Recommendation with Differential Context Weighting

Size: px
Start display at page:

Download "Recommendation with Differential Context Weighting"

Transcription

1 Recommendation with Differential Context Weighting Yong Zheng Robin Burke Bamshad Mobasher Center for Web Intelligence DePaul University Chicago, IL USA Conference on UMAP June 12, 2013

2 Overview Introduction (RS and Context-aware RS) Sparsity of Contexts and Relevant Solutions Differential Context Relaxation & Weighting Experimental Results Conclusion and Future Work

3 Introduction Recommender Systems Context-aware Recommender Systems

4 Recommender Systems (RS) Information Overload Recommendations

5 Context-aware RS (CARS) Traditional RS: Users Items Ratings Context-aware RS: Users Items Contexts Ratings Companion Example of Contexts in different domains: Food: time (lunch, dinner), occasion (business lunch, family dinner) Movie: time (weekend, weekday), location (home, cinema), etc Music: time (morning, evening), activity (study, sports, party), etc Book: a book as a gift for kids or mother, etc Recommendation cannot live alone without considering contexts.

6 Research Problems Sparsity of Contexts Relevant Solutions

7 Sparsity of Contexts Assumption of Context-aware RS: It is better to use preferences in the same contexts for predictions in recommender systems. Same contexts? How about multiple contexts & sparsity? An example in the movie domain: User Movie Time Location Companion Rating U1 Titanic Weekend Home Girlfriend 4 U2 Titanic Weekday Home Girlfriend 5 U3 Titanic Weekday Cinema Sister 4 U1 Titanic Weekday Home Sister? Are there rating profiles in the contexts <Weekday, Home, Sister>?

8 Relevant Solutions User Movie Time Location Companion Rating U1 Titanic Weekend Home Girlfriend 4 U2 Titanic Weekday Home Girlfriend 5 U3 Titanic Weekday Cinema Sister 4 U1 Titanic Weekday Home Sister? Context Matching The same contexts <Weekday, Home, Sister>? 1.Context Selection Use the influential dimensions only 2.Context Relaxation Use a relaxed set of dimensions, e.g. time 3.Context Weighting We can use all dimensions, but measure how similar the contexts are! (to be continued later) Differences between context selection and context relaxation: Context selection is conducted by surveys or statistics; Context relaxation is directly towards optimization on predictions; Optimal context relaxation/weighting is a learning process!

9 DCR and DCW Differential Context Relaxation (DCR) Differential Context Weighting (DCW) Particle Swarm Intelligence as Optimizer

10 Differential Context Relaxation Differential Context Relaxation (DCR) is our first attempt to alleviate the sparsity of contexts, and differential context weighting (DCW) is a finer-grained improvement over DCR. There are two notion in DCR Differential Part Algorithm Decomposition Separate one algorithm into different functional components; Apply appropriate context constraints to each component; Maximize the global contextual effects together; Relaxation Part Context Relaxation References We use a set of relaxed dimensions instead of all of them. Y. Zheng, R. Burke, B. Mobasher. "Differential Context Relaxation for Context-aware Travel Recommendation". In EC-WEB, 2012 Y. Zheng, R. Burke, B. Mobasher. "Optimal Feature Selection for Context-Aware Recommendation using Differential Relaxation". In RecSys Workshop on CARS, 2012

11 DCR Algorithm Decomposition Take User-based Collaborative Filtering (UBCF) for example. Pirates of the Caribbean 4 Kung Fu Panda 2 Harry Potter 6 Harry Potter 7 U U U U ? Standard Process in UBCF (Top-K UserKNN, K=1 for example): 1). Find neighbors based on user-user similarity 2). Aggregate neighbors contribution 3). Make final predictions

12 DCR Algorithm Decomposition Take User-based Collaborative Filtering (UBCF) for example. 1.Neighbor Selection 2.Neighbor contribution 3.User baseline 4.User Similarity All components contribute to the final predictions, where we assume appropriate contextual constraints can leverage the contextual effect in each algorithm component. e.g. use neighbors who rated in same contexts.

13 DCR Context Relaxation User Movie Time Location Companion Rating U1 Titanic Weekend Home Girlfriend 4 U2 Titanic Weekday Home Girlfriend 5 U3 Titanic Weekday Cinema Sister 4 U1 Titanic Weekday Home Sister? Notion of Context Relaxation: Use {Time, Location, Companion} 0 record matched! Use {Time, Location} 1 record matched! Use {Time} 2 records matched! In DCR, we choose appropriate context relaxation for each component. Balance # of matched ratings best performances & least noises

14 DCR Context Relaxation 1.Neighbor Selection 2.Neighbor contribution 3.User baseline 4.User Similarity c is the original contexts, e.g. <Weekday, Home, Sister> C1, C2, C3, C4 are the relaxed contexts. The selection is modeled by a binary vector. E.g. <1, 0, 0> denotes we just selected the first context dimension Take neighbor selection for example: Originally select neighbors by users who rated the same item. DCR further filter those neighbors by contextual constraint C1 i.e.. C1 = <1,0,0> Time=Weekday u must rated i on weekdays

15 DCR Drawbacks 1.Neighbor Selection 2.Neighbor contribution 3.User baseline 4.User Similarity 1. Context relaxation is still strict, especially when data is sparse. 2. Components are dependent. For example, neighbor contribution is dependent with neighbor selection. E.g. neighbors are selected by C1: Location = Cinema, it is not guaranteed, neighbor has ratings under contexts C2: Time = Weekend A finer-grained solution is required!! Differential Context Weighting

16 Differential Context Weighting User Movie Time Location Companion Rating U1 Titanic Weekend Home Girlfriend 4 U2 Titanic Weekday Home Girlfriend 5 U3 Titanic Weekday Cinema Sister 4 U1 Titanic Weekday Home Sister? Goal: Use all dimensions, but we measure the similarity of contexts. Assumption: More similar two contexts are given, the ratings may be more useful for calculations in predictions. Similarity of contexts is measured by Weighted Jaccard similarity c and d are two contexts. (Two red regions in the Table above.) σ is the weighting vector <w1, w2, w3> for three dimensions. Assume they are equal weights, w1 = w2 = w3 = 1. J(c, d, σ) = # of matched dimensions / # of all dimensions = 2/3

17 Differential Context Weighting 1.Neighbor Selection 2.Neighbor contribution 3.User baseline 4.User Similarity 1. Differential part Components are all the same as in DCR. 2. Context Weighting part (for each individual component): σ is the weighting vector ϵ is a threshold for the similarity of contexts. i.e., only records with similar enough ( ϵ) contexts can be included. 3.In calculations, similarity of contexts are the weights, for example 2.Neighbor contribution It is similar calculation for the other components.

18 Particle Swarm Optimization (PSO) The remaining work is to find optimal context relaxation vectors for DCR and context weighting vectors for DCW. PSO is derived from swarm intelligence which helps achieve a goal by collaborative Fish Birds Bees Why PSO? 1). Easy to implement as a non-linear optimizer; 2). Has been used in weighted CF before, and was demonstrated to work better than other non-linear optimizer, e.g. genetic algorithm; 3). Our previous work successfully applied BPSO for DCR;

19 Particle Swarm Optimization (PSO) Swarm = a group of birds Particle = each bird each run in algorithm Vector = bird s position in the space Vectors we need Goal = the location of pizza Lower prediction error So, how to find goal by swam? 1.Looking for the pizza Assume a machine can tell the distance 2.Each iteration is an attempt or move 3.Cognitive learning from particle itself Am I closer to the pizza comparing with my best locations in previous history? 4.Social Learning from the swarm Hey, my distance is 1 mile. It is the closest!. Follow me!! Then other birds move towards here. DCR Feature selection Modeled by binary vectors Binary PSO DCW Feature weighting Modeled by real-number vectors PSO How it works? Take DCR and Binary PSO for example: Assume there are 4 components and 3 contextual dimensions Thus there are 4 binary vectors for each component respectively We merge the vectors into a single one, the vector size is 3*4 = 12 This single vector is the particle s position vector in PSO process.

20 Experimental Results Data Sets Predictive Performance Performance of Optimizer

21 Context-aware Data Sets AIST Food Data Movie Data # of Ratings # of Users # of Items # of Contexts Real hunger (full/normal/hungry) Virtual hunger Time (weekend, weekday) Location (home, cinema) Companions (friends, alone, etc) Other Features User gender Food genre, Food style Food stuff User gender Year of the movie Density Dense Sparse Context-aware data sets are usually difficult to get. Those two data sets were collected from surveys.

22 Evaluation Protocols Metric: root-mean-square error (RMSE) and coverage which denotes the percentage we can find neighbors for a prediction. Our goal: improve RMSE (i.e. less errors) within a decent coverage. We allow a decline in coverage, because applying contextual constraints usually bring low coverage (i.e. the sparsity of contexts!). Baselines: context-free CF, i.e. the original UBCF contextual pre-filtering CF which just apply the contextual constraints to the neighbor selection component no other components in DCR and DCW. Other settings in DCR & DCW: K = 10 for UserKNN evaluated on 5-folds cross-validation T = 100 as the maximal iteration limit in the PSO process Weights are ranged within [0, 1] We use the same similarity threshold for each component, which was iterated from 0.0 to 1.0 with 0.1 increment in DCW

23 Predictive Performances Blue bars are RMSE values, Red lines are coverage curves. Findings: 1) DCW works better than DCR and two baselines; 2) Significance t-test shows DCW works significantly in movie data, but DCR was not significant over two baselines; DCW can further alleviate sparsity of contexts and compensate DCR; 3) DCW offers better coverage over baselines!

24 Performances of Optimizer Running time is in seconds. Using 3 particles is the best configuration for two data sets here! Factors influencing the running performances: More particles, quicker convergence but probably more costs; # of contextual variables: more contexts, probably slower; Density of the data set: denser, more calculations in DCW; Typically DCW costs more than DCR, because it uses all contextual dimensions and the calculation for similarity of contexts is time-consuming, especially for dense data, like the Food data.

25 Other Results (Optional) 1.The optimal threshold for similarity of contexts For Food data set, it is 0.6; For Movie data set, it is 0.1; 2.The optimal weighting vectors (e.g. Movie data) Note: Darker smaller weights; Lighter Larger weights

26 It is gonna end Conclusions Future Work

27 Conclusions We propose DCW which is a finer-grained improvement over DCR; It can further improve predictive accuracy within decent coverage; PSO is demonstrated to be the efficient optimizer; We found underlying factors influencing running time of optimizer; Stay Tuned DCR and DCW are general frameworks (DCM, i.e. differential context modeling as the name of this framework), and they can be applied to any recommendation algorithms which can be decomposed into multiple components. We have successfully extend its applications to item-based collaborative filtering and slope one recommender. References Y. Zheng, R. Burke, B. Mobasher. "Differential Context Modeling in Collaborative Filtering ". In SOCRS-2013, Chicago, IL USA 2013

28 Future Work Try other similarity of contexts instead of the simple Jaccard one; Introduce semantics into the similarity of contexts to further alleviate the sparsity of contexts, e.g., Rome is closer to Florence than Paris. Parallel PSO or put PSO on MapReduce to speed up optimizer; Acknowledgement Student Travel Support from US NSF (UMAP Platinum Sponsor) See u later The 19th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), Chicago, IL USA, Aug 11-14, 2013

29 Thank You! Center for Web Intelligence, DePaul University, Chicago, IL USA

Tutorial: Context In Recommender Systems

Tutorial: Context In Recommender Systems Tutorial: Context In Recommender Systems Yong Zheng Center for Web Intelligence DePaul University, Chicago Time: 2:30 PM 6:00 PM, April 4, 2016 Location: Palazzo dei Congressi, Pisa, Italy The 31st ACM

More information

User-Oriented Context Suggestion

User-Oriented Context Suggestion User-Oriented Context Suggestion Yong Zheng Center for Web Intelligence DePaul University Chicago, Illinois, USA yzheng8@cs.depaul.edu Bamshad Mobasher Center for Web Intelligence DePaul University Chicago,

More information

Improving Results and Performance of Collaborative Filtering-based Recommender Systems using Cuckoo Optimization Algorithm

Improving Results and Performance of Collaborative Filtering-based Recommender Systems using Cuckoo Optimization Algorithm Improving Results and Performance of Collaborative Filtering-based Recommender Systems using Cuckoo Optimization Algorithm Majid Hatami Faculty of Electrical and Computer Engineering University of Tabriz,

More information

Combining Review Text Content and Reviewer-Item Rating Matrix to Predict Review Rating

Combining Review Text Content and Reviewer-Item Rating Matrix to Predict Review Rating Combining Review Text Content and Reviewer-Item Rating Matrix to Predict Review Rating Dipak J Kakade, Nilesh P Sable Department of Computer Engineering, JSPM S Imperial College of Engg. And Research,

More information

Demystifying movie ratings 224W Project Report. Amritha Raghunath Vignesh Ganapathi Subramanian

Demystifying movie ratings 224W Project Report. Amritha Raghunath Vignesh Ganapathi Subramanian Demystifying movie ratings 224W Project Report Amritha Raghunath (amrithar@stanford.edu) Vignesh Ganapathi Subramanian (vigansub@stanford.edu) 9 December, 2014 Introduction The past decade or so has seen

More information

A PROPOSED HYBRID BOOK RECOMMENDER SYSTEM

A PROPOSED HYBRID BOOK RECOMMENDER SYSTEM A PROPOSED HYBRID BOOK RECOMMENDER SYSTEM SUHAS PATIL [M.Tech Scholar, Department Of Computer Science &Engineering, RKDF IST, Bhopal, RGPV University, India] Dr.Varsha Namdeo [Assistant Professor, Department

More information

Seminar Collaborative Filtering. KDD Cup. Ziawasch Abedjan, Arvid Heise, Felix Naumann

Seminar Collaborative Filtering. KDD Cup. Ziawasch Abedjan, Arvid Heise, Felix Naumann Seminar Collaborative Filtering KDD Cup Ziawasch Abedjan, Arvid Heise, Felix Naumann 2 Collaborative Filtering Recommendation systems 3 Recommendation systems 4 Recommendation systems 5 Recommendation

More information

CS249: ADVANCED DATA MINING

CS249: ADVANCED DATA MINING CS249: ADVANCED DATA MINING Recommender Systems II Instructor: Yizhou Sun yzsun@cs.ucla.edu May 31, 2017 Recommender Systems Recommendation via Information Network Analysis Hybrid Collaborative Filtering

More information

Towards a hybrid approach to Netflix Challenge

Towards a hybrid approach to Netflix Challenge Towards a hybrid approach to Netflix Challenge Abhishek Gupta, Abhijeet Mohapatra, Tejaswi Tenneti March 12, 2009 1 Introduction Today Recommendation systems [3] have become indispensible because of the

More information

Content-based Dimensionality Reduction for Recommender Systems

Content-based Dimensionality Reduction for Recommender Systems Content-based Dimensionality Reduction for Recommender Systems Panagiotis Symeonidis Aristotle University, Department of Informatics, Thessaloniki 54124, Greece symeon@csd.auth.gr Abstract. Recommender

More information

Comparison of Recommender System Algorithms focusing on the New-Item and User-Bias Problem

Comparison of Recommender System Algorithms focusing on the New-Item and User-Bias Problem Comparison of Recommender System Algorithms focusing on the New-Item and User-Bias Problem Stefan Hauger 1, Karen H. L. Tso 2, and Lars Schmidt-Thieme 2 1 Department of Computer Science, University of

More information

Influence Maximization in Location-Based Social Networks Ivan Suarez, Sudarshan Seshadri, Patrick Cho CS224W Final Project Report

Influence Maximization in Location-Based Social Networks Ivan Suarez, Sudarshan Seshadri, Patrick Cho CS224W Final Project Report Influence Maximization in Location-Based Social Networks Ivan Suarez, Sudarshan Seshadri, Patrick Cho CS224W Final Project Report Abstract The goal of influence maximization has led to research into different

More information

Recommendation System for Location-based Social Network CS224W Project Report

Recommendation System for Location-based Social Network CS224W Project Report Recommendation System for Location-based Social Network CS224W Project Report Group 42, Yiying Cheng, Yangru Fang, Yongqing Yuan 1 Introduction With the rapid development of mobile devices and wireless

More information

A Recommender System Based on Improvised K- Means Clustering Algorithm

A Recommender System Based on Improvised K- Means Clustering Algorithm A Recommender System Based on Improvised K- Means Clustering Algorithm Shivani Sharma Department of Computer Science and Applications, Kurukshetra University, Kurukshetra Shivanigaur83@yahoo.com Abstract:

More information

Recommender Systems: Practical Aspects, Case Studies. Radek Pelánek

Recommender Systems: Practical Aspects, Case Studies. Radek Pelánek Recommender Systems: Practical Aspects, Case Studies Radek Pelánek 2017 This Lecture practical aspects : attacks, context, shared accounts,... case studies, illustrations of application illustration of

More information

List of Exercises: Data Mining 1 December 12th, 2015

List of Exercises: Data Mining 1 December 12th, 2015 List of Exercises: Data Mining 1 December 12th, 2015 1. We trained a model on a two-class balanced dataset using five-fold cross validation. One person calculated the performance of the classifier by measuring

More information

Local Search Insights

Local Search Insights Local Search Insights click The YP to edit Advantage master title style Summary of comscore Research November 2014 All surveys results data herein are from comscore YP Value Proposition study, September

More information

arxiv: v4 [cs.ir] 28 Jul 2016

arxiv: v4 [cs.ir] 28 Jul 2016 Review-Based Rating Prediction arxiv:1607.00024v4 [cs.ir] 28 Jul 2016 Tal Hadad Dept. of Information Systems Engineering, Ben-Gurion University E-mail: tah@post.bgu.ac.il Abstract Recommendation systems

More information

Assignment 5: Collaborative Filtering

Assignment 5: Collaborative Filtering Assignment 5: Collaborative Filtering Arash Vahdat Fall 2015 Readings You are highly recommended to check the following readings before/while doing this assignment: Slope One Algorithm: https://en.wikipedia.org/wiki/slope_one.

More information

Social Data Exploration

Social Data Exploration Social Data Exploration Sihem Amer-Yahia DR CNRS @ LIG Sihem.Amer-Yahia@imag.fr Big Data & Optimization Workshop 12ème Séminaire POC LIP6 Dec 5 th, 2014 Collaborative data model User space (with attributes)

More information

Web Personalization & Recommender Systems

Web Personalization & Recommender Systems Web Personalization & Recommender Systems COSC 488 Slides are based on: - Bamshad Mobasher, Depaul University - Recent publications: see the last page (Reference section) Web Personalization & Recommender

More information

Traffic Signal Control Based On Fuzzy Artificial Neural Networks With Particle Swarm Optimization

Traffic Signal Control Based On Fuzzy Artificial Neural Networks With Particle Swarm Optimization Traffic Signal Control Based On Fuzzy Artificial Neural Networks With Particle Swarm Optimization J.Venkatesh 1, B.Chiranjeevulu 2 1 PG Student, Dept. of ECE, Viswanadha Institute of Technology And Management,

More information

Vector Semantics. Dense Vectors

Vector Semantics. Dense Vectors Vector Semantics Dense Vectors Sparse versus dense vectors PPMI vectors are long (length V = 20,000 to 50,000) sparse (most elements are zero) Alternative: learn vectors which are short (length 200-1000)

More information

Machine Learning using MapReduce

Machine Learning using MapReduce Machine Learning using MapReduce What is Machine Learning Machine learning is a subfield of artificial intelligence concerned with techniques that allow computers to improve their outputs based on previous

More information

Hybrid Recommendation System Using Clustering and Collaborative Filtering

Hybrid Recommendation System Using Clustering and Collaborative Filtering Hybrid Recommendation System Using Clustering and Collaborative Filtering Roshni Padate Assistant Professor roshni@frcrce.ac.in Priyanka Bane B.E. Student priyankabane56@gmail.com Jayesh Kudase B.E. Student

More information

Thanks to Jure Leskovec, Anand Rajaraman, Jeff Ullman

Thanks to Jure Leskovec, Anand Rajaraman, Jeff Ullman Thanks to Jure Leskovec, Anand Rajaraman, Jeff Ullman http://www.mmds.org Overview of Recommender Systems Content-based Systems Collaborative Filtering J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive

More information

Diversity in Recommender Systems Week 2: The Problems. Toni Mikkola, Andy Valjakka, Heng Gui, Wilson Poon

Diversity in Recommender Systems Week 2: The Problems. Toni Mikkola, Andy Valjakka, Heng Gui, Wilson Poon Diversity in Recommender Systems Week 2: The Problems Toni Mikkola, Andy Valjakka, Heng Gui, Wilson Poon Review diversification happens by searching from further away balancing diversity and relevance

More information

Using Social Networks to Improve Movie Rating Predictions

Using Social Networks to Improve Movie Rating Predictions Introduction Using Social Networks to Improve Movie Rating Predictions Suhaas Prasad Recommender systems based on collaborative filtering techniques have become a large area of interest ever since the

More information

Reddit Recommendation System Daniel Poon, Yu Wu, David (Qifan) Zhang CS229, Stanford University December 11 th, 2011

Reddit Recommendation System Daniel Poon, Yu Wu, David (Qifan) Zhang CS229, Stanford University December 11 th, 2011 Reddit Recommendation System Daniel Poon, Yu Wu, David (Qifan) Zhang CS229, Stanford University December 11 th, 2011 1. Introduction Reddit is one of the most popular online social news websites with millions

More information

Efficient Mining Algorithms for Large-scale Graphs

Efficient Mining Algorithms for Large-scale Graphs Efficient Mining Algorithms for Large-scale Graphs Yasunari Kishimoto, Hiroaki Shiokawa, Yasuhiro Fujiwara, and Makoto Onizuka Abstract This article describes efficient graph mining algorithms designed

More information

Web Personalization & Recommender Systems

Web Personalization & Recommender Systems Web Personalization & Recommender Systems COSC 488 Slides are based on: - Bamshad Mobasher, Depaul University - Recent publications: see the last page (Reference section) Web Personalization & Recommender

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS6: Mining Massive Datasets Jure Leskovec, Stanford University http://cs6.stanford.edu Customer X Buys Metalica CD Buys Megadeth CD Customer Y Does search on Metalica Recommender system suggests Megadeth

More information

More Efficient Classification of Web Content Using Graph Sampling

More Efficient Classification of Web Content Using Graph Sampling More Efficient Classification of Web Content Using Graph Sampling Chris Bennett Department of Computer Science University of Georgia Athens, Georgia, USA 30602 bennett@cs.uga.edu Abstract In mining information

More information

Text clustering based on a divide and merge strategy

Text clustering based on a divide and merge strategy Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 55 (2015 ) 825 832 Information Technology and Quantitative Management (ITQM 2015) Text clustering based on a divide and

More information

The OTT Co-Viewing Experience: 2017 November 2017

The OTT Co-Viewing Experience: 2017 November 2017 The OTT Co-Viewing Experience: 2017 November 2017 Sponsored by Objectives IAB Digital Video Center of Excellence has identified OTT/Connected TV as one of its research priorities in 2017. During the first

More information

Statistical Disclosure Control meets Recommender Systems: A practical approach

Statistical Disclosure Control meets Recommender Systems: A practical approach Research Group Statistical Disclosure Control meets Recommender Systems: A practical approach Fran Casino and Agusti Solanas {franciscojose.casino, agusti.solanas}@urv.cat Smart Health Research Group Universitat

More information

Recommender Systems New Approaches with Netflix Dataset

Recommender Systems New Approaches with Netflix Dataset Recommender Systems New Approaches with Netflix Dataset Robert Bell Yehuda Koren AT&T Labs ICDM 2007 Presented by Matt Rodriguez Outline Overview of Recommender System Approaches which are Content based

More information

Efficient Search for Inputs Causing High Floating-point Errors

Efficient Search for Inputs Causing High Floating-point Errors Efficient Search for Inputs Causing High Floating-point Errors Wei-Fan Chiang, Ganesh Gopalakrishnan, Zvonimir Rakamarić, and Alexey Solovyev School of Computing, University of Utah, Salt Lake City, UT

More information

Explore Co-clustering on Job Applications. Qingyun Wan SUNet ID:qywan

Explore Co-clustering on Job Applications. Qingyun Wan SUNet ID:qywan Explore Co-clustering on Job Applications Qingyun Wan SUNet ID:qywan 1 Introduction In the job marketplace, the supply side represents the job postings posted by job posters and the demand side presents

More information

Performance Comparison of Algorithms for Movie Rating Estimation

Performance Comparison of Algorithms for Movie Rating Estimation Performance Comparison of Algorithms for Movie Rating Estimation Alper Köse, Can Kanbak, Noyan Evirgen Research Laboratory of Electronics, Massachusetts Institute of Technology Department of Electrical

More information

Semantically Enhanced Collaborative Filtering on the Web

Semantically Enhanced Collaborative Filtering on the Web Semantically Enhanced Collaborative Filtering on the Web Bamshad Mobasher, Xin Jin, and Yanzan Zhou {mobasher,xjin,yzhou}@cs.depaul.edu Center for Web Intelligence School of Computer Science, Telecommunication,

More information

Matrix Co-factorization for Recommendation with Rich Side Information HetRec 2011 and Implicit 1 / Feedb 23

Matrix Co-factorization for Recommendation with Rich Side Information HetRec 2011 and Implicit 1 / Feedb 23 Matrix Co-factorization for Recommendation with Rich Side Information and Implicit Feedback Yi Fang and Luo Si Department of Computer Science Purdue University West Lafayette, IN 47906, USA fangy@cs.purdue.edu

More information

A Constrained Spreading Activation Approach to Collaborative Filtering

A Constrained Spreading Activation Approach to Collaborative Filtering A Constrained Spreading Activation Approach to Collaborative Filtering Josephine Griffith 1, Colm O Riordan 1, and Humphrey Sorensen 2 1 Dept. of Information Technology, National University of Ireland,

More information

Graph Mining: Overview of different graph models

Graph Mining: Overview of different graph models Graph Mining: Overview of different graph models Davide Mottin, Konstantina Lazaridou Hasso Plattner Institute Graph Mining course Winter Semester 2016 Lecture road Anomaly detection (previous lecture)

More information

Project Report. An Introduction to Collaborative Filtering

Project Report. An Introduction to Collaborative Filtering Project Report An Introduction to Collaborative Filtering Siobhán Grayson 12254530 COMP30030 School of Computer Science and Informatics College of Engineering, Mathematical & Physical Sciences University

More information

Tour-Based Mode Choice Modeling: Using An Ensemble of (Un-) Conditional Data-Mining Classifiers

Tour-Based Mode Choice Modeling: Using An Ensemble of (Un-) Conditional Data-Mining Classifiers Tour-Based Mode Choice Modeling: Using An Ensemble of (Un-) Conditional Data-Mining Classifiers James P. Biagioni Piotr M. Szczurek Peter C. Nelson, Ph.D. Abolfazl Mohammadian, Ph.D. Agenda Background

More information

Recommender Systems - Content, Collaborative, Hybrid

Recommender Systems - Content, Collaborative, Hybrid BOBBY B. LYLE SCHOOL OF ENGINEERING Department of Engineering Management, Information and Systems EMIS 8331 Advanced Data Mining Recommender Systems - Content, Collaborative, Hybrid Scott F Eisenhart 1

More information

Justified Recommendations based on Content and Rating Data

Justified Recommendations based on Content and Rating Data Justified Recommendations based on Content and Rating Data Panagiotis Symeonidis, Alexandros Nanopoulos, and Yannis Manolopoulos Aristotle University, Department of Informatics, Thessaloniki 54124, Greece

More information

WHITE PAPER Application Performance Management. The Case for Adaptive Instrumentation in J2EE Environments

WHITE PAPER Application Performance Management. The Case for Adaptive Instrumentation in J2EE Environments WHITE PAPER Application Performance Management The Case for Adaptive Instrumentation in J2EE Environments Why Adaptive Instrumentation?... 3 Discovering Performance Problems... 3 The adaptive approach...

More information

Recommender Systems: User Experience and System Issues

Recommender Systems: User Experience and System Issues Recommender Systems: User Experience and System ssues Joseph A. Konstan University of Minnesota konstan@cs.umn.edu http://www.grouplens.org Summer 2005 1 About me Professor of Computer Science & Engineering,

More information

Introduction to Data Mining

Introduction to Data Mining Introduction to Data Mining Lecture #7: Recommendation Content based & Collaborative Filtering Seoul National University In This Lecture Understand the motivation and the problem of recommendation Compare

More information

Recommendation System Using Yelp Data CS 229 Machine Learning Jia Le Xu, Yingran Xu

Recommendation System Using Yelp Data CS 229 Machine Learning Jia Le Xu, Yingran Xu Recommendation System Using Yelp Data CS 229 Machine Learning Jia Le Xu, Yingran Xu 1 Introduction Yelp Dataset Challenge provides a large number of user, business and review data which can be used for

More information

What is Learning? CS 343: Artificial Intelligence Machine Learning. Raymond J. Mooney. Problem Solving / Planning / Control.

What is Learning? CS 343: Artificial Intelligence Machine Learning. Raymond J. Mooney. Problem Solving / Planning / Control. What is Learning? CS 343: Artificial Intelligence Machine Learning Herbert Simon: Learning is any process by which a system improves performance from experience. What is the task? Classification Problem

More information

Project Participants

Project Participants Annual Report for Period:10/2004-10/2005 Submitted on: 06/21/2005 Principal Investigator: Yang, Li. Award ID: 0414857 Organization: Western Michigan Univ Title: Projection and Interactive Exploration of

More information

Big Data Analytics Influx of data pertaining to the 4Vs, i.e. Volume, Veracity, Velocity and Variety

Big Data Analytics Influx of data pertaining to the 4Vs, i.e. Volume, Veracity, Velocity and Variety Holistic Analysis of Multi-Source, Multi- Feature Data: Modeling and Computation Challenges Big Data Analytics Influx of data pertaining to the 4Vs, i.e. Volume, Veracity, Velocity and Variety Abhishek

More information

Hotel Recommendation Based on Hybrid Model

Hotel Recommendation Based on Hybrid Model Hotel Recommendation Based on Hybrid Model Jing WANG, Jiajun SUN, Zhendong LIN Abstract: This project develops a hybrid model that combines content-based with collaborative filtering (CF) for hotel recommendation.

More information

Semantic Clickstream Mining

Semantic Clickstream Mining Semantic Clickstream Mining Mehrdad Jalali 1, and Norwati Mustapha 2 1 Department of Software Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran 2 Department of Computer Science, Universiti

More information

the uk and the u.s.a.

the uk and the u.s.a. Friends: Preview 1 Label the pictures with the following free-time activities. ride a horse play video games go dancing watch movies drive a car talk to friends play tennis go shopping 1 2 3 4 5 6 7 8

More information

Constrained Classification of Large Imbalanced Data

Constrained Classification of Large Imbalanced Data Constrained Classification of Large Imbalanced Data Martin Hlosta, R. Stríž, J. Zendulka, T. Hruška Brno University of Technology, Faculty of Information Technology Božetěchova 2, 612 66 Brno ihlosta@fit.vutbr.cz

More information

Predict Topic Trend in Blogosphere

Predict Topic Trend in Blogosphere Predict Topic Trend in Blogosphere Jack Guo 05596882 jackguo@stanford.edu Abstract Graphical relationship among web pages has been used to rank their relative importance. In this paper, we introduce a

More information

Additive Regression Applied to a Large-Scale Collaborative Filtering Problem

Additive Regression Applied to a Large-Scale Collaborative Filtering Problem Additive Regression Applied to a Large-Scale Collaborative Filtering Problem Eibe Frank 1 and Mark Hall 2 1 Department of Computer Science, University of Waikato, Hamilton, New Zealand eibe@cs.waikato.ac.nz

More information

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University DS 4400 Machine Learning and Data Mining I Alina Oprea Associate Professor, CCIS Northeastern University January 22 2019 Outline Practical issues in Linear Regression Outliers Categorical variables Lab

More information

Travel Time Estimation of a Path using Sparse Trajectories

Travel Time Estimation of a Path using Sparse Trajectories Travel Time Estimation of a Path using Sparse Trajectories Yilun Wang 1,2,*, Yu Zheng 1,+, Yexiang Xue 1,3,* 1 Microsoft Research, No.5 Danling Street, Haidian District, Beijing 100080, China 2 College

More information

Mining of Massive Datasets Jure Leskovec, Anand Rajaraman, Jeff Ullman Stanford University Infinite data. Filtering data streams

Mining of Massive Datasets Jure Leskovec, Anand Rajaraman, Jeff Ullman Stanford University  Infinite data. Filtering data streams /9/7 Note to other teachers and users of these slides: We would be delighted if you found this our material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them

More information

Holistic Analysis of Multi-Source, Multi- Feature Data: Modeling and Computation Challenges

Holistic Analysis of Multi-Source, Multi- Feature Data: Modeling and Computation Challenges Holistic Analysis of Multi-Source, Multi- Feature Data: Modeling and Computation Challenges Abhishek Santra 1 and Sanjukta Bhowmick 2 1 Information Technology Laboratory, CSE Department, University of

More information

CS435 Introduction to Big Data Spring 2018 Colorado State University. 3/21/2018 Week 10-B Sangmi Lee Pallickara. FAQs. Collaborative filtering

CS435 Introduction to Big Data Spring 2018 Colorado State University. 3/21/2018 Week 10-B Sangmi Lee Pallickara. FAQs. Collaborative filtering W10.B.0.0 CS435 Introduction to Big Data W10.B.1 FAQs Term project 5:00PM March 29, 2018 PA2 Recitation: Friday PART 1. LARGE SCALE DATA AALYTICS 4. RECOMMEDATIO SYSTEMS 5. EVALUATIO AD VALIDATIO TECHIQUES

More information

PARTICLE SWARM OPTIMIZATION (PSO)

PARTICLE SWARM OPTIMIZATION (PSO) PARTICLE SWARM OPTIMIZATION (PSO) J. Kennedy and R. Eberhart, Particle Swarm Optimization. Proceedings of the Fourth IEEE Int. Conference on Neural Networks, 1995. A population based optimization technique

More information

GeoTemporal Reasoning for the Social Semantic Web

GeoTemporal Reasoning for the Social Semantic Web GeoTemporal Reasoning for the Social Semantic Web Jans Aasman Franz Inc. 2201 Broadway, Suite 715, Oakland, CA 94612, USA ja@franz.com Abstract: We demonstrate a Semantic Web application that organizes

More information

Know your neighbours: Machine Learning on Graphs

Know your neighbours: Machine Learning on Graphs Know your neighbours: Machine Learning on Graphs Andrew Docherty Senior Research Engineer andrew.docherty@data61.csiro.au www.data61.csiro.au 2 Graphs are Everywhere Online Social Networks Transportation

More information

DISTANCE EVALUATED SIMULATED KALMAN FILTER FOR COMBINATORIAL OPTIMIZATION PROBLEMS

DISTANCE EVALUATED SIMULATED KALMAN FILTER FOR COMBINATORIAL OPTIMIZATION PROBLEMS DISTANCE EVALUATED SIMULATED KALMAN FILTER FOR COMBINATORIAL OPTIMIZATION PROBLEMS Zulkifli Md Yusof 1, Zuwairie Ibrahim 1, Ismail Ibrahim 1, Kamil Zakwan Mohd Azmi 1, Nor Azlina Ab Aziz 2, Nor Hidayati

More information

Path Optimization in Stream-Based Overlay Networks

Path Optimization in Stream-Based Overlay Networks Path Optimization in Stream-Based Overlay Networks Peter Pietzuch, prp@eecs.harvard.edu Jeff Shneidman, Jonathan Ledlie, Mema Roussopoulos, Margo Seltzer, Matt Welsh Systems Research Group Harvard University

More information

An Empirical Comparison of Collaborative Filtering Approaches on Netflix Data

An Empirical Comparison of Collaborative Filtering Approaches on Netflix Data An Empirical Comparison of Collaborative Filtering Approaches on Netflix Data Nicola Barbieri, Massimo Guarascio, Ettore Ritacco ICAR-CNR Via Pietro Bucci 41/c, Rende, Italy {barbieri,guarascio,ritacco}@icar.cnr.it

More information

Efficient Search for Inputs Causing High Floating-point Errors

Efficient Search for Inputs Causing High Floating-point Errors Efficient Search for Inputs Causing High Floating-point Errors Wei-Fan Chiang, Ganesh Gopalakrishnan, Zvonimir Rakamarić, and Alexey Solovyev University of Utah Presented by Yuting Chen February 22, 2015

More information

Final Exam Study Guide

Final Exam Study Guide Final Exam Study Guide Exam Window: 28th April, 12:00am EST to 30th April, 11:59pm EST Description As indicated in class the goal of the exam is to encourage you to review the material from the course.

More information

CS 124/LINGUIST 180 From Languages to Information

CS 124/LINGUIST 180 From Languages to Information CS /LINGUIST 80 From Languages to Information Dan Jurafsky Stanford University Recommender Systems & Collaborative Filtering Slides adapted from Jure Leskovec Recommender Systems Customer X Buys CD of

More information

arxiv: v2 [cs.lg] 15 Nov 2011

arxiv: v2 [cs.lg] 15 Nov 2011 Using Contextual Information as Virtual Items on Top-N Recommender Systems Marcos A. Domingues Fac. of Science, U. Porto marcos@liaad.up.pt Alípio Mário Jorge Fac. of Science, U. Porto amjorge@fc.up.pt

More information

CS229 Final Project: Predicting Expected Response Times

CS229 Final Project: Predicting Expected  Response Times CS229 Final Project: Predicting Expected Email Response Times Laura Cruz-Albrecht (lcruzalb), Kevin Khieu (kkhieu) December 15, 2017 1 Introduction Each day, countless emails are sent out, yet the time

More information

Collaborative Filtering for Netflix

Collaborative Filtering for Netflix Collaborative Filtering for Netflix Michael Percy Dec 10, 2009 Abstract The Netflix movie-recommendation problem was investigated and the incremental Singular Value Decomposition (SVD) algorithm was implemented

More information

Unsupervised learning on Color Images

Unsupervised learning on Color Images Unsupervised learning on Color Images Sindhuja Vakkalagadda 1, Prasanthi Dhavala 2 1 Computer Science and Systems Engineering, Andhra University, AP, India 2 Computer Science and Systems Engineering, Andhra

More information

Experiences from Implementing Collaborative Filtering in a Web 2.0 Application

Experiences from Implementing Collaborative Filtering in a Web 2.0 Application Experiences from Implementing Collaborative Filtering in a Web 2.0 Application Wolfgang Woerndl, Johannes Helminger, Vivian Prinz TU Muenchen, Chair for Applied Informatics Cooperative Systems Boltzmannstr.

More information

Decentralised and Privacy-Aware Learning of Traversal Time Models

Decentralised and Privacy-Aware Learning of Traversal Time Models Decentralised and Privacy-Aware Learning of Traversal Time Models Thanh Le Van, Aurélien Bellet, Jan Ramon To cite this version: Thanh Le Van, Aurélien Bellet, Jan Ramon. Decentralised and Privacy-Aware

More information

BaggTaming Learning from Wild and Tame Data

BaggTaming Learning from Wild and Tame Data BaggTaming Learning from Wild and Tame Data Wikis, Blogs, Bookmarking Tools - Mining the Web 2.0 Workshop @ECML/PKDD2008 Workshop, 15/9/2008 Toshihiro Kamishima, Masahiro Hamasaki, and Shotaro Akaho National

More information

Algorithm Design (4) Metaheuristics

Algorithm Design (4) Metaheuristics Algorithm Design (4) Metaheuristics Takashi Chikayama School of Engineering The University of Tokyo Formalization of Constraint Optimization Minimize (or maximize) the objective function f(x 0,, x n )

More information

DENSITY BASED AND PARTITION BASED CLUSTERING OF UNCERTAIN DATA BASED ON KL-DIVERGENCE SIMILARITY MEASURE

DENSITY BASED AND PARTITION BASED CLUSTERING OF UNCERTAIN DATA BASED ON KL-DIVERGENCE SIMILARITY MEASURE DENSITY BASED AND PARTITION BASED CLUSTERING OF UNCERTAIN DATA BASED ON KL-DIVERGENCE SIMILARITY MEASURE Sinu T S 1, Mr.Joseph George 1,2 Computer Science and Engineering, Adi Shankara Institute of Engineering

More information

I Travel on mobile / UK

I Travel on mobile / UK I Travel on mobile / UK Exploring how people use their smartphones for travel activities Q3 2016 I About this study Background: Objective: Mobile apps and sites are a vital channel for advertisers to engage

More information

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University DS 4400 Machine Learning and Data Mining I Alina Oprea Associate Professor, CCIS Northeastern University January 24 2019 Logistics HW 1 is due on Friday 01/25 Project proposal: due Feb 21 1 page description

More information

Music Recommendation with Implicit Feedback and Side Information

Music Recommendation with Implicit Feedback and Side Information Music Recommendation with Implicit Feedback and Side Information Shengbo Guo Yahoo! Labs shengbo@yahoo-inc.com Behrouz Behmardi Criteo b.behmardi@criteo.com Gary Chen Vobile gary.chen@vobileinc.com Abstract

More information

Algorithm Collections for Digital Signal Processing Applications Using Matlab

Algorithm Collections for Digital Signal Processing Applications Using Matlab Algorithm Collections for Digital Signal Processing Applications Using Matlab Algorithm Collections for Digital Signal Processing Applications Using Matlab E.S. Gopi National Institute of Technology, Tiruchi,

More information

Visual Query Suggestion

Visual Query Suggestion Visual Query Suggestion Zheng-Jun Zha, Linjun Yang, Tao Mei, Meng Wang, Zengfu Wang University of Science and Technology of China Textual Visual Query Suggestion Microsoft Research Asia Motivation Framework

More information

AN IMPROVED DENSITY BASED k-means ALGORITHM

AN IMPROVED DENSITY BASED k-means ALGORITHM AN IMPROVED DENSITY BASED k-means ALGORITHM Kabiru Dalhatu 1 and Alex Tze Hiang Sim 2 1 Department of Computer Science, Faculty of Computing and Mathematical Science, Kano University of Science and Technology

More information

COLLABORATIVE LOCATION AND ACTIVITY RECOMMENDATIONS WITH GPS HISTORY DATA

COLLABORATIVE LOCATION AND ACTIVITY RECOMMENDATIONS WITH GPS HISTORY DATA COLLABORATIVE LOCATION AND ACTIVITY RECOMMENDATIONS WITH GPS HISTORY DATA Vincent W. Zheng, Yu Zheng, Xing Xie, Qiang Yang Hong Kong University of Science and Technology Microsoft Research Asia WWW 2010

More information

Collaborative Filtering based on User Trends

Collaborative Filtering based on User Trends Collaborative Filtering based on User Trends Panagiotis Symeonidis, Alexandros Nanopoulos, Apostolos Papadopoulos, and Yannis Manolopoulos Aristotle University, Department of Informatics, Thessalonii 54124,

More information

José Miguel Hernández Lobato Zoubin Ghahramani Computational and Biological Learning Laboratory Cambridge University

José Miguel Hernández Lobato Zoubin Ghahramani Computational and Biological Learning Laboratory Cambridge University José Miguel Hernández Lobato Zoubin Ghahramani Computational and Biological Learning Laboratory Cambridge University 20/09/2011 1 Evaluation of data mining and machine learning methods in the task of modeling

More information

A Constrained Spreading Activation Approach to Collaborative Filtering

A Constrained Spreading Activation Approach to Collaborative Filtering A Constrained Spreading Activation Approach to Collaborative Filtering Josephine Griffith 1, Colm O Riordan 1, and Humphrey Sorensen 2 1 Dept. of Information Technology, National University of Ireland,

More information

Clustering and Recommending Services based on ClubCF approach for Big Data Application

Clustering and Recommending Services based on ClubCF approach for Big Data Application Clustering and Recommending Services based on ClubCF approach for Big Data Application G.Uma Mahesh Department of Computer Science and Engineering Vemu Institute of Technology, P.Kothakota, Andhra Pradesh,India

More information

SCUBA DIVER: SUBSPACE CLUSTERING OF WEB SEARCH RESULTS

SCUBA DIVER: SUBSPACE CLUSTERING OF WEB SEARCH RESULTS SCUBA DIVER: SUBSPACE CLUSTERING OF WEB SEARCH RESULTS Fatih Gelgi, Srinivas Vadrevu, Hasan Davulcu Department of Computer Science and Engineering, Arizona State University, Tempe, AZ fagelgi@asu.edu,

More information

Part 11: Collaborative Filtering. Francesco Ricci

Part 11: Collaborative Filtering. Francesco Ricci Part : Collaborative Filtering Francesco Ricci Content An example of a Collaborative Filtering system: MovieLens The collaborative filtering method n Similarity of users n Methods for building the rating

More information

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.7, No.3, May Dr.Zakea Il-Agure and Mr.Hicham Noureddine Itani

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.7, No.3, May Dr.Zakea Il-Agure and Mr.Hicham Noureddine Itani LINK MINING PROCESS Dr.Zakea Il-Agure and Mr.Hicham Noureddine Itani Higher Colleges of Technology, United Arab Emirates ABSTRACT Many data mining and knowledge discovery methodologies and process models

More information

Trademark Matching and Retrieval in Sport Video Databases

Trademark Matching and Retrieval in Sport Video Databases Trademark Matching and Retrieval in Sport Video Databases Andrew D. Bagdanov, Lamberto Ballan, Marco Bertini and Alberto Del Bimbo {bagdanov, ballan, bertini, delbimbo}@dsi.unifi.it 9th ACM SIGMM International

More information

Latent Space Model for Road Networks to Predict Time-Varying Traffic. Presented by: Rob Fitzgerald Spring 2017

Latent Space Model for Road Networks to Predict Time-Varying Traffic. Presented by: Rob Fitzgerald Spring 2017 Latent Space Model for Road Networks to Predict Time-Varying Traffic Presented by: Rob Fitzgerald Spring 2017 Definition of Latent https://en.oxforddictionaries.com/definition/latent Latent Space Model?

More information