Sequence Modeling: Recurrent and Recursive Nets. By Pyry Takala 14 Oct 2015

Size: px
Start display at page:

Download "Sequence Modeling: Recurrent and Recursive Nets. By Pyry Takala 14 Oct 2015"

Transcription

1 Sequence Modeling: Recurrent and Recursive Nets By Pyry Takala 14 Oct 2015

2 Agenda Why Recurrent neural networks? Anatomy and basic training of an RNN (10.2, ) Properties of RNNs (10.2.2, 8.2.6) Using RNNs (10.2.3, ) RNN extensions ( ) Demos Next steps & references 1

3 Quiz 1. Where can you use RNNs? 2. Discuss for 1 minute

4 RNNs model sequential data What are examples of sequential data? 3

5 RNNs model sequential data What are examples of sequential data? Time-series data, e.g. economics Videos Speech Images, as perceived by humans Robot sensors Language 4

6 RNNs model sequential data What are examples of sequential data? Time-series data, e.g. economics Videos Speech Images, as perceived by humans Robot sensors Language Some feed-forward net types can also model sequences (e.g. TDNN), but are not ideal for long sequences (memory, network size etc.) 5

7 Example application: RNNs can translate text The heatmap shows probability densities for predicted pen locations as the word under is written 6 Live:

8 Example application: RNNs can caption images and videos Live: 7

9 Example application: RNNs can control robots 8

10 Example application: RNNs can translate text Mielenkiintoinen luento The interesting lecture 9

11 Agenda Why Recurrent neural networks? Anatomy and basic training of an RNN (10.2, ) Properties of RNNs (10.2.2, 8.2.6) Using RNNs (10.2.3, ) RNN extensions ( ) Demos Next steps & references 10

12 Quiz What algorithm can be used to train RNNs?

13 RNNs store a memory of the hidden state for the next sequence step Legend x = input s = state o = output U, V, W = weight matrices 12

14 RNNs store a memory of the hidden state for the next sequence step Legend x = input s = state o = output U, V, W = weight matrices 13

15 RNNs store a memory of the hidden state for the next sequence step Legend x = input s = state o = output U, V, W = weight matrices Shared parameters! 14

16 RNN computation: forward pass Forward pass Legend x = input s = state o = output U, V, W = weight matrices b,c = biases a t = value to hidden p t = output after softmax p t a t 15

17 RNN computation: loss Loss Legend x = input s = state o = output U, V, W = weight matrices b,c = biases a t = value to hidden p t = output after softmax y t = target class p t-1 p t p t+1 p t class1 class2 class3 target class = 3 16

18 RNNs can be trained with back-propagation through time (BPTT) BPTT Unfold the network Backpropagate the loss, calculating first a L for each hidden unit a p t-1 Legend x = input s = state o = output U, V, W = weight matrices b,c = biases a t = value to hidden p t = output after softmax y t = target class p t p t+1 Δ 17

19 RNNs can be trained with back-propagation through time (BPTT) BPTT Unfold the network Backpropagate the loss, calculating first a L for each hidden unit a and then θl for each parameter θ For instance, Δ p t-1 Legend x = input s = state o = output U, V, W = weight matrices b,c = biases a t = value to hidden p t = output after softmax y t = target class p t p t+1 Detailed derivate formulas can be found in the book. Theano calculates these automatically 18

20 Agenda Why Recurrent neural networks? Anatomy and basic training of an RNN (10.2, ) Properties of RNNs (10.2.2, 8.2.6) Using RNNs (10.2.3, ) RNN extensions ( ) Demos Next steps & references 19

21 Quiz What are limitations of RNNs?

22 RNNs have good generalization capabilities RNN learns which aspects of past sequence to keep and with what precision 21

23 RNNs have good generalization capabilities RNN learns which aspects of past sequence to keep and with what precision RNN can generalize because of shared parameters Generalization to different point in sequence Generalization between sequences of different length Complexity of function does not increase with sequence length 22

24 RNNs have good generalization capabilities RNN learns which aspects of past sequence to keep and with what precision RNN can generalize because of shared parameters Generalization to different point in sequence Generalization between sequences of different length Complexity of function does not increase with sequence length Limitations Hidden state must be large enough to remember all information Assumes stationarity Can be overcome, e.g. feed an additional input describing the position Difficult optimization 23

25 RNN states simplify the graph, allowing still complex dependencies Graphical model without states (inefficient parametrization) RNN with states (more efficient parametrization) vs 24

26 Gradients of RNNs can be unstable Non-linear recurrrence with itself, over many time steps à Highly non-linear function Derivatives tend to vanish or explode as the number of steps between two states increases This is because it is equal to product of state transition Jacobian matrices This can cause for instance exploding gradients For details, see chapter

27 Agenda Why Recurrent neural networks? Anatomy and basic training of an RNN (10.2, ) Properties of RNNs (10.2.2, 8.2.6) Using RNNs (10.2.3, ) RNN extensions ( ) Demos Next steps & references 26

28 RNNs can generate sequences Generate an output, and feed it at the next time step Teacher forcing = use actual sequence Strict forcing often not advisable: inputs generated by net likely different A generative model needs to stop generation at some point. Alternatives: a) End of sequence symbol b) Binomial output stop/continue c) Model number of timesteps left 27

29 Adding extra context can be done in several ways or x 28

30 Conditional generative RNN assumes that we want to use also x to predict y 29

31 Some tricks of trade can be useful when training RNNs Gradient explosion can be dealt e.g. with gradient clipping The heuristic introduces a bias but works well in practice Even taking a random step helps Wall in error surface Clipped gradient 30

32 Some tricks of trade can be useful when training RNNs Gradient explosion can be dealt e.g. with gradient clipping The heuristic introduces a bias but works well in practice Even taking a random step helps Wall in error surface Clipped gradient Gradient vanishing can be dealt with memory units, e.g. LSTMs Smart initialization of weights and use of squashing non-linearity (e.g. tanh) can also help 31

33 Agenda Why Recurrent neural networks? Anatomy and basic training of an RNN (10.2, ) Properties of RNNs (10.2.2, 8.2.6) Using RNNs (10.2.3, ) RNN extensions ( ) Demos Next steps & references 32

34 Quiz How can we capture long-term dependencies with RNNs? 5. 33

35 RNNs have been extended for different purposes Architectural variants with different expressive power Deep RNNs Bi-Directional RNNs Recursive nets 34

36 RNNs have been extended for different purposes Architectural variants with different expressive power Deep RNNs Bi-Directional RNNs Recursive nets Solutions to dealing with long-term dependencies and memory RNNs with multiple time-scales LSTM memory units Sequence-to-sequence models Attention Memory nets / Neural Turing Machines 35

37 Deep RNNs Multiple RNN-layers Additional MLP-layer Additional MLP-layer and skip connections May also hurt, as the path from an event becomes longer à harder to learn long-term dependencies 36

38 Bi-directional RNN considers information from two directions We don t always assume a causal left-to-right structure, sometimes the output depends on whole input Bi-directional RNNs give more information to your network You should know the future sequence ahead of time Extends to 2D 37

39 Recursive nets More general than an RNN chain, e.g. a tree Has been used used to process data structures as NN-inputs, in NLP and in computer vision With sequence of the same length N, depth reduced from N (for RNN) to O(logN) Tree structuring unclear Balanced binary? External method (parse tree for NLP)? 38

40 Long-term dependencies are hard to capture Hidden state of RNNs needs to remember a lot This is burdensome especially with long sequences 39

41 Long-term dependencies are hard to capture Hidden state of RNNs needs to remember a lot This is burdensome especially with long sequences Neural units that learn to remember some inputs can alleviate this 40

42 Long-term dependencies are hard to capture Hidden state of RNNs needs to remember a lot This is burdensome especially with long sequences Neural units that learn to remember some inputs can alleviate this Echo-state networks (liquid state machines, reservoir computing) fix all weights but the final layer Weights are set so that the net is at the edge of stability (values around 1 for the leading singular value of J of the state-to-state transition) 41

43 Long-term dependencies are hard to capture Hidden state of RNNs needs to remember a lot This is burdensome especially with long sequences Neural units that learn to remember some inputs can alleviate this Echo-state networks (liquid state machines, reservoir computing) fix all weights but the final layer Weights are set so that the net is at the edge of stability (values around 1 for the leading singular value of J of the state-to-state transition) Long-short term memory (LSTM) first, most commonly used memory units Can accumulate information, and forget it when it was used and no more needed Better at long-term dependencies than normal RNNs Can be trained to work on tasks requiring memory over >200 steps Very successful for instance at text generation, hand-writing recognition and speech recognition Other memory units exist, e.g. GRU and memory units with multiple layers 42

44 Multiple time scales could be used 43

45 LSTMs are a common solution RNN LSTM 44

46 LSTMs are a common solution RNN There is a path from x t-1 to h t+1 with no non-linearities All gates are sigmoid units Remembered state is passed on LSTM 45 Forget-gate (scale old cell value = reset) Input-gate (scale input to cell = write) Output gate (scale output from cell = read) State influences decisions at next time step

47 Some LSTM-cells are interpretable 46

48 An encoder-decoder (sequence-to-sequence) model can capture a different sequence relation 47

49 RNNs can be used with different kinds of sequences Vanilla mode, no RNN. E.g. image classification Sequence output E.g. image captioning Sequence input E.g. sentiment analysis Sequence input and output (encoderdecoder, sequence-tosequence) E.g. translation, question answering Synced sequence input and output E.g. label each video frame 48 Live:

50 Attention avoids having to memorize everything (1/2) Encoder-RNN needs to store a large number of information to a small state An attention mechanism creates an attention vector from all inputs When generating outputs, the mechanism learns to shifts its attention at each step to the most relevant part in the input 49

51 Attention avoids having to memorize everything (2/2) 50

52 Memory networks / Neural Turing Machines (NTMs) can shift their attention and write to memory 51 Neural nets are good at storing implicit knowledge, but bad at storing facts Humans have a working memory system Memory networks / NTMs have memory cells that can be read from (like in attention) and written to A cell stores a vector. The cells can be read from by location ( access cell 347 ) and by content ( access cell that has information about my dad ) Current systems implement a softattention (reading from multiple cells). This is convenient when training based on the gradient. Active research currently on hard attention (reading from a specific cell) Successfully used e.g. to learn to sort values and to perform reasoning from simplified text

53 Agenda Why Recurrent neural networks? Anatomy and basic training of an RNN (10.2, ) Properties of RNNs (10.2.2, 8.2.6) Using RNNs (10.2.3, ) RNN extensions ( ) Demos Next steps & references 52

54 Quiz How can neural networks learn to execute programs? 53

55 State-of-the art RNNs can learn to predict how a (simple) program would execute LSTM 2 layers Unrolled for 50 steps 400 units per layer Params initialized uniformly Clipped gradients Own learning rate scheme 54

56 State-of-the art RNNs can learn to predict conversation responses Sequence-to-sequence 400-words long interactions Single-layer LSTM 1024 units Gradient clipping Most common 20K words 30M tokens, 3M in validation Larger recurrent networks trained with GPU machines 55

57 Code-demo 56

58 Agenda Why Recurrent neural networks? Anatomy and basic training of an RNN (10.2, ) Properties of RNNs (10.2.2, 8.2.6) Using RNNs (10.2.3, ) RNN extensions ( ) Demos Next steps & references 57

59 Quiz 1. Where can you use RNNs? 2. What algorithm can be used to train RNNs? 3. What are limitations of RNNs? 4. How can we capture long-term dependencies with RNNs? 5. How can neural networks learn to execute programs? 58

60 Exercises Read Chapter 10 (Sequence modeling) Read Chapter 15 (Linear Factor Models and Auto-Encoders) Read the Theano-tutorial on recurrent neural networks: For practical code examples, other sources may be useful, e.g. Exercise: Read MNIST columnwise, spit out the class at each step, plot training performance as a function of columns read. No lecture next week 59

61 References

CSC 578 Neural Networks and Deep Learning

CSC 578 Neural Networks and Deep Learning CSC 578 Neural Networks and Deep Learning Fall 2018/19 7. Recurrent Neural Networks (Some figures adapted from NNDL book) 1 Recurrent Neural Networks 1. Recurrent Neural Networks (RNNs) 2. RNN Training

More information

Machine Learning 13. week

Machine Learning 13. week Machine Learning 13. week Deep Learning Convolutional Neural Network Recurrent Neural Network 1 Why Deep Learning is so Popular? 1. Increase in the amount of data Thanks to the Internet, huge amount of

More information

Recurrent Neural Network (RNN) Industrial AI Lab.

Recurrent Neural Network (RNN) Industrial AI Lab. Recurrent Neural Network (RNN) Industrial AI Lab. For example (Deterministic) Time Series Data Closed- form Linear difference equation (LDE) and initial condition High order LDEs 2 (Stochastic) Time Series

More information

Recurrent Neural Networks

Recurrent Neural Networks Recurrent Neural Networks Javier Béjar Deep Learning 2018/2019 Fall Master in Artificial Intelligence (FIB-UPC) Introduction Sequential data Many problems are described by sequences Time series Video/audio

More information

LSTM and its variants for visual recognition. Xiaodan Liang Sun Yat-sen University

LSTM and its variants for visual recognition. Xiaodan Liang Sun Yat-sen University LSTM and its variants for visual recognition Xiaodan Liang xdliang328@gmail.com Sun Yat-sen University Outline Context Modelling with CNN LSTM and its Variants LSTM Architecture Variants Application in

More information

Encoding RNNs, 48 End of sentence (EOS) token, 207 Exploding gradient, 131 Exponential function, 42 Exponential Linear Unit (ELU), 44

Encoding RNNs, 48 End of sentence (EOS) token, 207 Exploding gradient, 131 Exponential function, 42 Exponential Linear Unit (ELU), 44 A Activation potential, 40 Annotated corpus add padding, 162 check versions, 158 create checkpoints, 164, 166 create input, 160 create train and validation datasets, 163 dropout, 163 DRUG-AE.rel file,

More information

Natural Language Processing CS 6320 Lecture 6 Neural Language Models. Instructor: Sanda Harabagiu

Natural Language Processing CS 6320 Lecture 6 Neural Language Models. Instructor: Sanda Harabagiu Natural Language Processing CS 6320 Lecture 6 Neural Language Models Instructor: Sanda Harabagiu In this lecture We shall cover: Deep Neural Models for Natural Language Processing Introduce Feed Forward

More information

SEMANTIC COMPUTING. Lecture 9: Deep Learning: Recurrent Neural Networks (RNNs) TU Dresden, 21 December 2018

SEMANTIC COMPUTING. Lecture 9: Deep Learning: Recurrent Neural Networks (RNNs) TU Dresden, 21 December 2018 SEMANTIC COMPUTING Lecture 9: Deep Learning: Recurrent Neural Networks (RNNs) Dagmar Gromann International Center For Computational Logic TU Dresden, 21 December 2018 Overview Handling Overfitting Recurrent

More information

Modeling Sequences Conditioned on Context with RNNs

Modeling Sequences Conditioned on Context with RNNs Modeling Sequences Conditioned on Context with RNNs Sargur Srihari srihari@buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 10. Topics in Sequence

More information

RNNs as Directed Graphical Models

RNNs as Directed Graphical Models RNNs as Directed Graphical Models Sargur Srihari srihari@buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 10. Topics in Sequence Modeling Overview

More information

Recurrent Neural Nets II

Recurrent Neural Nets II Recurrent Neural Nets II Steven Spielberg Pon Kumar, Tingke (Kevin) Shen Machine Learning Reading Group, Fall 2016 9 November, 2016 Outline 1 Introduction 2 Problem Formulations with RNNs 3 LSTM for Optimization

More information

Recurrent Neural Networks. Nand Kishore, Audrey Huang, Rohan Batra

Recurrent Neural Networks. Nand Kishore, Audrey Huang, Rohan Batra Recurrent Neural Networks Nand Kishore, Audrey Huang, Rohan Batra Roadmap Issues Motivation 1 Application 1: Sequence Level Training 2 Basic Structure 3 4 Variations 5 Application 3: Image Classification

More information

LSTM: An Image Classification Model Based on Fashion-MNIST Dataset

LSTM: An Image Classification Model Based on Fashion-MNIST Dataset LSTM: An Image Classification Model Based on Fashion-MNIST Dataset Kexin Zhang, Research School of Computer Science, Australian National University Kexin Zhang, U6342657@anu.edu.au Abstract. The application

More information

Natural Language Processing with Deep Learning CS224N/Ling284

Natural Language Processing with Deep Learning CS224N/Ling284 Natural Language Processing with Deep Learning CS224N/Ling284 Lecture 8: Recurrent Neural Networks Christopher Manning and Richard Socher Organization Extra project office hour today after lecture Overview

More information

Natural Language Processing with Deep Learning CS224N/Ling284. Christopher Manning Lecture 4: Backpropagation and computation graphs

Natural Language Processing with Deep Learning CS224N/Ling284. Christopher Manning Lecture 4: Backpropagation and computation graphs Natural Language Processing with Deep Learning CS4N/Ling84 Christopher Manning Lecture 4: Backpropagation and computation graphs Lecture Plan Lecture 4: Backpropagation and computation graphs 1. Matrix

More information

Gated Recurrent Models. Stephan Gouws & Richard Klein

Gated Recurrent Models. Stephan Gouws & Richard Klein Gated Recurrent Models Stephan Gouws & Richard Klein Outline Part 1: Intuition, Inference and Training Building intuitions: From Feedforward to Recurrent Models Inference in RNNs: Fprop Training in RNNs:

More information

Lecture 2 Notes. Outline. Neural Networks. The Big Idea. Architecture. Instructors: Parth Shah, Riju Pahwa

Lecture 2 Notes. Outline. Neural Networks. The Big Idea. Architecture. Instructors: Parth Shah, Riju Pahwa Instructors: Parth Shah, Riju Pahwa Lecture 2 Notes Outline 1. Neural Networks The Big Idea Architecture SGD and Backpropagation 2. Convolutional Neural Networks Intuition Architecture 3. Recurrent Neural

More information

Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling

Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling Authors: Junyoung Chung, Caglar Gulcehre, KyungHyun Cho and Yoshua Bengio Presenter: Yu-Wei Lin Background: Recurrent Neural

More information

Sentiment Classification of Food Reviews

Sentiment Classification of Food Reviews Sentiment Classification of Food Reviews Hua Feng Department of Electrical Engineering Stanford University Stanford, CA 94305 fengh15@stanford.edu Ruixi Lin Department of Electrical Engineering Stanford

More information

The Hitchhiker s Guide to TensorFlow:

The Hitchhiker s Guide to TensorFlow: The Hitchhiker s Guide to TensorFlow: Beyond Recurrent Neural Networks (sort of) Keith Davis @keithdavisiii iamthevastidledhitchhiker.github.io Topics Kohonen/Self-Organizing Maps LSTMs in TensorFlow GRU

More information

Topics in AI (CPSC 532L): Multimodal Learning with Vision, Language and Sound. Lecture 12: Deep Reinforcement Learning

Topics in AI (CPSC 532L): Multimodal Learning with Vision, Language and Sound. Lecture 12: Deep Reinforcement Learning Topics in AI (CPSC 532L): Multimodal Learning with Vision, Language and Sound Lecture 12: Deep Reinforcement Learning Types of Learning Supervised training Learning from the teacher Training data includes

More information

27: Hybrid Graphical Models and Neural Networks

27: Hybrid Graphical Models and Neural Networks 10-708: Probabilistic Graphical Models 10-708 Spring 2016 27: Hybrid Graphical Models and Neural Networks Lecturer: Matt Gormley Scribes: Jakob Bauer Otilia Stretcu Rohan Varma 1 Motivation We first look

More information

Table of Contents. What Really is a Hidden Unit? Visualizing Feed-Forward NNs. Visualizing Convolutional NNs. Visualizing Recurrent NNs

Table of Contents. What Really is a Hidden Unit? Visualizing Feed-Forward NNs. Visualizing Convolutional NNs. Visualizing Recurrent NNs Table of Contents What Really is a Hidden Unit? Visualizing Feed-Forward NNs Visualizing Convolutional NNs Visualizing Recurrent NNs Visualizing Attention Visualizing High Dimensional Data What do visualizations

More information

Deep Learning Applications

Deep Learning Applications October 20, 2017 Overview Supervised Learning Feedforward neural network Convolution neural network Recurrent neural network Recursive neural network (Recursive neural tensor network) Unsupervised Learning

More information

Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright c All rights reserved. Draft of September 23, 2018.

Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright c All rights reserved. Draft of September 23, 2018. Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright c 2018. All rights reserved. Draft of September 23, 2018. CHAPTER 9 Sequence Processing with Recurrent Networks Time will explain.

More information

Slide credit from Hung-Yi Lee & Richard Socher

Slide credit from Hung-Yi Lee & Richard Socher Slide credit from Hung-Yi Lee & Richard Socher 1 Review Word Vector 2 Word2Vec Variants Skip-gram: predicting surrounding words given the target word (Mikolov+, 2013) CBOW (continuous bag-of-words): predicting

More information

Residual Networks And Attention Models. cs273b Recitation 11/11/2016. Anna Shcherbina

Residual Networks And Attention Models. cs273b Recitation 11/11/2016. Anna Shcherbina Residual Networks And Attention Models cs273b Recitation 11/11/2016 Anna Shcherbina Introduction to ResNets Introduced in 2015 by Microsoft Research Deep Residual Learning for Image Recognition (He, Zhang,

More information

Lecture 20: Neural Networks for NLP. Zubin Pahuja

Lecture 20: Neural Networks for NLP. Zubin Pahuja Lecture 20: Neural Networks for NLP Zubin Pahuja zpahuja2@illinois.edu courses.engr.illinois.edu/cs447 CS447: Natural Language Processing 1 Today s Lecture Feed-forward neural networks as classifiers simple

More information

Deep Neural Networks Applications in Handwriting Recognition

Deep Neural Networks Applications in Handwriting Recognition Deep Neural Networks Applications in Handwriting Recognition 2 Who am I? Théodore Bluche PhD defended at Université Paris-Sud last year Deep Neural Networks for Large Vocabulary Handwritten

More information

16-785: Integrated Intelligence in Robotics: Vision, Language, and Planning. Spring 2018 Lecture 14. Image to Text

16-785: Integrated Intelligence in Robotics: Vision, Language, and Planning. Spring 2018 Lecture 14. Image to Text 16-785: Integrated Intelligence in Robotics: Vision, Language, and Planning Spring 2018 Lecture 14. Image to Text Input Output Classification tasks 4/1/18 CMU 16-785: Integrated Intelligence in Robotics

More information

Gate-Variants of Gated Recurrent Unit (GRU) Neural Networks

Gate-Variants of Gated Recurrent Unit (GRU) Neural Networks Gate-Variants of Gated Recurrent Unit (GRU) Neural Networks Rahul Dey and Fathi M. Salem Circuits, Systems, and Neural Networks (CSANN) LAB Department of Electrical and Computer Engineering Michigan State

More information

CS 224n: Assignment #3

CS 224n: Assignment #3 CS 224n: Assignment #3 Due date: 2/27 11:59 PM PST (You are allowed to use 3 late days maximum for this assignment) These questions require thought, but do not require long answers. Please be as concise

More information

Lecture 17: Neural Networks and Deep Learning. Instructor: Saravanan Thirumuruganathan

Lecture 17: Neural Networks and Deep Learning. Instructor: Saravanan Thirumuruganathan Lecture 17: Neural Networks and Deep Learning Instructor: Saravanan Thirumuruganathan Outline Perceptron Neural Networks Deep Learning Convolutional Neural Networks Recurrent Neural Networks Auto Encoders

More information

Artificial Neural Networks. Introduction to Computational Neuroscience Ardi Tampuu

Artificial Neural Networks. Introduction to Computational Neuroscience Ardi Tampuu Artificial Neural Networks Introduction to Computational Neuroscience Ardi Tampuu 7.0.206 Artificial neural network NB! Inspired by biology, not based on biology! Applications Automatic speech recognition

More information

SEMANTIC COMPUTING. Lecture 8: Introduction to Deep Learning. TU Dresden, 7 December Dagmar Gromann International Center For Computational Logic

SEMANTIC COMPUTING. Lecture 8: Introduction to Deep Learning. TU Dresden, 7 December Dagmar Gromann International Center For Computational Logic SEMANTIC COMPUTING Lecture 8: Introduction to Deep Learning Dagmar Gromann International Center For Computational Logic TU Dresden, 7 December 2018 Overview Introduction Deep Learning General Neural Networks

More information

EECS 496 Statistical Language Models. Winter 2018

EECS 496 Statistical Language Models. Winter 2018 EECS 496 Statistical Language Models Winter 2018 Introductions Professor: Doug Downey Course web site: www.cs.northwestern.edu/~ddowney/courses/496_winter2018 (linked off prof. home page) Logistics Grading

More information

Deep Neural Networks Applications in Handwriting Recognition

Deep Neural Networks Applications in Handwriting Recognition Deep Neural Networks Applications in Handwriting Recognition Théodore Bluche theodore.bluche@gmail.com São Paulo Meetup - 9 Mar. 2017 2 Who am I? Théodore Bluche PhD defended

More information

RECURRENT NEURAL NETWORKS

RECURRENT NEURAL NETWORKS RECURRENT NEURAL NETWORKS Methods Traditional Deep-Learning based Non-machine Learning Machine-Learning based method Supervised SVM MLP CNN RNN (LSTM) Localizati on GPS, SLAM Self Driving Perception Pedestrian

More information

Reservoir Computing with Emphasis on Liquid State Machines

Reservoir Computing with Emphasis on Liquid State Machines Reservoir Computing with Emphasis on Liquid State Machines Alex Klibisz University of Tennessee aklibisz@gmail.com November 28, 2016 Context and Motivation Traditional ANNs are useful for non-linear problems,

More information

Asynchronous Parallel Learning for Neural Networks and Structured Models with Dense Features

Asynchronous Parallel Learning for Neural Networks and Structured Models with Dense Features Asynchronous Parallel Learning for Neural Networks and Structured Models with Dense Features Xu SUN ( 孙栩 ) Peking University xusun@pku.edu.cn Motivation Neural networks -> Good Performance CNN, RNN, LSTM

More information

Relational inductive biases, deep learning, and graph networks

Relational inductive biases, deep learning, and graph networks Relational inductive biases, deep learning, and graph networks Peter Battaglia et al. 2018 1 What The authors explore how we can combine relational inductive biases and DL. They introduce graph network

More information

Inference Optimization Using TensorRT with Use Cases. Jack Han / 한재근 Solutions Architect NVIDIA

Inference Optimization Using TensorRT with Use Cases. Jack Han / 한재근 Solutions Architect NVIDIA Inference Optimization Using TensorRT with Use Cases Jack Han / 한재근 Solutions Architect NVIDIA Search Image NLP Maps TensorRT 4 Adoption Use Cases Speech Video AI Inference is exploding 1 Billion Videos

More information

Akarsh Pokkunuru EECS Department Contractive Auto-Encoders: Explicit Invariance During Feature Extraction

Akarsh Pokkunuru EECS Department Contractive Auto-Encoders: Explicit Invariance During Feature Extraction Akarsh Pokkunuru EECS Department 03-16-2017 Contractive Auto-Encoders: Explicit Invariance During Feature Extraction 1 AGENDA Introduction to Auto-encoders Types of Auto-encoders Analysis of different

More information

A Quick Guide on Training a neural network using Keras.

A Quick Guide on Training a neural network using Keras. A Quick Guide on Training a neural network using Keras. TensorFlow and Keras Keras Open source High level, less flexible Easy to learn Perfect for quick implementations Starts by François Chollet from

More information

LECTURE NOTES Professor Anita Wasilewska NEURAL NETWORKS

LECTURE NOTES Professor Anita Wasilewska NEURAL NETWORKS LECTURE NOTES Professor Anita Wasilewska NEURAL NETWORKS Neural Networks Classifier Introduction INPUT: classification data, i.e. it contains an classification (class) attribute. WE also say that the class

More information

Recurrent Neural Networks

Recurrent Neural Networks Recurrent Neural Networks 11-785 / Fall 2018 / Recitation 7 Raphaël Olivier Recap : RNNs are magic They have infinite memory They handle all kinds of series They re the basis of recent NLP : Translation,

More information

CS489/698: Intro to ML

CS489/698: Intro to ML CS489/698: Intro to ML Lecture 14: Training of Deep NNs Instructor: Sun Sun 1 Outline Activation functions Regularization Gradient-based optimization 2 Examples of activation functions 3 5/28/18 Sun Sun

More information

Deep Convolutional Neural Networks. Nov. 20th, 2015 Bruce Draper

Deep Convolutional Neural Networks. Nov. 20th, 2015 Bruce Draper Deep Convolutional Neural Networks Nov. 20th, 2015 Bruce Draper Background: Fully-connected single layer neural networks Feed-forward classification Trained through back-propagation Example Computer Vision

More information

Neural Network Neurons

Neural Network Neurons Neural Networks Neural Network Neurons 1 Receives n inputs (plus a bias term) Multiplies each input by its weight Applies activation function to the sum of results Outputs result Activation Functions Given

More information

Machine Learning. Deep Learning. Eric Xing (and Pengtao Xie) , Fall Lecture 8, October 6, Eric CMU,

Machine Learning. Deep Learning. Eric Xing (and Pengtao Xie) , Fall Lecture 8, October 6, Eric CMU, Machine Learning 10-701, Fall 2015 Deep Learning Eric Xing (and Pengtao Xie) Lecture 8, October 6, 2015 Eric Xing @ CMU, 2015 1 A perennial challenge in computer vision: feature engineering SIFT Spin image

More information

Knowledge Discovery and Data Mining. Neural Nets. A simple NN as a Mathematical Formula. Notes. Lecture 13 - Neural Nets. Tom Kelsey.

Knowledge Discovery and Data Mining. Neural Nets. A simple NN as a Mathematical Formula. Notes. Lecture 13 - Neural Nets. Tom Kelsey. Knowledge Discovery and Data Mining Lecture 13 - Neural Nets Tom Kelsey School of Computer Science University of St Andrews http://tom.home.cs.st-andrews.ac.uk twk@st-andrews.ac.uk Tom Kelsey ID5059-13-NN

More information

Lecture 21 : A Hybrid: Deep Learning and Graphical Models

Lecture 21 : A Hybrid: Deep Learning and Graphical Models 10-708: Probabilistic Graphical Models, Spring 2018 Lecture 21 : A Hybrid: Deep Learning and Graphical Models Lecturer: Kayhan Batmanghelich Scribes: Paul Liang, Anirudha Rayasam 1 Introduction and Motivation

More information

Machine Learning With Python. Bin Chen Nov. 7, 2017 Research Computing Center

Machine Learning With Python. Bin Chen Nov. 7, 2017 Research Computing Center Machine Learning With Python Bin Chen Nov. 7, 2017 Research Computing Center Outline Introduction to Machine Learning (ML) Introduction to Neural Network (NN) Introduction to Deep Learning NN Introduction

More information

Neural Networks. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani

Neural Networks. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani Neural Networks CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Biological and artificial neural networks Feed-forward neural networks Single layer

More information

Practical Methodology. Lecture slides for Chapter 11 of Deep Learning Ian Goodfellow

Practical Methodology. Lecture slides for Chapter 11 of Deep Learning  Ian Goodfellow Practical Methodology Lecture slides for Chapter 11 of Deep Learning www.deeplearningbook.org Ian Goodfellow 2016-09-26 What drives success in ML? Arcane knowledge of dozens of obscure algorithms? Mountains

More information

Knowledge Discovery and Data Mining

Knowledge Discovery and Data Mining Knowledge Discovery and Data Mining Lecture 13 - Neural Nets Tom Kelsey School of Computer Science University of St Andrews http://tom.home.cs.st-andrews.ac.uk twk@st-andrews.ac.uk Tom Kelsey ID5059-13-NN

More information

FastText. Jon Koss, Abhishek Jindal

FastText. Jon Koss, Abhishek Jindal FastText Jon Koss, Abhishek Jindal FastText FastText is on par with state-of-the-art deep learning classifiers in terms of accuracy But it is way faster: FastText can train on more than one billion words

More information

Transition-Based Dependency Parsing with Stack Long Short-Term Memory

Transition-Based Dependency Parsing with Stack Long Short-Term Memory Transition-Based Dependency Parsing with Stack Long Short-Term Memory Chris Dyer, Miguel Ballesteros, Wang Ling, Austin Matthews, Noah A. Smith Association for Computational Linguistics (ACL), 2015 Presented

More information

Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting

Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting Yaguang Li Joint work with Rose Yu, Cyrus Shahabi, Yan Liu Page 1 Introduction Traffic congesting is wasteful of time,

More information

Empirical Evaluation of RNN Architectures on Sentence Classification Task

Empirical Evaluation of RNN Architectures on Sentence Classification Task Empirical Evaluation of RNN Architectures on Sentence Classification Task Lei Shen, Junlin Zhang Chanjet Information Technology lorashen@126.com, zhangjlh@chanjet.com Abstract. Recurrent Neural Networks

More information

Convolutional Sequence to Sequence Learning. Denis Yarats with Jonas Gehring, Michael Auli, David Grangier, Yann Dauphin Facebook AI Research

Convolutional Sequence to Sequence Learning. Denis Yarats with Jonas Gehring, Michael Auli, David Grangier, Yann Dauphin Facebook AI Research Convolutional Sequence to Sequence Learning Denis Yarats with Jonas Gehring, Michael Auli, David Grangier, Yann Dauphin Facebook AI Research Sequence generation Need to model a conditional distribution

More information

COMP9444 Neural Networks and Deep Learning 5. Geometry of Hidden Units

COMP9444 Neural Networks and Deep Learning 5. Geometry of Hidden Units COMP9 8s Geometry of Hidden Units COMP9 Neural Networks and Deep Learning 5. Geometry of Hidden Units Outline Geometry of Hidden Unit Activations Limitations of -layer networks Alternative transfer functions

More information

Neural Networks and Deep Learning

Neural Networks and Deep Learning Neural Networks and Deep Learning Example Learning Problem Example Learning Problem Celebrity Faces in the Wild Machine Learning Pipeline Raw data Feature extract. Feature computation Inference: prediction,

More information

Deep Learning for Computer Vision II

Deep Learning for Computer Vision II IIIT Hyderabad Deep Learning for Computer Vision II C. V. Jawahar Paradigm Shift Feature Extraction (SIFT, HoG, ) Part Models / Encoding Classifier Sparrow Feature Learning Classifier Sparrow L 1 L 2 L

More information

Machine learning for vision. It s the features, stupid! cathedral. high-rise. Winter Roland Memisevic. Lecture 2, January 26, 2016

Machine learning for vision. It s the features, stupid! cathedral. high-rise. Winter Roland Memisevic. Lecture 2, January 26, 2016 Winter 2016 Lecture 2, Januar 26, 2016 f2? cathedral high-rise f1 A common computer vision pipeline before 2012 1. 2. 3. 4. Find interest points. Crop patches around them. Represent each patch with a sparse

More information

Code Mania Artificial Intelligence: a. Module - 1: Introduction to Artificial intelligence and Python:

Code Mania Artificial Intelligence: a. Module - 1: Introduction to Artificial intelligence and Python: Code Mania 2019 Artificial Intelligence: a. Module - 1: Introduction to Artificial intelligence and Python: 1. Introduction to Artificial Intelligence 2. Introduction to python programming and Environment

More information

On the Efficiency of Recurrent Neural Network Optimization Algorithms

On the Efficiency of Recurrent Neural Network Optimization Algorithms On the Efficiency of Recurrent Neural Network Optimization Algorithms Ben Krause, Liang Lu, Iain Murray, Steve Renals University of Edinburgh Department of Informatics s17005@sms.ed.ac.uk, llu@staffmail.ed.ac.uk,

More information

CMU Lecture 18: Deep learning and Vision: Convolutional neural networks. Teacher: Gianni A. Di Caro

CMU Lecture 18: Deep learning and Vision: Convolutional neural networks. Teacher: Gianni A. Di Caro CMU 15-781 Lecture 18: Deep learning and Vision: Convolutional neural networks Teacher: Gianni A. Di Caro DEEP, SHALLOW, CONNECTED, SPARSE? Fully connected multi-layer feed-forward perceptrons: More powerful

More information

Deep Learning. Architecture Design for. Sargur N. Srihari

Deep Learning. Architecture Design for. Sargur N. Srihari Architecture Design for Deep Learning Sargur N. srihari@cedar.buffalo.edu 1 Topics Overview 1. Example: Learning XOR 2. Gradient-Based Learning 3. Hidden Units 4. Architecture Design 5. Backpropagation

More information

Recurrent Neural Networks and Transfer Learning for Action Recognition

Recurrent Neural Networks and Transfer Learning for Action Recognition Recurrent Neural Networks and Transfer Learning for Action Recognition Andrew Giel Stanford University agiel@stanford.edu Ryan Diaz Stanford University ryandiaz@stanford.edu Abstract We have taken on the

More information

Application of Deep Learning Techniques in Satellite Telemetry Analysis.

Application of Deep Learning Techniques in Satellite Telemetry Analysis. Application of Deep Learning Techniques in Satellite Telemetry Analysis. Greg Adamski, Member of Technical Staff L3 Technologies Telemetry and RF Products Julian Spencer Jones, Spacecraft Engineer Telenor

More information

Image Question Answering using Convolutional Neural Network with Dynamic Parameter Prediction

Image Question Answering using Convolutional Neural Network with Dynamic Parameter Prediction Image Question Answering using Convolutional Neural Network with Dynamic Parameter Prediction by Noh, Hyeonwoo, Paul Hongsuck Seo, and Bohyung Han.[1] Presented : Badri Patro 1 1 Computer Vision Reading

More information

Structured Attention Networks

Structured Attention Networks Structured Attention Networks Yoon Kim Carl Denton Luong Hoang Alexander M. Rush HarvardNLP ICLR, 2017 Presenter: Chao Jiang ICLR, 2017 Presenter: Chao Jiang 1 / Outline 1 Deep Neutral Networks for Text

More information

CPSC 340: Machine Learning and Data Mining. Deep Learning Fall 2016

CPSC 340: Machine Learning and Data Mining. Deep Learning Fall 2016 CPSC 340: Machine Learning and Data Mining Deep Learning Fall 2016 Assignment 5: Due Friday. Assignment 6: Due next Friday. Final: Admin December 12 (8:30am HEBB 100) Covers Assignments 1-6. Final from

More information

Combining Neural Networks and Log-linear Models to Improve Relation Extraction

Combining Neural Networks and Log-linear Models to Improve Relation Extraction Combining Neural Networks and Log-linear Models to Improve Relation Extraction Thien Huu Nguyen and Ralph Grishman Computer Science Department, New York University {thien,grishman}@cs.nyu.edu Outline Relation

More information

COMP 551 Applied Machine Learning Lecture 16: Deep Learning

COMP 551 Applied Machine Learning Lecture 16: Deep Learning COMP 551 Applied Machine Learning Lecture 16: Deep Learning Instructor: Ryan Lowe (ryan.lowe@cs.mcgill.ca) Slides mostly by: Class web page: www.cs.mcgill.ca/~hvanho2/comp551 Unless otherwise noted, all

More information

Context Encoding LSTM CS224N Course Project

Context Encoding LSTM CS224N Course Project Context Encoding LSTM CS224N Course Project Abhinav Rastogi arastogi@stanford.edu Supervised by - Samuel R. Bowman December 7, 2015 Abstract This project uses ideas from greedy transition based parsing

More information

Machine Learning: Chenhao Tan University of Colorado Boulder LECTURE 15

Machine Learning: Chenhao Tan University of Colorado Boulder LECTURE 15 Machine Learning: Chenhao Tan University of Colorado Boulder LECTURE 15 Slides adapted from Jordan Boyd-Graber Machine Learning: Chenhao Tan Boulder 1 of 21 Logistics HW3 available on Github, due on October

More information

House Price Prediction Using LSTM

House Price Prediction Using LSTM House Price Prediction Using LSTM Xiaochen Chen Lai Wei The Hong Kong University of Science and Technology Jiaxin Xu ABSTRACT In this paper, we use the house price data ranging from January 2004 to October

More information

Title. Author(s)Noguchi, Wataru; Iizuka, Hiroyuki; Yamamoto, Masahit. CitationEAI Endorsed Transactions on Security and Safety, 16

Title. Author(s)Noguchi, Wataru; Iizuka, Hiroyuki; Yamamoto, Masahit. CitationEAI Endorsed Transactions on Security and Safety, 16 Title Proposing Multimodal Integration Model Using LSTM an Author(s)Noguchi, Wataru; Iizuka, Hiroyuki; Yamamoto, Masahit CitationEAI Endorsed Transactions on Security and Safety, 16 Issue Date 216-12-28

More information

CAP 6412 Advanced Computer Vision

CAP 6412 Advanced Computer Vision CAP 6412 Advanced Computer Vision http://www.cs.ucf.edu/~bgong/cap6412.html Boqing Gong Feb 04, 2016 Today Administrivia Attention Modeling in Image Captioning, by Karan Neural networks & Backpropagation

More information

Hidden Units. Sargur N. Srihari

Hidden Units. Sargur N. Srihari Hidden Units Sargur N. srihari@cedar.buffalo.edu 1 Topics in Deep Feedforward Networks Overview 1. Example: Learning XOR 2. Gradient-Based Learning 3. Hidden Units 4. Architecture Design 5. Backpropagation

More information

Tutorial on Keras CAP ADVANCED COMPUTER VISION SPRING 2018 KISHAN S ATHREY

Tutorial on Keras CAP ADVANCED COMPUTER VISION SPRING 2018 KISHAN S ATHREY Tutorial on Keras CAP 6412 - ADVANCED COMPUTER VISION SPRING 2018 KISHAN S ATHREY Deep learning packages TensorFlow Google PyTorch Facebook AI research Keras Francois Chollet (now at Google) Chainer Company

More information

Convolutional Networks for Text

Convolutional Networks for Text CS11-747 Neural Networks for NLP Convolutional Networks for Text Graham Neubig Site https://phontron.com/class/nn4nlp2017/ An Example Prediction Problem: Sentence Classification I hate this movie very

More information

Backpropagation + Deep Learning

Backpropagation + Deep Learning 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Backpropagation + Deep Learning Matt Gormley Lecture 13 Mar 1, 2018 1 Reminders

More information

Neural Networks. Robot Image Credit: Viktoriya Sukhanova 123RF.com

Neural Networks. Robot Image Credit: Viktoriya Sukhanova 123RF.com Neural Networks These slides were assembled by Eric Eaton, with grateful acknowledgement of the many others who made their course materials freely available online. Feel free to reuse or adapt these slides

More information

Programming Exercise 4: Neural Networks Learning

Programming Exercise 4: Neural Networks Learning Programming Exercise 4: Neural Networks Learning Machine Learning Introduction In this exercise, you will implement the backpropagation algorithm for neural networks and apply it to the task of hand-written

More information

Deep Learning. Vladimir Golkov Technical University of Munich Computer Vision Group

Deep Learning. Vladimir Golkov Technical University of Munich Computer Vision Group Deep Learning Vladimir Golkov Technical University of Munich Computer Vision Group 1D Input, 1D Output target input 2 2D Input, 1D Output: Data Distribution Complexity Imagine many dimensions (data occupies

More information

CS 6501: Deep Learning for Computer Graphics. Training Neural Networks II. Connelly Barnes

CS 6501: Deep Learning for Computer Graphics. Training Neural Networks II. Connelly Barnes CS 6501: Deep Learning for Computer Graphics Training Neural Networks II Connelly Barnes Overview Preprocessing Initialization Vanishing/exploding gradients problem Batch normalization Dropout Additional

More information

Unsupervised Learning

Unsupervised Learning Deep Learning for Graphics Unsupervised Learning Niloy Mitra Iasonas Kokkinos Paul Guerrero Vladimir Kim Kostas Rematas Tobias Ritschel UCL UCL/Facebook UCL Adobe Research U Washington UCL Timetable Niloy

More information

Pointer Network. Oriol Vinyals. 박천음 강원대학교 Intelligent Software Lab.

Pointer Network. Oriol Vinyals. 박천음 강원대학교 Intelligent Software Lab. Pointer Network Oriol Vinyals 박천음 강원대학교 Intelligent Software Lab. Intelligent Software Lab. Pointer Network 1 Pointer Network 2 Intelligent Software Lab. 2 Sequence-to-Sequence Model Train 학습학습학습학습학습 Test

More information

Rationalizing Sentiment Analysis in Tensorflow

Rationalizing Sentiment Analysis in Tensorflow Rationalizing Sentiment Analysis in Tensorflow Alyson Kane Stanford University alykane@stanford.edu Henry Neeb Stanford University hneeb@stanford.edu Kevin Shaw Stanford University keshaw@stanford.edu

More information

Administrative. Assignment 1 due Wednesday April 18, 11:59pm

Administrative. Assignment 1 due Wednesday April 18, 11:59pm Lecture 4-1 Administrative Assignment 1 due Wednesday April 18, 11:59pm Lecture 4-2 Administrative All office hours this week will use queuestatus Lecture 4-3 Where we are... scores function SVM loss data

More information

19: Inference and learning in Deep Learning

19: Inference and learning in Deep Learning 10-708: Probabilistic Graphical Models 10-708, Spring 2017 19: Inference and learning in Deep Learning Lecturer: Zhiting Hu Scribes: Akash Umakantha, Ryan Williamson 1 Classes of Deep Generative Models

More information

OPTIMIZING PERFORMANCE OF RECURRENT NEURAL NETWORKS

OPTIMIZING PERFORMANCE OF RECURRENT NEURAL NETWORKS April 4-7, 2016 Silicon Valley OPTIMIZING PERFORMANCE OF RECURRENT NEURAL NETWORKS Jeremy Appleyard, 7 April 2016 RECURRENT NEURAL NETWORKS Output is fed into input Perform the same operation repeatedly

More information

Show, Discriminate, and Tell: A Discriminatory Image Captioning Model with Deep Neural Networks

Show, Discriminate, and Tell: A Discriminatory Image Captioning Model with Deep Neural Networks Show, Discriminate, and Tell: A Discriminatory Image Captioning Model with Deep Neural Networks Zelun Luo Department of Computer Science Stanford University zelunluo@stanford.edu Te-Lin Wu Department of

More information

LSTM for Language Translation and Image Captioning. Tel Aviv University Deep Learning Seminar Oran Gafni & Noa Yedidia

LSTM for Language Translation and Image Captioning. Tel Aviv University Deep Learning Seminar Oran Gafni & Noa Yedidia 1 LSTM for Language Translation and Image Captioning Tel Aviv University Deep Learning Seminar Oran Gafni & Noa Yedidia 2 Part I LSTM for Language Translation Motivation Background (RNNs, LSTMs) Model

More information

This Talk. 1) Node embeddings. Map nodes to low-dimensional embeddings. 2) Graph neural networks. Deep learning architectures for graphstructured

This Talk. 1) Node embeddings. Map nodes to low-dimensional embeddings. 2) Graph neural networks. Deep learning architectures for graphstructured Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 1 This Talk 1) Node embeddings Map nodes to low-dimensional embeddings. 2) Graph neural networks Deep learning architectures

More information

Alternatives to Direct Supervision

Alternatives to Direct Supervision CreativeAI: Deep Learning for Graphics Alternatives to Direct Supervision Niloy Mitra Iasonas Kokkinos Paul Guerrero Nils Thuerey Tobias Ritschel UCL UCL UCL TUM UCL Timetable Theory and Basics State of

More information

CS 4510/9010 Applied Machine Learning. Deep Learning. Paula Matuszek Fall copyright Paula Matuszek 2016

CS 4510/9010 Applied Machine Learning. Deep Learning. Paula Matuszek Fall copyright Paula Matuszek 2016 CS 4510/9010 Applied Machine Learning 1 Deep Learning Paula Matuszek Fall 2016 Beyond Simple Neural Nets 2 In the last few ideas we have seen some surprisingly rapid progress in some areas of AI Image

More information