CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt.

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt."

Transcription

1 CEE598 - Visul Sensing for Civil Infrsrucure Eng. & Mgm. Session 2 Review of Liner Algebr nd Geomeric Trnsformions Mni Golprvr-Frd Deprmen of Civil nd Environmenl Engineering Deprmen of Compuer Science 329D, Newmrk Civil Engineering Lb e-mil: UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

2 Useful Redings An book on liner lgebr! [HZ] chpers 2, 4. (b) Imge View 3D View () Temporr srucures, sie profile, foundion wlls, nd slb rebrs re reconsruced (c) Some of he slides in his lecure re coures o Prof. Ocvi I. Cmps, Penn Se Universi, Prof. Silvio Svrese, Snford Universi, Prof. Derek Hoie,, UIUC, nd Prof. Noh Snvel, Cornell Universi. 2 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

3 DoProduc3D hp://www.ouube.com/wch?v=fkchlima5y 3 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

4 Bringing BIM o Jobsies hp://www.ouube.com/wch?v=rwjzmmvl4 4 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

5 Bringing BIM o Jobsies Benefi from Dil Phoo Collecions Uplod o Server (boh web-bsed nd Admin App Your overls (DCR, QA/QC, Punch Lis) show up on new phoos of consrucion elemens hp://www.ouube.com/wch?v=rwjzmmvl4 5 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

6 Inroducion o Mchine Vision 6 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

7 Ouline Imge Formion Review of Liner Algerb nd Geomeric Trnsformion Bsics definiions nd properies Geomericl rnsformions Applicion: removing perspecive disorion he DLT lgorihm Ne Clss 7 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

8 Wh is n imge? hp://medi.phoobucke.com/imge/bes%2consrucion%2imge/joejordisonfn6/burj%252dubi%2522/5oi.jpg 8 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

9 Wh is n imge? 9 Digil Cmer We ll focus on hese in his clss Source: A. Efros (More on his process ler) The Ee CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24 9

10 Imges Discree represenion of coninuous funcion Ech imge is wo dimensionl rr of piels Piel: Elemen of picure cell of consn color in digil imge (i.e., numeric vlue represening uniform porion of n imge) Grscle All piels represen he inensi of ligh in n imge, be i red, green, blue, or noher color Similr o holding piece of rnspren colored plsic over our ees Inensi of ligh in piel is sored s number, generll..255 inclusive Coures of Howie Chose e l. CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

11 Imges (Con d) Color Three grscle imges lered on op of ech oher wih ech ler indicing he inensi of specific color ligh, generll red, green, nd blue (RGB) Third dimension in digil imge Resoluion Number of piels cross in horizonl Number of piels in he vericl Number of lers used for color Ofen mesured in bis per piel (bpp) where ech color uses 8 bis of d E: bpp Coures of Howie Chose e l. CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

12 Imges (Con d) A grid (mri) of inensi vlues = (common o use one be per vlue: = blck, 255 = whie) Source: Noh Snvel CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24 2

13 Color Imge R G B Coures of Derek Hoiem CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24 3

14 Imges in Mlb Imges represened s mri Suppose we hve NM RGB imge clled im im(,,) = op-lef piel vlue in R-chnnel im(,, b) = piels down, piels o righ in he b h chnnel im(n, M, 3) = boom-righ piel in 3-chnnel imred(filenme) reurns uin8 imge (vlues o 255) Conver o double form (vlues o ) wih im2double Coures of Derek Hoiem row column G CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24 R B 4

15 Wh is liner lgebr useful in compuer vision? Represenion 3D poins in he scene 2D poins in he imge Coordines will be used o Perform geomericl rnsformions Associe 3D wih 2D poins Imges re mrices of numbers Find properies of hese numbers 5 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

16 Liner Algebr

17 Vecors (i.e., 2D or 3D vecors) P = [,,z] p = [,] 3D world Imge 7 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

18 Vecors (i.e., 2D vecors) v (, 2 ) 2 v P Mgniude: 2 2 v 2 If v, v Is UNIT vecor v v 2, v v Is uni vecor Orienion: n 2 8 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

19 Vecor Addiion v w (, 2) (, 2) (, 2 2) v+w v w 9 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

20 Vecor Subrcion v w (, 2) (, 2) (, 2 2) v v-w w 2 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

21 Sclr Produc v (, 2) (, 2) v v 2 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

22 Inner (do) Produc v w v w (, ) (, ) The inner produc is SCALAR! vw (,2) (, 2) v w cos if v w, v w? 22 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

23 Orhonorml Bsis 2 j i v P i j (,) (,) i j i j v (, 2 ) v i 2j vi? v j ( i j) i 2 2 i 2j) j ( 23 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

24 Vecor (cross) Produc u w u vw v The cross produc is VECTOR! Mgniude: u v w v w sin Orienion: u u v u v ( v w) v w u w ( v w) w if v // w? u 24 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

25 Vecor Produc Compuion ),, ( ),, ( w v u (,,) (,, ) (,, ) k j i k j i k j k i j i k j i ) ( ) ( ) ( CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24 25

26 Mrices A nm n n2 m 2m 3m nm Piel s inensi vlue Sum: C nm A nm B nm c ij ij b ij A nd B mus hve he sme dimensions! Emple: CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

27 nm n n m m m m n A p m m n p n B A C Produc: m k kj ik j i ij b c b n n n n n n n n A B B A A nd B mus hve compible dimensions! i nm n n m m m m n b b b b b b b b b b b b B b j CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, Mrices

28 Mrices Trnspose: C mn c A ij ji T nm ( A B) ( T A T T AB) B T A T B T If A T A A is smmeric 6 Emples: 2 5 T T Smmeric? Smmeric? No! Yes! 28 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

29 Mrices Deerminn: de de A mus be squre Emple: 2 de CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

30 Mrices Inverse: A mus be squre A nn A nn A nn A nn I Emple: 6 2 5? CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

31 2D Geomericl Trnsformions

32 2D Trnslion P P 32 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

33 2D Trnslion Equion P P ), ( ' P P ), ( ), ( P CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24 33

34 2D Trnslion using Mrices P P P (, ) (, ) Homogeneous Coordines P' 34 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

35 Homogeneous Coordines Mulipl he coordines b non-zero sclr nd dd n er coordine equl o h sclr. For emple, ),,, ( ),, ( ),, ( ), ( w w w z w w z z z z z CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24 35

36 Bck o Cresin Coordines Divide b he ls coordine nd elimine i. For emple, NOTE: in our emple he sclr ws CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, ) /, /, / ( ),,, ( ) /, / ( ),, ( w z w w w w z z z z z

37 2D Trnslion using Homogeneous Coordines P P ' P,), ( ), (,), ( ), ( P P P T P I CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24 37

38 Scling P P 38 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

39 Scling Equion P s P s ' s s s s P,), ( ), ( ',), ( ), ( s s s s P P S P S P S ' ),s (s ' ), ( P P CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24 39

40 Scling & Trnsling P P P =S P P =T P P =T P =T (S P)=(T S) P = A P 4 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

41 Scling & Trnsling s s S s s s s '' P S T P A CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24 4

42 Trnsling & Scling = Scling & Trnsling? s s s s s s s s s s ''' P T S P s s s s s s '' ' P S T P CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24 42

43 Roion P P 43 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

44 Roion Equions Couner-clockwise roion b n ngle P ' ' cosθ cosθ sin θ sin θ P ' ' cos sin sin cos P' R P CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24 44

45 Degrees of Freedom ' ' cos sin sin cos R is 22 4 elemens Noe: R belongs o he cegor of norml mrices nd sisfies mn ineresing properies: R R T R T R I de( R) 45 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

46 Roion+ Scling +Trnslion P = (T R S) P s s cosθ sinθ sin θ cosθ R ' P S T P s s cosθ sinθ sin θ cosθ S R S R If s =s, his is similri rnsformion! CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24 46

47 Trnsformion in 2D Isomeries Similriies Affini Projecive 47 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

48 Trnsformion in 2D Isomeries: [Euclidens] ' ' R H e - Preserve disnce (res) - 3 DOF - Regule moion of rigid objec 48 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

49 Trnsformion in 2D Similriies: ' ' s R H s - Preserve - rio of lenghs - ngles - 4 DOF 49 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

50 Trnsformion in 2D Affiniies: H A ' ' A ) R( D ) R( ) ( R s s D CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24 5

51 Trnsformion in 2D Affiniies: ' ' A H 2 A R( ) R( ) DR( ) 2 22 D s s -Preserve: - Prllel lines - Rio of res - Rio of lenghs on colliner lines - ohers - 6 DOF 5 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

52 Trnsformion in 2D Projecive: ' ' A v b H p -Preserve: - cross rio of 4 colliner poins - collineri - nd few ohers - 8 DOF 52 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

53 Trnsformion in 2D 53 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

54 Removing Perspecive Disorion (recificion) H p 54 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

55 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24 55

56 Compuing H p - 8 DOF - how mn poins do I need o esime H p? A les 4 poins! (8 equions) - There re severl lgorihms 56 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

57 DLT lgorihm (Direc Liner Trnsformion) H i i H i i 57 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

58 DLT lgorihm (Direc Liner Trnsformion) Unknown [9] i H i A h i (h ) T Funcion of mesuremens [39] 9 h h h h equions (onl wo re independen) CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24 58

59 DLT lgorihm (Direc Liner Trnsformion) H A 29 h 9 A i h A A 2 A N h h h i i A h N9 9 2 Over deermined Homogenous ssem 59 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

60 DLT lgorihm (Direc Liner Trnsformion) A h N9 9 2 How o solve? Singulr Vlue Decomposiion (SVD)! Don Worr. MATLAB hs funcion for his 6 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

61 Eigenvlues nd Eigenvecors 6 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

62 Eigenvlues nd Eigenvecors The eigenvlues of A re he roos of he chrcerisic equion S AS p( ) de( I A) S v v N N 2. N digonl form of mri Eigenvecors of A re columns of S 62 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

63 Singulr Vlue Decomposiion h A U V U AV 2. N 63 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

64 DLT lgorihm (direc Liner Trnsformion) A h N9 9 2 How o solve? Singulr Vlue Decomposiion (SVD)! U D V 2n9 99 T 99 Ls column of V gives h! H! 64 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

65 DLT lgorihm (direc Liner Trnsformion) A h N9 9 2 How o solve? [U, D, V] = SVD(A); X= V(:,end); 65 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

66 Mrili Mschion Producer & Direcor UCSD ICAM undergrdue Vincen Rbud Technicl Advisor UCSD CSE suden Serge Belongie Projec Advisor UCSD CSE Deprmen A: wch Course websie >> Firs Lecure >> Video A: review SVD decomposiion 66 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

67 Ne lecure Cmers models 67 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

68 Appendi Properies of SVD 68 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

69 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24 69

70 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24 7

71 Appendi: DLT lgorihm (Direc Liner Trnsformion) From: Muliple View Geomer in Compuer Vision, b R. Hrle nd A. Zissermn, Acdemic Press, 22 7 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24

72 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24 72

73 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24 73

74 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24 74

75 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24 75

76 CEE598 Visul Sensing for Civil Infrsrucure Eng. & Mgm. Mni Golprvr-Frd, 24 76

Jorge Salvador Marques, Stereo Reconstruction

Jorge Salvador Marques, Stereo Reconstruction Jorge Slvdor Mrques, Sereo Reconsrucion roblem Gol: reconsruc he D she of objecs in he scene from or more imges. Jorge Slvdor Mrques, Jorge Slvdor Mrques, secil cse f f f f b model reconsrucion, b - fb,

More information

Grade 11 Physics Homework 3. Be prepared to defend your choices in class!

Grade 11 Physics Homework 3. Be prepared to defend your choices in class! Gre 11 Physics Homework 3 Be prepre o efen your choices in clss! 1. The grph shows he riion wih ime of he elociy of n objec. Which one of he following grphs bes represens he riion wih ime of he ccelerion

More information

Shortest Path Algorithms. Lecture I: Shortest Path Algorithms. Example. Graphs and Matrices. Setting: Dr Kieran T. Herley.

Shortest Path Algorithms. Lecture I: Shortest Path Algorithms. Example. Graphs and Matrices. Setting: Dr Kieran T. Herley. Shores Pah Algorihms Background Seing: Lecure I: Shores Pah Algorihms Dr Kieran T. Herle Deparmen of Compuer Science Universi College Cork Ocober 201 direced graph, real edge weighs Le he lengh of a pah

More information

EECS 487: Interactive Computer Graphics

EECS 487: Interactive Computer Graphics EECS 487: Ineracive Compuer Graphics Lecure 7: B-splines curves Raional Bézier and NURBS Cubic Splines A represenaion of cubic spline consiss of: four conrol poins (why four?) hese are compleely user specified

More information

Gauss-Jordan Algorithm

Gauss-Jordan Algorithm Gauss-Jordan Algorihm The Gauss-Jordan algorihm is a sep by sep procedure for solving a sysem of linear equaions which may conain any number of variables and any number of equaions. The algorihm is carried

More information

Matrices and Systems of Equations

Matrices and Systems of Equations Mtrices Mtrices nd Sstems of Equtions A mtri is rectngulr rr of rel numbers. CHAT Pre-Clculus Section 8. m m m............ n n n mn We will use the double subscript nottion for ech element of the mtri.

More information

Image warping/morphing

Image warping/morphing Image arping/morphing Image arping Digial Visual Effecs Yung-Yu Chuang ih slides b Richard Szeliski, Seve Seiz, Tom Funkhouser and leei Efros Image formaion Sampling and quanizaion B Wha is an image We

More information

Lecture 5: Spatial Analysis Algorithms

Lecture 5: Spatial Analysis Algorithms Lecture 5: Sptil Algorithms GEOG 49: Advnced GIS Sptil Anlsis Algorithms Bsis of much of GIS nlsis tod Mnipultion of mp coordintes Bsed on Eucliden coordinte geometr http://stronom.swin.edu.u/~pbourke/geometr/

More information

Image interpolation. A reinterpretation of low-pass filtering. Image Interpolation

Image interpolation. A reinterpretation of low-pass filtering. Image Interpolation Imge interpoltion A reinterprettion of low-pss filtering Imge Interpoltion Introduction Wht is imge interpoltion? (D-A conversion) Wh do we need it? Interpoltion Techniques 1D zero-order, first-order,

More information

Projection & Interaction

Projection & Interaction Projecion & Ineracion Algebra of projecion Canonical viewing volume rackball inerface ransform Hierarchies Preview of Assignmen #2 Lecure 8 Comp 236 Spring 25 Projecions Our lives are grealy simplified

More information

6.3 Volumes. Just as area is always positive, so is volume and our attitudes towards finding it.

6.3 Volumes. Just as area is always positive, so is volume and our attitudes towards finding it. 6.3 Volumes Just s re is lwys positive, so is volume nd our ttitudes towrds finding it. Let s review how to find the volume of regulr geometric prism, tht is, 3-dimensionl oject with two regulr fces seprted

More information

Rigid Body Transformations

Rigid Body Transformations igid od Kinemtics igid od Trnsformtions Vij Kumr igid od Kinemtics emrk out Nottion Vectors,,, u, v, p, q, Potentil for Confusion! Mtrices,, C, g, h, igid od Kinemtics The vector nd its skew smmetric mtri

More information

CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt.

CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt. CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt. Session 4 Affine Structure from Motion Mani Golparvar-Fard Department of Civil and Environmental Engineering 329D, Newmark Civil Engineering

More information

NEWTON S SECOND LAW OF MOTION

NEWTON S SECOND LAW OF MOTION Course and Secion Dae Names NEWTON S SECOND LAW OF MOTION The acceleraion of an objec is defined as he rae of change of elociy. If he elociy changes by an amoun in a ime, hen he aerage acceleraion during

More information

Schedule. Curves & Surfaces. Questions? Last Time: Today. Limitations of Polygonal Meshes. Acceleration Data Structures.

Schedule. Curves & Surfaces. Questions? Last Time: Today. Limitations of Polygonal Meshes. Acceleration Data Structures. Schedule Curves & Surfaces Sunday Ocober 5 h, * 3-5 PM *, Room TBA: Review Session for Quiz 1 Exra Office Hours on Monday (NE43 Graphics Lab) Tuesday Ocober 7 h : Quiz 1: In class 1 hand-wrien 8.5x11 shee

More information

AML710 CAD LECTURE 11 SPACE CURVES. Space Curves Intrinsic properties Synthetic curves

AML710 CAD LECTURE 11 SPACE CURVES. Space Curves Intrinsic properties Synthetic curves AML7 CAD LECTURE Space Curves Inrinsic properies Synheic curves A curve which may pass hrough any region of hreedimensional space, as conrased o a plane curve which mus lie on a single plane. Space curves

More information

Image segmentation. Motivation. Objective. Definitions. A classification of segmentation techniques. Assumptions for thresholding

Image segmentation. Motivation. Objective. Definitions. A classification of segmentation techniques. Assumptions for thresholding Moivaion Image segmenaion Which pixels belong o he same objec in an image/video sequence? (spaial segmenaion) Which frames belong o he same video sho? (emporal segmenaion) Which frames belong o he same

More information

A Matching Algorithm for Content-Based Image Retrieval

A Matching Algorithm for Content-Based Image Retrieval A Maching Algorihm for Conen-Based Image Rerieval Sue J. Cho Deparmen of Compuer Science Seoul Naional Universiy Seoul, Korea Absrac Conen-based image rerieval sysem rerieves an image from a daabase using

More information

EP2200 Queueing theory and teletraffic systems

EP2200 Queueing theory and teletraffic systems EP2200 Queueing heory and eleraffic sysems Vikoria Fodor Laboraory of Communicaion Neworks School of Elecrical Engineering Lecure 1 If you wan o model neworks Or a comple daa flow A queue's he key o help

More information

Text mining: bag of words representation and beyond it

Text mining: bag of words representation and beyond it Text mining: bg of words representtion nd beyond it Jsmink Dobš Fculty of Orgniztion nd Informtics University of Zgreb 1 Outline Definition of text mining Vector spce model or Bg of words representtion

More information

Reconstruct scene geometry from two or more calibrated images. scene point. image plane. Reconstruct scene geometry from two or more calibrated images

Reconstruct scene geometry from two or more calibrated images. scene point. image plane. Reconstruct scene geometry from two or more calibrated images Sereo and Moion The Sereo Problem Reconsrc scene geomer from wo or more calibraed images scene poin focal poin image plane Sereo The Sereo Problem Reconsrc scene geomer from wo or more calibraed images

More information

Math 142, Exam 1 Information.

Math 142, Exam 1 Information. Mth 14, Exm 1 Informtion. 9/14/10, LC 41, 9:30-10:45. Exm 1 will be bsed on: Sections 7.1-7.5. The corresponding ssigned homework problems (see http://www.mth.sc.edu/ boyln/sccourses/14f10/14.html) At

More information

MATH Differential Equations September 15, 2008 Project 1, Fall 2008 Due: September 24, 2008

MATH Differential Equations September 15, 2008 Project 1, Fall 2008 Due: September 24, 2008 MATH 5 - Differenial Equaions Sepember 15, 8 Projec 1, Fall 8 Due: Sepember 4, 8 Lab 1.3 - Logisics Populaion Models wih Harvesing For his projec we consider lab 1.3 of Differenial Equaions pages 146 o

More information

Data Structures and Algorithms

Data Structures and Algorithms Daa Srucures and Algorihms The maerial for his lecure is drawn, in ar, from The Pracice of Programming (Kernighan & Pike) Chaer 2 1 Goals of his Lecure Hel you learn (or refresh your memory) abou: Common

More information

Spline Curves. Color Interpolation. Normal Interpolation. Last Time? Today. glshademodel (GL_SMOOTH); Adjacency Data Structures. Mesh Simplification

Spline Curves. Color Interpolation. Normal Interpolation. Last Time? Today. glshademodel (GL_SMOOTH); Adjacency Data Structures. Mesh Simplification Las Time? Adjacency Daa Srucures Spline Curves Geomeric & opologic informaion Dynamic allocaion Efficiency of access Mesh Simplificaion edge collapse/verex spli geomorphs progressive ransmission view-dependen

More information

Curves & Surfaces. Last Time? Today. Readings for Today (pick one) Limitations of Polygonal Meshes. Today. Adjacency Data Structures

Curves & Surfaces. Last Time? Today. Readings for Today (pick one) Limitations of Polygonal Meshes. Today. Adjacency Data Structures Las Time? Adjacency Daa Srucures Geomeric & opologic informaion Dynamic allocaion Efficiency of access Curves & Surfaces Mesh Simplificaion edge collapse/verex spli geomorphs progressive ransmission view-dependen

More information

Definition and examples of time series

Definition and examples of time series Definiion and examples of ime series A ime series is a sequence of daa poins being recorded a specific imes. Formally, le,,p be a probabiliy space, and T an index se. A real valued sochasic process is

More information

Matlab5 5.3 symbolisches Lösen von DGLn

Matlab5 5.3 symbolisches Lösen von DGLn C:\Si5\Ingmah\symbmalab\DGLn_N4_2.doc, Seie /5 Prof. Dr. R. Kessler, Homepage: hp://www.home.hs-karlsruhe.de/~kero/ Malab5 5.3 symbolisches Lösen von DGLn % Beispiele aus Malab 4.3 Suden Ediion Handbuch

More information

Warping, Morphing and Mosaics

Warping, Morphing and Mosaics Computational Photograph and Video: Warping, Morphing and Mosaics Prof. Marc Pollefes Dr. Gabriel Brostow Toda s schedule Last week s recap Warping Morphing Mosaics Toda s schedule Last week s recap Warping

More information

Fill in the following table for the functions shown below.

Fill in the following table for the functions shown below. By: Carl H. Durney and Neil E. Coer Example 1 EX: Fill in he following able for he funcions shown below. he funcion is odd he funcion is even he funcion has shif-flip symmery he funcion has quarer-wave

More information

Unit #9 : Definite Integral Properties, Fundamental Theorem of Calculus

Unit #9 : Definite Integral Properties, Fundamental Theorem of Calculus Unit #9 : Definite Integrl Properties, Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl

More information

1 œ DRUM SET KEY. 8 Odd Meter Clave Conor Guilfoyle. Cowbell (neck) Cymbal. Hi-hat. Floor tom (shell) Clave block. Cowbell (mouth) Hi tom.

1 œ DRUM SET KEY. 8 Odd Meter Clave Conor Guilfoyle. Cowbell (neck) Cymbal. Hi-hat. Floor tom (shell) Clave block. Cowbell (mouth) Hi tom. DRUM SET KEY Hi-ha Cmbal Clave block Cowbell (mouh) 0 Cowbell (neck) Floor om (shell) Hi om Mid om Snare Floor om Snare cross sick or clave block Bass drum Hi-ha wih foo 8 Odd Meer Clave Conor Guilfole

More information

Image Content Representation

Image Content Representation Image Conen Represenaion Represenaion for curves and shapes regions relaionships beween regions E.G.M. Perakis Image Represenaion & Recogniion 1 Reliable Represenaion Uniqueness: mus uniquely specify an

More information

Ray Casting. Outline. Outline in Code

Ray Casting. Outline. Outline in Code Foundaions of ompuer Graphics Online Lecure 10: Ray Tracing 2 Nus and ols amera Ray asing Ravi Ramamoorhi Ouline amera Ray asing (choose ray direcions) Ray-objec inersecions Ray-racing ransformed objecs

More information

EXPONENTIAL & POWER GRAPHS

EXPONENTIAL & POWER GRAPHS Eponentil & Power Grphs EXPONENTIAL & POWER GRAPHS www.mthletics.com.u Eponentil EXPONENTIAL & Power & Grphs POWER GRAPHS These re grphs which result from equtions tht re not liner or qudrtic. The eponentil

More information

Fig.1. Let a source of monochromatic light be incident on a slit of finite width a, as shown in Fig. 1.

Fig.1. Let a source of monochromatic light be incident on a slit of finite width a, as shown in Fig. 1. Answer on Question #5692, Physics, Optics Stte slient fetures of single slit Frunhofer diffrction pttern. The slit is verticl nd illuminted by point source. Also, obtin n expression for intensity distribution

More information

Last Time: Curves & Surfaces. Today. Questions? Limitations of Polygonal Meshes. Can We Disguise the Facets?

Last Time: Curves & Surfaces. Today. Questions? Limitations of Polygonal Meshes. Can We Disguise the Facets? Las Time: Curves & Surfaces Expeced value and variance Mone-Carlo in graphics Imporance sampling Sraified sampling Pah Tracing Irradiance Cache Phoon Mapping Quesions? Today Moivaion Limiaions of Polygonal

More information

TUTORING TEXTS IN MATHCAD

TUTORING TEXTS IN MATHCAD TUTORING TEXTS IN MATHCAD MIROSLAV DOLOZÍILEK and ANNA RYNDOVÁ Faculy of Mechanical Engineering, Brno Universiy of Technology Technická, 616 69 Brno, Czech Republic E-ail: irdo@fyzika.fe.vubr.cz Absrac

More information

MOTION DETECTORS GRAPH MATCHING LAB PRE-LAB QUESTIONS

MOTION DETECTORS GRAPH MATCHING LAB PRE-LAB QUESTIONS NME: TE: LOK: MOTION ETETORS GRPH MTHING L PRE-L QUESTIONS 1. Read he insrucions, and answer he following quesions. Make sure you resae he quesion so I don hae o read he quesion o undersand he answer..

More information

Viewing and Projection

Viewing and Projection 15-462 Computer Grphics I Lecture 5 Viewing nd Projection Sher Trnsformtion Cmer Positioning Simple Prllel Projections Simple Perspective Projections [Angel, Ch. 5.2-5.4] Jnury 30, 2003 [Red s Drem, Pixr,

More information

Angle Properties in Polygons. Part 1 Interior Angles

Angle Properties in Polygons. Part 1 Interior Angles 2.4 Angle Properties in Polygons YOU WILL NEED dynmic geometry softwre OR protrctor nd ruler EXPLORE A pentgon hs three right ngles nd four sides of equl length, s shown. Wht is the sum of the mesures

More information

Ray surface intersections

Ray surface intersections Ry surfce intersections Some primitives Finite primitives: polygons spheres, cylinders, cones prts of generl qudrics Infinite primitives: plnes infinite cylinders nd cones generl qudrics A finite primitive

More information

Lecture 18: Mix net Voting Systems

Lecture 18: Mix net Voting Systems 6.897: Advanced Topics in Crypography Apr 9, 2004 Lecure 18: Mix ne Voing Sysems Scribed by: Yael Tauman Kalai 1 Inroducion In he previous lecure, we defined he noion of an elecronic voing sysem, and specified

More information

Rendering Pipeline/ OpenGL

Rendering Pipeline/ OpenGL Grading Programming Assignmens: 4% Chaper 2 2D Game: Inro o (6%) ou now 3D Transformaions modeling/animaion (11%) Basics of Compuer Graphics: Rendering pipeline (11%) Ray racing (12%) compuer graphics

More information

(x, y) (ρ, θ) ρ θ. Polar Coordinates. Cartesian Coordinates

(x, y) (ρ, θ) ρ θ. Polar Coordinates. Cartesian Coordinates Coordinate Sstems Point Representation in two dimensions Cartesian Coordinates: (; ) Polar Coordinates: (; ) (, ) ρ θ (ρ, θ) Cartesian Coordinates Polar Coordinates p = CPS1, 9: Computer Graphics D Geometric

More information

Probabilistic Detection and Tracking of Motion Discontinuities

Probabilistic Detection and Tracking of Motion Discontinuities Probabilisic Deecion and Tracking of Moion Disconinuiies Michael J. Black David J. Flee Xerox Palo Alo Research Cener 3333 Coyoe Hill Road Palo Alo, CA 94304 fblack,fleeg@parc.xerox.com hp://www.parc.xerox.com/fblack,fleeg/

More information

called the vertex. The line through the focus perpendicular to the directrix is called the axis of the parabola.

called the vertex. The line through the focus perpendicular to the directrix is called the axis of the parabola. Review of conic sections Conic sections re grphs of the form REVIEW OF CONIC SECTIONS prols ellipses hperols P(, ) F(, p) O p =_p REVIEW OF CONIC SECTIONS In this section we give geometric definitions

More information

Integration. October 25, 2016

Integration. October 25, 2016 Integrtion October 5, 6 Introduction We hve lerned in previous chpter on how to do the differentition. It is conventionl in mthemtics tht we re supposed to lern bout the integrtion s well. As you my hve

More information

Integration. September 28, 2017

Integration. September 28, 2017 Integrtion September 8, 7 Introduction We hve lerned in previous chpter on how to do the differentition. It is conventionl in mthemtics tht we re supposed to lern bout the integrtion s well. As you my

More information

CPSC 213. Polymorphism. Introduction to Computer Systems. Readings for Next Two Lectures. Back to Procedure Calls

CPSC 213. Polymorphism. Introduction to Computer Systems. Readings for Next Two Lectures. Back to Procedure Calls Redings for Next Two Lectures Text CPSC 213 Switch Sttements, Understnding Pointers - 2nd ed: 3.6.7, 3.10-1st ed: 3.6.6, 3.11 Introduction to Computer Systems Unit 1f Dynmic Control Flow Polymorphism nd

More information

Collision-Free and Curvature-Continuous Path Smoothing in Cluttered Environments

Collision-Free and Curvature-Continuous Path Smoothing in Cluttered Environments Collision-Free and Curvaure-Coninuous Pah Smoohing in Cluered Environmens Jia Pan 1 and Liangjun Zhang and Dinesh Manocha 3 1 panj@cs.unc.edu, 3 dm@cs.unc.edu, Dep. of Compuer Science, Universiy of Norh

More information

Evaluation and Improvement of Region-based Motion Segmentation

Evaluation and Improvement of Region-based Motion Segmentation Evaluaion and Improvemen of Region-based Moion Segmenaion Mark Ross Universiy Koblenz-Landau, Insiue of Compuaional Visualisics, Universiässraße 1, 56070 Koblenz, Germany Email: ross@uni-koblenz.de Absrac

More information

Problem of Vision - complexity Human Vision: Builtin 3D stereo & video Excellent visual reasoning Not well understood.

Problem of Vision - complexity Human Vision: Builtin 3D stereo & video Excellent visual reasoning Not well understood. School of Informatics UG4/MSc - 2012/13 Advanced Vision Bob Fisher - rbf@inf.ed.ac.uk Room: IF 1.26. Tel: 651-3441 Research Interests: 3D computer vision/video analysis Problem of Vision - complexity Human

More information

Forward kinematics and Denavit Hartenburg convention

Forward kinematics and Denavit Hartenburg convention Forward kinematics and Denavit Hartenburg convention Prof. Enver Tatlicioglu Department of Electrical & Electronics Engineering Izmir Institute of Technology Chapter 5 Dr. Tatlicioglu (EEE@IYTE) EE463

More information

Efficient Region Tracking With Parametric Models of Geometry and Illumination

Efficient Region Tracking With Parametric Models of Geometry and Illumination EEE TRANSACTONS ON PATTERN ANALYSS AND MACHNE NTELLGENCE, VOL. 2, NO. 1, OCTOBER 1998 1 Efficien Region Tracking Wih Parameric Models of Geomery and lluminaion Gregory D. Hager, Member, EEE, and Peer N.

More information

CS280 HW1 Solution Set Spring2002. now, we need to get rid of the n term. We know that:

CS280 HW1 Solution Set Spring2002. now, we need to get rid of the n term. We know that: CS80 HW Solutio Set Sprig00 Solutios by: Shddi Doghmi -) -) 4 * 4 4 4 ) 4 b-) ) ) ) * ) ) ) 0 ) c-) ) ) ) ) ) ow we eed to get rid of the term. We ow tht: ) ) ) ) substitute ito the recursive epressio:

More information

Computer Graphics. Geometric Transformations

Computer Graphics. Geometric Transformations Computer Graphics Geometric Transformations Contents coordinate sstems scalar values, points, vectors, matrices right-handed and left-handed coordinate sstems mathematical foundations transformations mathematical

More information

Real-Time Non-Rigid Multi-Frame Depth Video Super-Resolution

Real-Time Non-Rigid Multi-Frame Depth Video Super-Resolution Real-Time Non-Rigid Muli-Frame Deph Video Super-Resoluion Kassem Al Ismaeil 1, Djamila Aouada 1, Thomas Solignac 2, Bruno Mirbach 2, Björn Oersen 1 1 Inerdisciplinary Cenre for Securiy, Reliabiliy, and

More information

DNS of Turbulent Primary Atomization Using a Level Set/Vortex Sheet Method

DNS of Turbulent Primary Atomization Using a Level Set/Vortex Sheet Method ILASS Americas 8h Annual Conference on Liquid Aomiaion and Spray Sysems, Irvine, CA, May 5 DNS of Turbulen Primary Aomiaion Using a Level Se/Vorex Shee Mehod M. Herrmann Cener for Turbulence Research Sanford

More information

B. Definition: The volume of a solid of known integrable cross-section area A(x) from x = a

B. Definition: The volume of a solid of known integrable cross-section area A(x) from x = a Mth 176 Clculus Sec. 6.: Volume I. Volume By Slicing A. Introduction We will e trying to find the volume of solid shped using the sum of cross section res times width. We will e driving towrd developing

More information

Video-Based Face Recognition Using Probabilistic Appearance Manifolds

Video-Based Face Recognition Using Probabilistic Appearance Manifolds Video-Based Face Recogniion Using Probabilisic Appearance Manifolds Kuang-Chih Lee Jeffrey Ho Ming-Hsuan Yang David Kriegman klee10@uiuc.edu jho@cs.ucsd.edu myang@honda-ri.com kriegman@cs.ucsd.edu Compuer

More information

Step-Voltage Regulator Model Test System

Step-Voltage Regulator Model Test System IEEE PES GENERAL MEETING, JULY 5 Step-Voltge Regultor Model Test System Md Rejwnur Rshid Mojumdr, Pblo Arboley, Senior Member, IEEE nd Cristin González-Morán, Member, IEEE Abstrct In this pper, 4-node

More information

Chapter Spline Method of Interpolation More Examples Electrical Engineering

Chapter Spline Method of Interpolation More Examples Electrical Engineering Chpter. Spline Method of Interpoltion More Exmples Electricl Engineering Exmple Thermistors re used to mesure the temperture of bodies. Thermistors re bsed on mterils chnge in resistnce with temperture.

More information

CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES

CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES YINGYING REN Abstract. In this paper, the applications of homogeneous coordinates are discussed to obtain an efficient model

More information

Lecture 3: Camera Calibration, DLT, SVD

Lecture 3: Camera Calibration, DLT, SVD Computer Vision Lecture 3 23--28 Lecture 3: Camera Calibration, DL, SVD he Inner Parameters In this section we will introduce the inner parameters of the cameras Recall from the camera equations λx = P

More information

ΕΠΛ323 - Θεωρία και Πρακτική Μεταγλωττιστών

ΕΠΛ323 - Θεωρία και Πρακτική Μεταγλωττιστών ΕΠΛ323 - Θωρία και Πρακτική Μταγλωττιστών Lecture 3 Lexicl Anlysis Elis Athnsopoulos elisthn@cs.ucy.c.cy Recognition of Tokens if expressions nd reltionl opertors if è if then è then else è else relop

More information

Today s class. Geometric objects and transformations. Informationsteknologi. Wednesday, November 7, 2007 Computer Graphics - Class 5 1

Today s class. Geometric objects and transformations. Informationsteknologi. Wednesday, November 7, 2007 Computer Graphics - Class 5 1 Toda s class Geometric objects and transformations Wednesda, November 7, 27 Computer Graphics - Class 5 Vector operations Review of vector operations needed for working in computer graphics adding two

More information

Lecture Note 3: Rotational Motion

Lecture Note 3: Rotational Motion ECE5463: Introduction to Robotics Lecture Note 3: Rotational Motion Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio, USA Spring 2018 Lecture 3 (ECE5463

More information

IMAGE SAMPLING AND IMAGE QUANTIZATION

IMAGE SAMPLING AND IMAGE QUANTIZATION Digial image processing IMAGE SAMPLING AND IMAGE QUANTIZATION. Inrodcion. Sampling in he wo-dimensional space Basics on image sampling The concep of spaial freqencies Images of limied bandwidh Two-dimensional

More information

Math 464 Fall 2012 Notes on Marginal and Conditional Densities October 18, 2012

Math 464 Fall 2012 Notes on Marginal and Conditional Densities October 18, 2012 Mth 464 Fll 2012 Notes on Mrginl nd Conditionl Densities klin@mth.rizon.edu October 18, 2012 Mrginl densities. Suppose you hve 3 continuous rndom vribles X, Y, nd Z, with joint density f(x,y,z. The mrginl

More information

AML710 CAD LECTURE 16 SURFACES. 1. Analytical Surfaces 2. Synthetic Surfaces

AML710 CAD LECTURE 16 SURFACES. 1. Analytical Surfaces 2. Synthetic Surfaces AML7 CAD LECTURE 6 SURFACES. Anlticl Surfces. Snthetic Surfces Surfce Representtion From CAD/CAM point of view surfces re s importnt s curves nd solids. We need to hve n ide of curves for surfce cretion.

More information

Projective Geometry and Camera Models

Projective Geometry and Camera Models /2/ Projective Geometry and Camera Models Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Note about HW Out before next Tues Prob: covered today, Tues Prob2: covered next Thurs Prob3:

More information

Questions About Numbers. Number Systems and Arithmetic. Introduction to Binary Numbers. Negative Numbers?

Questions About Numbers. Number Systems and Arithmetic. Introduction to Binary Numbers. Negative Numbers? Questions About Numbers Number Systems nd Arithmetic or Computers go to elementry school How do you represent negtive numbers? frctions? relly lrge numbers? relly smll numbers? How do you do rithmetic?

More information

Hybrid Video Coding. Thomas Wiegand: Digital Image Communication Hybrid Video Coding 1

Hybrid Video Coding. Thomas Wiegand: Digital Image Communication Hybrid Video Coding 1 Hri Vieo Coing Principle of Hri Vieo Coing Moion-Compene Preicion Bi Allocion Moion Moel Moion Eimion Efficienc of Hri Vieo Coing Thom Wiegn: Digil Imge Communicion Hri Vieo Coing I h een cuomr in he p

More information

Differential Geometry of Surfaces with Mathcad: A Virtual Learning Approach

Differential Geometry of Surfaces with Mathcad: A Virtual Learning Approach The 4 h Inernaional Conference on Virual Learning Gheorghe Asachi Technical Universiy of Iaşi, Oc 30-Nov, 009 Differenial Geomery of Surfaces wih Mahca: A Virual Learning Approach Nicolae Dăneţ Technical

More information

ΕΠΛ323 - Θεωρία και Πρακτική Μεταγλωττιστών. Lecture 3b Lexical Analysis Elias Athanasopoulos

ΕΠΛ323 - Θεωρία και Πρακτική Μεταγλωττιστών. Lecture 3b Lexical Analysis Elias Athanasopoulos ΕΠΛ323 - Θωρία και Πρακτική Μταγλωττιστών Lecture 3 Lexicl Anlysis Elis Athnsopoulos elisthn@cs.ucy.c.cy RecogniNon of Tokens if expressions nd relnonl opertors if è if then è then else è else relop è

More information

The Reciprocal Function Family. Objectives To graph reciprocal functions To graph translations of reciprocal functions

The Reciprocal Function Family. Objectives To graph reciprocal functions To graph translations of reciprocal functions - The Reciprocl Function Fmil Objectives To grph reciprocl functions To grph trnsltions of reciprocl functions Content Stndrds F.BF.3 Identif the effect on the grph of replcing f () b f() k, kf(), f(k),

More information

Multi-stable Perception. Necker Cube

Multi-stable Perception. Necker Cube Multi-stable Perception Necker Cube Spinning dancer illusion, Nobuuki Kaahara Fitting and Alignment Computer Vision Szeliski 6.1 James Has Acknowledgment: Man slides from Derek Hoiem, Lana Lazebnik, and

More information

3D graphics rendering pipeline (1) 3D graphics rendering pipeline (3) 3D graphics rendering pipeline (2) 8/29/11

3D graphics rendering pipeline (1) 3D graphics rendering pipeline (3) 3D graphics rendering pipeline (2) 8/29/11 3D graphics rendering pipeline (1) Geometr Rasteriation 3D Coordinates & Transformations Prof. Aaron Lanterman (Based on slides b Prof. Hsien-Hsin Sean Lee) School of Electrical and Computer Engineering

More information

4452 Mathematical Modeling Lecture 4: Lagrange Multipliers

4452 Mathematical Modeling Lecture 4: Lagrange Multipliers Mth Modeling Lecture 4: Lgrnge Multipliers Pge 4452 Mthemticl Modeling Lecture 4: Lgrnge Multipliers Lgrnge multipliers re high powered mthemticl technique to find the mximum nd minimum of multidimensionl

More information

Proceeding of the 6 th International Symposium on Artificial Intelligence and Robotics & Automation in Space: i-sairas 2001, Canadian Space Agency,

Proceeding of the 6 th International Symposium on Artificial Intelligence and Robotics & Automation in Space: i-sairas 2001, Canadian Space Agency, Proceeding of he 6 h Inernaional Symposium on Arificial Inelligence and Roboics & Auomaion in Space: i-sairas 00, Canadian Space Agency, S-Huber, Quebec, Canada, June 8-, 00. Muli-resoluion Mapping Using

More information

Multi-Viewpoint Video Coding with MPEG-2 Compatibility. Belle L. Tseng and Dimitris Anastassiou. Columbia University New York, N.Y.

Multi-Viewpoint Video Coding with MPEG-2 Compatibility. Belle L. Tseng and Dimitris Anastassiou. Columbia University New York, N.Y. Muli-Viewpoin Video oding wih MPEG-2 ompaibiliy Belle L. Tseng and Dimiris Anasassiou olumbia niversiy New York, N.Y. 10027 SA Absrac An ecien video coding scheme is presened as an exension of he MPEG-2

More information

Quaternions and Rotations

Quaternions and Rotations CSCI 520 Computer Animation and Simulation Quaternions and Rotations Jernej Barbic University of Southern California 1 Rotations Very important in computer animation and robotics Joint angles, rigid body

More information

Pointer Analysis. Outline: What is pointer analysis Intraprocedural pointer analysis Interprocedural pointer analysis. Andersen and Steensgaard

Pointer Analysis. Outline: What is pointer analysis Intraprocedural pointer analysis Interprocedural pointer analysis. Andersen and Steensgaard Poiner anaysis Poiner Anaysis Ouine: Wha is oiner anaysis Inrarocedura oiner anaysis Inerrocedura oiner anaysis Andersen and Seensgaard Poiner and Aias Anaysis Aiases: wo exressions ha denoe he same memory

More information

3Applications Product code Page

3Applications Product code Page Single an win skin consrucion Auseniic sainless seel self rilling faseners Applicaions Prouc coe Page Shee o seel srucure / P. Shee o imber srucure Sie lap clamping W / SW2-S SW-A S2-S / SP2-S S2-A.8.11

More information

2D transformations and homogeneous coordinates

2D transformations and homogeneous coordinates 2D transformations and homogeneous coordinates Dr Nicolas Holzschuch Universit of Cape Ton e-mail: holzschu@cs.uct.ac.za Map of the lecture Transformations in 2D: vector/matri notation eample: translation,

More information

A MRF formulation for coded structured light

A MRF formulation for coded structured light A MRF formulaion for coded srucured ligh Jean-Philippe Tardif Sébasien Roy Déparemen d informaique e recherche opéraionnelle Universié de Monréal, Canada {ardifj, roys}@iro.umonreal.ca Absrac Mulimedia

More information

Slides for Data Mining by I. H. Witten and E. Frank

Slides for Data Mining by I. H. Witten and E. Frank Slides for Dt Mining y I. H. Witten nd E. Frnk Simplicity first Simple lgorithms often work very well! There re mny kinds of simple structure, eg: One ttriute does ll the work All ttriutes contriute eqully

More information

Pythagoras theorem and trigonometry (2)

Pythagoras theorem and trigonometry (2) HPTR 10 Pythgors theorem nd trigonometry (2) 31 HPTR Liner equtions In hpter 19, Pythgors theorem nd trigonometry were used to find the lengths of sides nd the sizes of ngles in right-ngled tringles. These

More information

CS422 Computer Networks

CS422 Computer Networks CS422 Compuer Neworks Lecure 2 Physical Layer Dr. Xiaobo Zhou Deparmen of Compuer Science CS422 PhysicalLayer.1 Quesions of Ineress How long will i ake o ransmi a message? How many bis are in he message

More information

binary trees, expression trees

binary trees, expression trees COMP 250 Lecture 21 binry trees, expression trees Oct. 27, 2017 1 Binry tree: ech node hs t most two children. 2 Mximum number of nodes in binry tree? Height h (e.g. 3) 3 Mximum number of nodes in binry

More information

C 0 C 1. p 1 (x 0,y 0 ) p 2 I 1. p 3. (x 0,y 0,d) C 2 C 3 I 2 I 3

C 0 C 1. p 1 (x 0,y 0 ) p 2 I 1. p 3. (x 0,y 0,d) C 2 C 3 I 2 I 3 c 1998 IEEE. Proc. of In. Conference on Compuer Vision, Bombai, January 1998 1 A Maximum-Flow Formulaion of he N-camera Sereo Corresponence Problem Sebasien Roy Ingemar J. Cox NEC Research Insiue Inepenence

More information

We re more than just aluminum.

We re more than just aluminum. We re more han jus aluminum. s an lcoa and Kaiser Warehouse Disribuor, we are your source for he world s highes qualiy aluminum. u i s jus he beginning. You can depend on us o source oher maerials as well,

More information

Visual Recognition: Image Formation

Visual Recognition: Image Formation Visual Recognition: Image Formation Raquel Urtasun TTI Chicago Jan 5, 2012 Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 1 / 61 Today s lecture... Fundamentals of image formation You should know

More information

A GRAPHICS PROCESSING UNIT IMPLEMENTATION OF THE PARTICLE FILTER

A GRAPHICS PROCESSING UNIT IMPLEMENTATION OF THE PARTICLE FILTER A GRAPHICS PROCESSING UNIT IMPLEMENTATION OF THE PARTICLE FILTER Gusaf Hendeby, Jeroen D. Hol, Rickard Karlsson, Fredrik Gusafsson Deparmen of Elecrical Engineering Auomaic Conrol Linköping Universiy,

More information

Section 9.2 Hyperbolas

Section 9.2 Hyperbolas Section 9. Hperols 597 Section 9. Hperols In the lst section, we lerned tht plnets hve pproimtel ellipticl orits round the sun. When n oject like comet is moving quickl, it is le to escpe the grvittionl

More information

Motion Control (wheeled robots)

Motion Control (wheeled robots) Motion Control (wheeled robots) Requirements for Motion Control Kinematic / dynamic model of the robot Model of the interaction between the wheel and the ground Definition of required motion -> speed control,

More information

Segmentation by Level Sets and Symmetry

Segmentation by Level Sets and Symmetry Segmenaion by Level Ses and Symmery Tammy Riklin-Raviv Nahum Kiryai Nir Sochen Tel Aviv Universiy, Tel Aviv 69978, Israel ammy@eng.au.ac.il nk@eng.au.ac.il sochen@pos.au.ac.il Absrac Shape symmery is an

More information

PART III/5 MANUAL TRANSLUCENT MANUAL FOR LIGHTNING OF TRANSLUCENT AND FRESH LINE

PART III/5 MANUAL TRANSLUCENT MANUAL FOR LIGHTNING OF TRANSLUCENT AND FRESH LINE GENERAL COMMERCIAL TERMS TECHNISTONE,.s. Prt I: Generl commercil conditions for sle Prt II: Complint rules Prt III/1: Generl technicl mnul Prt III/2: Technicl mnul for tiles instlltion Prt III/3: Mnul

More information

Lists in Lisp and Scheme

Lists in Lisp and Scheme Lists in Lisp nd Scheme Lists in Lisp nd Scheme Lists re Lisp s fundmentl dt structures, ut there re others Arrys, chrcters, strings, etc. Common Lisp hs moved on from eing merely LISt Processor However,

More information