virtual Environments Real-Time Rendering of Watercolor Effects for Virtual Environments Su Ian Eugene Lei and Chun-Fa Chang Department of Computer Science, National Tsing Hua University {zenith,chang}@ibr.cs.nthu.edu.tw Abstract.

More information

Modelling and Animating Cartoon Hair

Modelling and Animating Cartoon Hair Modelling and Animating Cartoon Hair Paul Noble School of Computing University of Teesside Middlesbrough UK, TS1 3BA Wen Tang School of Computing University of Teesside Middlesbrough UK, TS1 3BA Alex Parkinson

More information

Curling and Clumping Fur Represented by Texture Layers

Curling and Clumping Fur Represented by Texture Layers Noname manuscript No. (will be inserted by the editor) Curling and Clumping Fur Represented by Texture Layers Paulo Silva Yosuke Bando Bing-Yu Chen Tomoyuki Nishita Received: date / Accepted: date Abstract

More information

MIX RENDERINGS TO FOCUS PLAYER'S ATTENTION

MIX RENDERINGS TO FOCUS PLAYER'S ATTENTION MIX RENDERINGS TO FOCUS PLAYER'S ATTENTION Vincent Boyer, Jordane Suarez Kamel Haddad L.I.A.S.D. Université Paris 8, 2 rue de la libérté 93526 Saint-Denis, France E-mail: boyer@ai.univ-paris8.fr [dex,

More information

GPU real time hatching

GPU real time hatching GPU real time hatching Suarez Jordane Université Paris 8 2 rue de la liberté 93526, Saint Denis, France suarez@ai.univ-paris8.fr Belhadj Farès Université Paris 8 2 rue de la liberté 93526, Saint Denis,

More information

Rendering Nonphotorealistic Strokes with Temporal and Arc-Length Coherence

Rendering Nonphotorealistic Strokes with Temporal and Arc-Length Coherence -.,., Rendering Nonphotorealistic Strokes with Temporal and Arc-Length Coherence Lubomir Bourdev Department of Computer Science Brown University Submitted in partial fulfillment of the requirements for

More information

A Hybrid Approach to Real-Time Abstraction

A Hybrid Approach to Real-Time Abstraction A Hybrid Approach to Real-Time Abstraction Niall Redmond Trinity College Dublin John Dingliana Trinity College Dublin Figure 1: Abstraction examples: (a) Hybrid Cel-Shader (b) Hybrid Pencil-Shader Abstract

More information

Paint by Numbers and Comprehensible Rendering of 3D Shapes

Paint by Numbers and Comprehensible Rendering of 3D Shapes Paint by Numbers and Comprehensible Rendering of 3D Shapes Prof. Allison Klein Announcements Sign up for 1 st presentation at end of class today Undergrads: Thinking about grad school? Still here over

More information

EFFICIENT STIPPLE RENDERING

EFFICIENT STIPPLE RENDERING EFFICIENT STIPPLE RENDERING Jens Krüger and Rüdiger Westermann tum.3d, Technische Universität München Boltzmannstraße 3, 85748 Garching bei München [jens.krueger,westermann]@in.tum.de ABSTRACT In many

More information

WUCSE : Painting lighting and viewing effects

WUCSE : Painting lighting and viewing effects 1 WUCSE-2003-53: Painting lighting and viewing effects Cindy Grimm Abstract We present a system for painting how the appearance of an object changes under different lighting and viewing conditions. The

More information

Graph-Based Point Relaxation for 3D Stippling

Graph-Based Point Relaxation for 3D Stippling Graph-Based Point Relaxation for 3D Stippling Oscar Meruvia Pastor Department of Computing Science University College of the Cariboo Box 3010, V2C 5N3 Kamloops, BC, Canada meruvia@cariboo.bc.ca Thomas

More information

Shape modeling Modeling technique Shape representation! 3D Graphics Modeling Techniques

Shape modeling Modeling technique Shape representation! 3D Graphics   Modeling Techniques D Graphics http://chamilo2.grenet.fr/inp/courses/ensimag4mmgd6/ Shape Modeling technique Shape representation! Part : Basic techniques. Projective rendering pipeline 2. Procedural Modeling techniques Shape

More information

Real-Time Hatching. Abstract. 1 Introduction

Real-Time Hatching. Abstract. 1 Introduction Real-Time Hatching Emil Praun Hugues Hoppe Matthew Webb Adam Finkelstein Princeton University Microsoft Research Princeton University Princeton University Abstract Drawing surfaces using hatching strokes

More information

Effectiveness of Silhouette Rendering Algorithms in Terrain Visualisation

Effectiveness of Silhouette Rendering Algorithms in Terrain Visualisation Effectiveness of Silhouette Rendering Algorithms in Terrain Visualisation Ruzinoor bin Che Mat Sekolah Teknologi Maklumat Universiti Utara Malaysia 06010 Sintok, Kedah Darulaman. Malaysia. ruzinoor@uum.edu.my

More information

Modeling Hair Movement with Mass-Springs

Modeling Hair Movement with Mass-Springs Modeling Hair Movement with Mass-Springs Anna Sokol ansokol@cs.sunysb.edu Computer Science Department SUY Stony Brook Abstract: This paper is presenting a framework for modeling hair movement using mass-springs.

More information

Image Precision Silhouette Edges

Image Precision Silhouette Edges Image Precision Silhouette Edges Ramesh Raskar * Michael Cohen + * University of North Carolina at Chapel Hill + Microsoft Research Abstract inding and displaying silhouette edges is important in applications

More information

Real-Time Charcoal Rendering Using Contrast Enhancement Operators

Real-Time Charcoal Rendering Using Contrast Enhancement Operators Real-Time Charcoal Rendering Using Contrast Enhancement Operators Aditi Majumder and M. Gopi Department of Computer Science University of North Carolina at Chapel Hill fmajumder,gopig@cs.unc.edu Abstract.

More information

SEVER INSTITUTE OF TECHNOLOGY MASTER OF SCIENCE DEGREE THESIS ACCEPTANCE. (To be the first page of each copy of the thesis)

SEVER INSTITUTE OF TECHNOLOGY MASTER OF SCIENCE DEGREE THESIS ACCEPTANCE. (To be the first page of each copy of the thesis) SEVER INSTITUTE OF TECHNOLOGY MASTER OF SCIENCE DEGREE THESIS ACCEPTANCE (To be the first page of each copy of the thesis) DATE: April 15, 2005 STUDENT S NAME: Nathan C. Dudley This student s thesis, entitled

More information

Synthesizing Realistic Facial Expressions from Photographs

Synthesizing Realistic Facial Expressions from Photographs Synthesizing Realistic Facial Expressions from Photographs 1998 F. Pighin, J Hecker, D. Lischinskiy, R. Szeliskiz and D. H. Salesin University of Washington, The Hebrew University Microsoft Research 1

More information

A Sketch Interpreter System with Shading and Cross Section Lines

A Sketch Interpreter System with Shading and Cross Section Lines Journal for Geometry and Graphics Volume 9 (2005), No. 2, 177 189. A Sketch Interpreter System with Shading and Cross Section Lines Kunio Kondo 1, Haruki Shizuka 1, Weizhong Liu 1, Koichi Matsuda 2 1 Dept.

More information

A Multiresolution Model for Non-photorealistic Rendering of Trees

A Multiresolution Model for Non-photorealistic Rendering of Trees A Multiresolution Model for Non-photorealistic Rendering of Trees Celso Campos 1, Ricardo Quirós 2, Joaquin Huerta 2, Emilio Camahort 3, Roberto Vivó 3, and Javier Lluch 3 1 Departamento de Lenguajes y

More information

Non-photorealistic Rendering

Non-photorealistic Rendering Non-photorealistic Rendering Art Rendering 1 From: ATI Radeon 9700 Real-Time Demos A Brief History of (Western) Painting Prehistoric Egyptian Medieval Renaissance A peak in realism Impressionism Modernism

More information

Nonphotorealism. Christian Miller CS Fall 2011

Nonphotorealism. Christian Miller CS Fall 2011 Nonphotorealism Christian Miller CS 354 - Fall 2011 Different goals Everything we ve done so far has been working (more or less) towards photorealism But, you might not want realism as a stylistic choice

More information

Preprint draft: to appear in ACM SIGGRAPH do not distribute. Real-Time Hatching

Preprint draft: to appear in ACM SIGGRAPH do not distribute. Real-Time Hatching Real-Time Hatching Emil Praun Hugues Hoppe Matthew Webb Adam Finkelstein Princeton University Microsoft Research Princeton University Princeton University Abstract Drawing surfaces using hatching strokes

More information

Case Study: The Pixar Story. By Connor Molde Comptuer Games & Interactive Media Year 1

Case Study: The Pixar Story. By Connor Molde Comptuer Games & Interactive Media Year 1 Case Study: The Pixar Story By Connor Molde Comptuer Games & Interactive Media Year 1 Contents Section One: Introduction Page 1 Section Two: About Pixar Page 2 Section Three: Drawing Page 3 Section Four:

More information

An Abstraction Technique for Producing 3D Visual Contents

An Abstraction Technique for Producing 3D Visual Contents , pp.353-360 http://dx.doi.org/10.14257/ijmue.2013.8.5.35 An Abstraction Technique for Producing 3D Visual Contents Kyungha Min Dept. of Digital Media, Sangmyung Univ., Seoul, Korea minkyungha@gmail.com

More information

Beyond Stippling - Methods for Distributing Objects on the Plane

Beyond Stippling - Methods for Distributing Objects on the Plane EUROGRAPHICS 2003 / P. Brunet and D. Fellner (Guest Editors) Volume 22 (2003), Number 3 Beyond Stippling - Methods for Distributing Objects on the Plane Stefan Hiller 1, Heino Hellwig 2, Oliver Deussen

More information

Synthesis of Textures with Intricate Geometries using BTF and Large Number of Textured Micropolygons. Abstract. 2. Related studies. 1.

Synthesis of Textures with Intricate Geometries using BTF and Large Number of Textured Micropolygons. Abstract. 2. Related studies. 1. Synthesis of Textures with Intricate Geometries using BTF and Large Number of Textured Micropolygons sub047 Abstract BTF has been studied extensively and much progress has been done for measurements, compression

More information

"Non-Geometric" Plant Modeling: Image-Based Landscape Modeling and General Texture Problems with Maya - Examples and Limitations

Non-Geometric Plant Modeling: Image-Based Landscape Modeling and General Texture Problems with Maya - Examples and Limitations "Non-Geometric" Plant Modeling: Image-Based Landscape Modeling and General Texture Problems with Maya - Examples and Limitations Peter OEHMICHEN 1 Introduction When starting a new visualization project,

More information

Art-based Rendering with Graftals

Art-based Rendering with Graftals : Interactive Computer Graphics Art-based Rendering with Graftals 1 Introduction Due: 3/13/10, 11:59 PM Between Ray in 123 and Photon Mapping that you just did, you ve now had a good deal of exposure to

More information

Displacement Mapping

Displacement Mapping HELSINKI UNIVERSITY OF TECHNOLOGY 16.4.2002 Telecommunications Software and Multimedia Laboratory Tik-111.500 Seminar on computer graphics Spring 2002: Rendering of High-Quality 3-D Graphics Displacement

More information

Real-Time Pen-and-Ink Illustration of Landscapes

Real-Time Pen-and-Ink Illustration of Landscapes Real-Time Pen-and-Ink Illustration of Landscapes Liviu Coconu ZIB / University of Konstanz Oliver Deussen University of Konstanz Hans-Christian Hege ZIB Figure 1: Different landscape illustrations. Abstract

More information

Modeling Clouds Shape

Modeling Clouds Shape Modeling Clouds Shape Modeling Clouds Shape Antoine Bouthors Fabrice Neyret Laboratoire GRAVIR Grenoble, France http://www-imagis.imag.fr/publications/2004/bn04/ Eurographics 2004 Short Presentations Page

More information

Scalar Visualization

Scalar Visualization Scalar Visualization Visualizing scalar data Popular scalar visualization techniques Color mapping Contouring Height plots outline Recap of Chap 4: Visualization Pipeline 1. Data Importing 2. Data Filtering

More information

CMSC 491A/691A Artistic Rendering. Artistic Rendering

CMSC 491A/691A Artistic Rendering. Artistic Rendering CMSC 491A/691A Artistic Rendering Penny Rheingans UMBC Artistic Rendering Computer-generated images in a style similar to some artistic media or style Also called non-photorealistic rendering (NPR) Different

More information

A Shadow Volume Algorithm for Opaque and Transparent Non-Manifold Casters

A Shadow Volume Algorithm for Opaque and Transparent Non-Manifold Casters jgt 2008/7/20 22:19 page 1 #1 Vol. [VOL], No. [ISS]: 1?? A Shadow Volume Algorithm for Opaque and Transparent Non-Manifold Casters Byungmoon Kim 1, Kihwan Kim 2, Greg Turk 2 1 NVIDIA, 2 Georgia Institute

More information

Image Precision Silhouette Edges

Image Precision Silhouette Edges Image Precision Silhouette Edges by Ramesh Raskar and Michael Cohen Presented at I3D 1999 Presented by Melanie Coggan Outline Motivation Previous Work Method Results Conclusions Outline Motivation Previous

More information

Face Morphing. Introduction. Related Work. Alex (Yu) Li CS284: Professor Séquin December 11, 2009

Face Morphing. Introduction. Related Work. Alex (Yu) Li CS284: Professor Séquin December 11, 2009 Alex (Yu) Li CS284: Professor Séquin December 11, 2009 Face Morphing Introduction Face morphing, a specific case of geometry morphing, is a powerful tool for animation and graphics. It consists of the

More information

Nonphotorealistic Virtual Environment Navigation from Images

Nonphotorealistic Virtual Environment Navigation from Images Nonphotorealistic Virtual Environment Navigation from Images Hyung W. Kang Department of Mathematics and Computer Science University of Missouri - St. Louis One University Blvd. St. Louis, MO 63121, USA

More information

TESSELATIONS. BIG IDEA: Students will create a representational tessellation composition in the style of M.C. Escher ESSENTIAL QUESTIONS:

TESSELATIONS. BIG IDEA: Students will create a representational tessellation composition in the style of M.C. Escher ESSENTIAL QUESTIONS: TESSELATIONS BIG IDEA: Students will create a representational tessellation composition in the style of M.C. Escher ESSENTIAL QUESTIONS: Why might M.C. Escher think like a mathematician? What is the relationship

More information

Photorealism vs. Non-Photorealism in Computer Graphics

Photorealism vs. Non-Photorealism in Computer Graphics The Art and Science of Depiction Photorealism vs. Non-Photorealism in Computer Graphics Fredo Durand MIT- Lab for Computer Science Global illumination How to take into account all light inter-reflections

More information

Exaggerated Shading for Depicting Shape and Detail. Szymon Rusinkiewicz Michael Burns Doug DeCarlo

Exaggerated Shading for Depicting Shape and Detail. Szymon Rusinkiewicz Michael Burns Doug DeCarlo Exaggerated Shading for Depicting Shape and Detail Szymon Rusinkiewicz Michael Burns Doug DeCarlo Motivation Style of technical, medical, and topographic illustrations is designed to communicate surface

More information

Technical Quake. 1 Introduction and Motivation. Abstract. Michael Batchelder Kacper Wysocki

Technical Quake. 1 Introduction and Motivation. Abstract. Michael Batchelder Kacper Wysocki Technical Quake Michael Batchelder mbatch@cs.mcgill.ca Kacper Wysocki kacper@cs.mcgill.ca creases and silhouettes with distance. These ideas have not yet been mentioned in literature to date that we are

More information

Fine Tone Control in Hardware Hatching

Fine Tone Control in Hardware Hatching Fine Tone Control in Hardware Hatching Matthew Webb Emil Praun Adam Finkelstein Hugues Hoppe Princeton University Princeton University Princeton University Microsoft Research Figure 1: Bunny rendered using

More information

Graphics and Interaction Rendering pipeline & object modelling

Graphics and Interaction Rendering pipeline & object modelling 433-324 Graphics and Interaction Rendering pipeline & object modelling Department of Computer Science and Software Engineering The Lecture outline Introduction to Modelling Polygonal geometry The rendering

More information

Character animation creation using hand-drawn sketches

Character animation creation using hand-drawn sketches Visual Comput (2005) 21: 551 558 DOI 10.1007/s00371-005-0333-z ORIGINAL ARTICLE Bing-Yu Chen Yutaka Ono Tomoyuki Nishita Character animation creation using hand-drawn sketches Published online: 31 August

More information

Cloth Simulation on the GPU. Cyril Zeller NVIDIA Corporation

Cloth Simulation on the GPU. Cyril Zeller NVIDIA Corporation Cloth Simulation on the GPU Cyril Zeller NVIDIA Corporation Overview A method to simulate cloth on any GPU supporting Shader Model 3 (Quadro FX 4500, 4400, 3400, 1400, 540, GeForce 6 and above) Takes advantage

More information

Animation & Rendering

Animation & Rendering 7M836 Animation & Rendering Introduction, color, raster graphics, modeling, transformations Arjan Kok, Kees Huizing, Huub van de Wetering h.v.d.wetering@tue.nl 1 Purpose Understand 3D computer graphics

More information

Constrained Diffusion Limited Aggregation in 3 Dimensions

Constrained Diffusion Limited Aggregation in 3 Dimensions Constrained Diffusion Limited Aggregation in 3 Dimensions Paul Bourke Swinburne University of Technology P. O. Box 218, Hawthorn Melbourne, Vic 3122, Australia. Email: pdb@swin.edu.au Abstract Diffusion

More information

The Vegetation of Horizon Zero Dawn. Gilbert Sanders Principal Artist, Guerrilla Games

The Vegetation of Horizon Zero Dawn. Gilbert Sanders Principal Artist, Guerrilla Games The Vegetation of Horizon Zero Dawn Gilbert Sanders Principal Artist, Guerrilla Games Welcome Topics Simulation Shading Creation Shadow Casting Summary Introduction Our Renderer Artist Node-Based Shader

More information

Single Pass GPU Stylized Edges

Single Pass GPU Stylized Edges IV Iberoamerican Symposium in Computer Graphics - SIACG (2009), pp. 1 8 F. Serón, O. Rodríguez, J. Rodríguez, E. Coto (Editors) Single Pass GPU Stylized Edges P. Hermosilla & P.P. Vázquez MOVING Group,

More information

Fast silhouette and crease edge synthesis with geometry shaders

Fast silhouette and crease edge synthesis with geometry shaders Fast silhouette and crease edge synthesis with geometry shaders Balázs Hajagos László Szécsi Balázs Csébfalvi Budapest University of Technology and Economics Figure 1: Outline rendering Abstract We describe

More information

Image-Space Painterly Rendering

Image-Space Painterly Rendering Image-Space Painterly Rendering Janne Hellstén Helsinki University of Technology jjhellst@cc.hut.fi Abstract In this paper two painterly rendering techniques are described. Both techniques automatically

More information

Hardware-Accelerated Interactive Illustrative Stipple Drawing of Polygonal Objects Vision, Modeling, and Visualization 2002

Hardware-Accelerated Interactive Illustrative Stipple Drawing of Polygonal Objects Vision, Modeling, and Visualization 2002 Hardware-Accelerated Interactive Illustrative Stipple Drawing of Polygonal Objects Vision, Modeling, and Visualization 2002 Aidong Lu Joe Taylor Mark Hartner David Ebert Charles Hansen School of Electrical

More information

WYSIWYG NPR: Drawing Strokes Directly on 3D Models

WYSIWYG NPR: Drawing Strokes Directly on 3D Models WYSIWYG NPR: Drawing Strokes Directly on 3D Models Robert D. Kalnins 1 Lee Markosian 1 Barbara J. Meier 2 Michael A. Kowalski 2 Joseph C. Lee 2 Philip L. Davidson 1 Matthew Webb 1 John F. Hughes 2 Adam

More information

CSE 167: Introduction to Computer Graphics. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013

CSE 167: Introduction to Computer Graphics. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013 CSE 167: Introduction to Computer Graphics Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013 Today Course organization Course overview 2 Course Staff Instructor Jürgen Schulze,

More information

Real-Time Pencil Rendering

Real-Time Pencil Rendering Real-Time Pencil Rendering Hyunjun Lee POSTECH Sungtae Kwon POSTECH Seungyong Lee POSTECH Abstract This paper presents a real-time technique for rendering 3D meshes in the pencil drawing style. We analyze

More information

Caricaturing Buildings for Effective Visualization

Caricaturing Buildings for Effective Visualization Caricaturing Buildings for Effective Visualization Grant G. Rice III, Ergun Akleman, Ozan Önder Özener and Asma Naz Visualization Sciences Program, Department of Architecture, Texas A&M University, USA

More information

Medical Visualization - Illustrative Visualization 2 (Summary) J.-Prof. Dr. Kai Lawonn

Medical Visualization - Illustrative Visualization 2 (Summary) J.-Prof. Dr. Kai Lawonn Medical Visualization - Illustrative Visualization 2 (Summary) J.-Prof. Dr. Kai Lawonn Hatching 2 Hatching Motivation: Hatching in principle curvature direction Interrante et al. 1995 3 Hatching Hatching

More information

Real-Time Halftoning: A Primitive For Non-Photorealistic Shading

Real-Time Halftoning: A Primitive For Non-Photorealistic Shading Eurographics Workshop on Rendering (2002), pp. 1 4 Paul Debevec and Simon Gibson (Editors) Real-Time Halftoning: A Primitive For Non-Photorealistic Shading Bert Freudenberg, Maic Masuch, and Thomas Strothotte

More information

Surface Rendering. Surface Rendering

Surface Rendering. Surface Rendering Surface Rendering Surface Rendering Introduce Mapping Methods - Texture Mapping - Environmental Mapping - Bump Mapping Go over strategies for - Forward vs backward mapping 2 1 The Limits of Geometric Modeling

More information

Real-time fur simulation and rendering

Real-time fur simulation and rendering COMPUTER ANIMATION AND VIRTUAL WORLDS Comp. Anim. Virtual Worlds 2010; 21: 311 320 Published online 25 May 2010 in Wiley InterScience (www.interscience.wiley.com).361 Real-time fur simulation and rendering

More information

2.5D Cartoon Models. Abstract. 1 Introduction. 2 Related Work. Takeo Igarashi The University of Tokyo. Frédo Durand MIT CSAIL. Alec Rivers MIT CSAIL

2.5D Cartoon Models. Abstract. 1 Introduction. 2 Related Work. Takeo Igarashi The University of Tokyo. Frédo Durand MIT CSAIL. Alec Rivers MIT CSAIL Alec Rivers MIT CSAIL 2.5D Cartoon Models Takeo Igarashi The University of Tokyo Frédo Durand MIT CSAIL (a) (b) (c) Figure 1: A 2.5D Cartoon: We take vector art drawings of a cartoon from different views

More information

Images from 3D Creative Magazine. 3D Modelling Systems

Images from 3D Creative Magazine. 3D Modelling Systems Images from 3D Creative Magazine 3D Modelling Systems Contents Reference & Accuracy 3D Primitives Transforms Move (Translate) Rotate Scale Mirror Align 3D Booleans Deforms Bend Taper Skew Twist Squash

More information