Code Verification: Past, Present, and Future

Size: px
Start display at page:

Download "Code Verification: Past, Present, and Future"

Transcription

1 Code Verification: Past Present and Future Chris Roy Professor and Assistant Department Head For Graduate Studies Aerospace and Ocean Engineering Department Virginia Tech Keynote Lecture ASME V&V Symposium May

2 Outline Introduction What is code verification? Why is it hard? Why is it important? Historical perspective Current state-of-the-art Future topics for research Closing remarks 2

3 What is Code Verification? Code verification is performed to ensure that a scientific computing code is capable of producing the correct result Math Model (PDEs) Numerical Algorithm Software Numerical Solution Discretization Programming Simulation Two primary sources of error code verification can detect: Algorithms deficiencies Software programming mistakes Code verification is achieved by comparing code output to the exact solution to the math model 3

4 Why is Code Verification Hard? Standard software engineering testing compares software output to the correct result; however in scientific computing the correct answer from a code is never known The solution depends on the following: Numerical algorithm Spatial mesh Time step Floating point precision Iterative tolerance 4

5 Why is Code Verification Important? The dangers of ignoring code verification include: The code may converge very nicely with mesh refinement but to the wrong solution; this calls into question the results of any subsequent analysis design validation optimization etc. If a code converges to the correct solution but at the wrong rate then the solution cost to achieve a desired numerical error level can grow dramatically e.g. 5 Consider that a formally second-order accurate code is run on a 3D mesh of 1M cells with an error estimate of 20% To achieve a desired error tolerance of 5% one would need: 8M cells if the code is converging at a second-order rate 64M cells if the code is converging at a first-order rate

6 A (Brief) History of Code Verification 6

7 Traditional Exact Solutions Exact solutions to well-posed Partial Differential Equations (PDEs) have been around since Newton s time However exact solutions only exist for very simple problems Today we are often concerned with coupled nonlinear systems of partial differential equations with complex boundary conditions applied on general geometries These complex mathematical models do not readily admit traditional exact solutions 7

8 Manufactured Solutions Roache and Steinberg (1984) had a major breakthrough in the creation of exact solutions for general scientific computing applications; the Method of Manufactured Solutions can be summarized as follows: Step 1: Write PDEs in the form L( u) Step 2: Choose an analytic form of the Manufactured Solution Step 3: Operate the mathematical model onto the Manufactured Solution to obtain the analytic source term û s L(uˆ) Step 4: Obtain the modified form of the mathematical model by including the analytic source term: L( u) s which is solved exactly by û 0 L () û 8 Roache P. J. and S. Steinberg Symbolic manipulation and computational fluid dynamics AIAA Journal Vol. 22 No pp

9 Order of Accuracy Testing Although Roache and Steinberg (1984) may not have been the first to create exact solutions in such a manner (e.g. see Zadunaisky 1976) they appear to be the first to apply it to code verification using order of accuracy testing The formal order of accuracy is the rate at which meshrelated errors should reduce with systematic mesh refinement The observed order of accuracy is the actual rate at which these errors reduce: rh rh Global ln Norms of ln h Quantities: pˆ h the Solution: pˆ lnr ln r 9 Roache P. J. and S. Steinberg Symbolic manipulation and computational fluid dynamics AIAA Journal Vol. 22 No pp

10 Code Verification Example Consider the 2D Euler equations that govern frictionless flow Four coupled nonlinear PDEs that governing conservation of mass momentum and energy Manufactured Solutions chosen as sinusoidal functions Systematic mesh refinement to create 5 meshes Euler Equations Norms: y/l x/l p (N/m 2 ) y/l x/l Source Term Energy Eqn E E E E E E E E E E E+08 Order of Accuracy p L Norm (Premo) L 2 Norm (Premo) L Norm (Wind) L 2 Norm (Wind) h Pressure MS Energy Source Term Order of Accuracy 10 Roy C. J. C. C. Nelson T. M. Smith and C.C. Ober Verification of Euler/Navier Stokes codes using the method of manufactured solutions International Journal for Numerical Methods in Fluids Vol pp

11 Verification of Boundary Conditions Bond et al. (2007) developed a novel method for ensuring that Manufactured Solution values and derivatives are satisfied along a general boundary surface Consider a standard Manufactured Solution: One can characterize a bounding surface in 3D by the general function They developed a new Manufactured Solution to satisfy: Dirichlet BCs ( ): Neumann BCs ( ): so that: 11 u u 0 ) ˆ( ) ( ) ( 0 z y x u z y x F u z y x u 0 n u ) ˆ( ) ( ) ( 2 0 z y x u z y x F u z y x u ) ( ˆ ) ( ) ˆ( ) ( 2 2 z y x n u z y x F z y x u n F z y x F n u 0 ) ( z y x F ) ( ˆ z y x u =0 =0 on the boundary Bond R. B. C. C. Ober P. M. Knupp and S. W. Bova Manufactured solution for computational fluid dynamics boundary condition verification AIAA Journal Vol. 45 No pp

12 Current State-of-the-Art in Code Verification 12

13 Weak Form of Manufactured Solutions For finite difference methods the Manufactured Solution source term is properly evaluated as a nodal value; however for finite volume and finite element methods it is a volume integral: s ( x y z) dv V Derlaga et al. (2013) employed the divergence theorem to convert the derivative over a cell/element to a surface integral Lowers the dimension of the integration by one; easier to perform quadrature esp. for higher-order methods; e.g. in 2D: A da 13 J. M. Derlaga T. S. Phillips and C. J. Roy SENSEI Computational Fluid Dynamics Code: A Case Study in Modern Fortran Software Development AIAA Paper st AIAA Computational Fluid Dynamics Conference San Diego CA June

14 Verification of Turbulence Models in CFD Turbulence models offer challenges in code verification due to strongly nonlinear source terms and min/max functions Eca et al. (2005) developed physically-realistic Manufactured Solutions for turbulent flows as part a series of workshops held in Lisbon Portugal on CFD Uncertainty E.g. incompressible turbulent boundary layer Manufactured Solutions were developed for six different turbulence models: x-velocity Turbulent Turbulence Viscosity Kinetic Energy 14 L. Eca M. Hoekstra A. Hay and D. Pelletier A Manufactured Solution for a Two-Dimensional Steady Wall- Bounded Incompressible Turbulent Flow IST Report D72-34 EPM Report EMP-RT Nov

15 Code Verification for Solid Mechanics Rigorous code verification in solid mechanics has lagged that in fluid mechanics and heat transfer The tradition in finite elements is to do element or patch tests of the finite element discretization; manufactured solutions and order of accuracy testing generally not used Kamojjala et al. (2015) has recently developed manufactured solutions for solid mechanics Displacement Error Norms K. Kamojjala R. Brannon A. Sadeghirad and J. Guilkey Verification Tests in Solid Mechanics Engineering with Computers Vol. 31 No pp

16 Incompressible Flows For incompressible flows the Manufactured Solutions are not arbitrary and must satisfy the divergence-free condition for velocity i.e. V 0 This is especially true for pressure projection methods where a Poisson equation for pressure is developed which enforces the divergence-free condition Choudhary et al. (2014) used the identity which holds for any vector field H to developed a curlbased MS that satisfies the divergence-free condition H The velocity is thus given by: and the Manufactured Solution is specified for the vector V 0 H H 16 A. Choudhary C. J. Roy J.-F. Dietiker M. Shahnam and R. Garg Code Verification for Multiphase Flows Using the Method of Manufactured Solutions FEDSM Proceedings of the ASME th Joint US- European Fluids Engineering Division Summer Meeting (FEDSM) Chicago IL August

17 Multiphase Flows Until recently there has been very little work published on code verification for multiphase flows Choudhary et al. (2014) verified a continuum two-phase (gassolid) flow model in the MFIX CFD code The two phases are treated as continua with exchange terms Gas Solid Granular Temperature Temperature Energy Order of Accuracy 17 A. Choudhary C. J. Roy J.-F. Dietiker M. Shahnam and R. Garg Code Verification for Multiphase Flows Using the Method of Manufactured Solutions FEDSM Proceedings of the ASME th Joint US- European Fluids Engineering Division Summer Meeting (FEDSM) Chicago IL August

18 Future Challenges for Code Verification 18

19 Code Verification for Problems with Singularities and Discontinuities Code verification has traditionally been done on smooth problems; however almost all practical problems contain singularities and/or discontinuities Banks et al. (2008) demonstrated that: Nonlinear discontinuities cause first order behavior Linear discontinuities cause order less than one: Grier et al. ( ) have recently developed: Manufactured solutions with discontinuities Numerical integration techniques for discontinuities p smooth p smooth 1 19 J. W. Banks T. Aslam and W. J. Rider On sub-linear convergence for linearly degenerate waves in capturing schemes Journal of Computational Physics Vol pp B. Grier E. Alyanak M. White J. Camberos and R. Figliola Numerical integration techniques for discontinuous manufactured solutions Journal of Computational Physics Vol pp B. Grier R. Figliola E. Alyanak J. Camberos Discontinuous Solutions Using the Method of Manufactured Solutions on Finite Volume Solvers AIAA Journal pp DOI: /1.J

20 Code Verification for Multiphysics Computations Simulations with multiple physical phenomena are becoming more commonplace (e.g. fluid-structures fluid-thermal thermoelastic) When the coupling occurs at an interface many of the same discontinuity-related issues arise Fully-coupled simulations are expensive and the phenomena often occur at disparate time scales Loosely-coupled simulations often suffer from numerical stability issues that are difficult to analyze Manufactured Solutions are needed to aid in the development and verification of multiphysics codes 20

21 Numerical Benchmark Solutions Numerical benchmark solutions offer an alternative to code verification using Manufactured Solutions Requirements for a numerical benchmark solution: Must be computed with a rigorously verified code Must have rigorous error estimates including demonstration of the observed order of accuracy Numerical errors must be small especially if used for verifying higher-order codes Example: turbulent flat plate ( Spalart-Allmaras turbulence model Multiple codes used All appear to converge to the same answer with mesh refinement 21

22 Concluding Remarks 22

23 Are Your Commercial Scientific Computing Codes Verified? Since code verification is generally done by the code developer should you assume that the commercial (or government) code you use is verified? NO! Code verification is arguably the most mature sub-topic in Verification Validation and Uncertainty Quantification The main code verification techniques have been around for decades However almost no commercial software vendors have "code verification" documents; why? Sacrifice accuracy for robustness Customers have not demanded it 23

24 Are Your Commercial Scientific Computing Codes Verified? Consider the code verification study of commercial CFD codes by Abanto et al. (2005) using a Manufactured Solution for an incompressible laminar boundary layer Code A Code B Formally second-order accurate finite volume codes Velocity generally converges at less than first order Pressure is non-convergent 24 Abanto J. D. Pelletier A. Garon J.-Y. Trepanier and M. Reggio Verification of some commercial CFD codes on atypical CFD problems 43 rd AIAA Aerospace Sciences Meeting AIAA Paper Reno NV.

25 Thank You 25

Multi-Mesh CFD. Chris Roy Chip Jackson (1 st year PhD student) Aerospace and Ocean Engineering Department Virginia Tech

Multi-Mesh CFD. Chris Roy Chip Jackson (1 st year PhD student) Aerospace and Ocean Engineering Department Virginia Tech Multi-Mesh CFD Chris Roy Chip Jackson (1 st year PhD student) Aerospace and Ocean Engineering Department Virginia Tech cjroy@vt.edu May 21, 2014 CCAS Program Review, Columbus, OH 1 Motivation Automated

More information

Techniques for Using the Method of Manufactured Solutions for Verification and Uncertainty Quantification of CFD Simulations Having Discontinuities

Techniques for Using the Method of Manufactured Solutions for Verification and Uncertainty Quantification of CFD Simulations Having Discontinuities Techniques for Using the Method of Manufactured Solutions for Verification and Uncertainty Quantification of CFD Simulations Having Discontinuities Ben Grier Clemson University Richard Figliola, Larry

More information

Verification and Validation in CFD and Heat Transfer: ANSYS Practice and the New ASME Standard

Verification and Validation in CFD and Heat Transfer: ANSYS Practice and the New ASME Standard Verification and Validation in CFD and Heat Transfer: ANSYS Practice and the New ASME Standard Dimitri P. Tselepidakis & Lewis Collins ASME 2012 Verification and Validation Symposium May 3 rd, 2012 1 Outline

More information

Numerical and theoretical analysis of shock waves interaction and reflection

Numerical and theoretical analysis of shock waves interaction and reflection Fluid Structure Interaction and Moving Boundary Problems IV 299 Numerical and theoretical analysis of shock waves interaction and reflection K. Alhussan Space Research Institute, King Abdulaziz City for

More information

Solving Partial Differential Equations on Overlapping Grids

Solving Partial Differential Equations on Overlapping Grids **FULL TITLE** ASP Conference Series, Vol. **VOLUME**, **YEAR OF PUBLICATION** **NAMES OF EDITORS** Solving Partial Differential Equations on Overlapping Grids William D. Henshaw Centre for Applied Scientific

More information

Computing & Verifying Compressible Fluid Dynamics:! The Good, The Bad and The Ugly!

Computing & Verifying Compressible Fluid Dynamics:! The Good, The Bad and The Ugly! : LA- UR 11-05852 Computing & Verifying Compressible Fluid Dynamics:! The Good, The Bad and The Ugly! Tariq Aslam! Los Alamos National Laboratory! WX-9: Shock and Detonation Physics! Slide 1 Background:!

More information

computational Fluid Dynamics - Prof. V. Esfahanian

computational Fluid Dynamics - Prof. V. Esfahanian Three boards categories: Experimental Theoretical Computational Crucial to know all three: Each has their advantages and disadvantages. Require validation and verification. School of Mechanical Engineering

More information

CHAPTER 1. Introduction

CHAPTER 1. Introduction ME 475: Computer-Aided Design of Structures 1-1 CHAPTER 1 Introduction 1.1 Analysis versus Design 1.2 Basic Steps in Analysis 1.3 What is the Finite Element Method? 1.4 Geometrical Representation, Discretization

More information

Isogeometric Analysis of Fluid-Structure Interaction

Isogeometric Analysis of Fluid-Structure Interaction Isogeometric Analysis of Fluid-Structure Interaction Y. Bazilevs, V.M. Calo, T.J.R. Hughes Institute for Computational Engineering and Sciences, The University of Texas at Austin, USA e-mail: {bazily,victor,hughes}@ices.utexas.edu

More information

Mid-Year Report. Discontinuous Galerkin Euler Equation Solver. Friday, December 14, Andrey Andreyev. Advisor: Dr.

Mid-Year Report. Discontinuous Galerkin Euler Equation Solver. Friday, December 14, Andrey Andreyev. Advisor: Dr. Mid-Year Report Discontinuous Galerkin Euler Equation Solver Friday, December 14, 2012 Andrey Andreyev Advisor: Dr. James Baeder Abstract: The focus of this effort is to produce a two dimensional inviscid,

More information

SENSEI / SENSEI-Lite / SENEI-LDC Updates

SENSEI / SENSEI-Lite / SENEI-LDC Updates SENSEI / SENSEI-Lite / SENEI-LDC Updates Chris Roy and Brent Pickering Aerospace and Ocean Engineering Dept. Virginia Tech July 23, 2014 Collaborations with Math Collaboration on the implicit SENSEI-LDC

More information

MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP

MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP Vol. 12, Issue 1/2016, 63-68 DOI: 10.1515/cee-2016-0009 MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP Juraj MUŽÍK 1,* 1 Department of Geotechnics, Faculty of Civil Engineering, University

More information

Verification of transport equations in a general purpose commercial CFD code.

Verification of transport equations in a general purpose commercial CFD code. IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Verification of transport equations in a general purpose commercial CFD code. To cite this article: Matthieu Melot et al 2016 IOP

More information

Partial Differential Equations

Partial Differential Equations Simulation in Computer Graphics Partial Differential Equations Matthias Teschner Computer Science Department University of Freiburg Motivation various dynamic effects and physical processes are described

More information

Isotropic Porous Media Tutorial

Isotropic Porous Media Tutorial STAR-CCM+ User Guide 3927 Isotropic Porous Media Tutorial This tutorial models flow through the catalyst geometry described in the introductory section. In the porous region, the theoretical pressure drop

More information

2.7 Cloth Animation. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter 2 123

2.7 Cloth Animation. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter 2 123 2.7 Cloth Animation 320491: Advanced Graphics - Chapter 2 123 Example: Cloth draping Image Michael Kass 320491: Advanced Graphics - Chapter 2 124 Cloth using mass-spring model Network of masses and springs

More information

Flow and Heat Transfer in a Mixing Elbow

Flow and Heat Transfer in a Mixing Elbow Flow and Heat Transfer in a Mixing Elbow Objectives The main objectives of the project are to learn (i) how to set up and perform flow simulations with heat transfer and mixing, (ii) post-processing and

More information

Introduction to Computational Fluid Dynamics Mech 122 D. Fabris, K. Lynch, D. Rich

Introduction to Computational Fluid Dynamics Mech 122 D. Fabris, K. Lynch, D. Rich Introduction to Computational Fluid Dynamics Mech 122 D. Fabris, K. Lynch, D. Rich 1 Computational Fluid dynamics Computational fluid dynamics (CFD) is the analysis of systems involving fluid flow, heat

More information

NUMERICAL ERROR QUANTIFICATION OF RANS MODELLING IN AN IDEALIZED CENTRAL EUROPEAN CITY CENTRE

NUMERICAL ERROR QUANTIFICATION OF RANS MODELLING IN AN IDEALIZED CENTRAL EUROPEAN CITY CENTRE NUMERICAL ERROR QUANTIFICATION OF RANS MODELLING IN AN IDEALIZED CENTRAL EUROPEAN CITY CENTRE Anikó Rákai 1, Jörg Franke 2 1 Department of Fluid Mechanics, Budapest University of Technology and Economics

More information

NUMERICAL VISCOSITY. Convergent Science White Paper. COPYRIGHT 2017 CONVERGENT SCIENCE. All rights reserved.

NUMERICAL VISCOSITY. Convergent Science White Paper. COPYRIGHT 2017 CONVERGENT SCIENCE. All rights reserved. Convergent Science White Paper COPYRIGHT 2017 CONVERGENT SCIENCE. All rights reserved. This document contains information that is proprietary to Convergent Science. Public dissemination of this document

More information

: What is Finite Element Analysis (FEA)?

: What is Finite Element Analysis (FEA)? Q: What is Finite Element Analysis (FEA)? A1: It is a numerical technique for finding approximate solutions of partial differential equations (PDE) as well as of integral equations. The solution approach

More information

CGT 581 G Fluids. Overview. Some terms. Some terms

CGT 581 G Fluids. Overview. Some terms. Some terms CGT 581 G Fluids Bedřich Beneš, Ph.D. Purdue University Department of Computer Graphics Technology Overview Some terms Incompressible Navier-Stokes Boundary conditions Lagrange vs. Euler Eulerian approaches

More information

1.2 Numerical Solutions of Flow Problems

1.2 Numerical Solutions of Flow Problems 1.2 Numerical Solutions of Flow Problems DIFFERENTIAL EQUATIONS OF MOTION FOR A SIMPLIFIED FLOW PROBLEM Continuity equation for incompressible flow: 0 Momentum (Navier-Stokes) equations for a Newtonian

More information

Introduction to C omputational F luid Dynamics. D. Murrin

Introduction to C omputational F luid Dynamics. D. Murrin Introduction to C omputational F luid Dynamics D. Murrin Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat transfer, mass transfer, chemical reactions, and related phenomena

More information

Driven Cavity Example

Driven Cavity Example BMAppendixI.qxd 11/14/12 6:55 PM Page I-1 I CFD Driven Cavity Example I.1 Problem One of the classic benchmarks in CFD is the driven cavity problem. Consider steady, incompressible, viscous flow in a square

More information

Adjoint Solver Workshop

Adjoint Solver Workshop Adjoint Solver Workshop Why is an Adjoint Solver useful? Design and manufacture for better performance: e.g. airfoil, combustor, rotor blade, ducts, body shape, etc. by optimising a certain characteristic

More information

CFD-1. Introduction: What is CFD? T. J. Craft. Msc CFD-1. CFD: Computational Fluid Dynamics

CFD-1. Introduction: What is CFD? T. J. Craft. Msc CFD-1. CFD: Computational Fluid Dynamics School of Mechanical Aerospace and Civil Engineering CFD-1 T. J. Craft George Begg Building, C41 Msc CFD-1 Reading: J. Ferziger, M. Peric, Computational Methods for Fluid Dynamics H.K. Versteeg, W. Malalasekara,

More information

Discontinuous Galerkin Spectral Element Approximations for CFD

Discontinuous Galerkin Spectral Element Approximations for CFD Discontinuous Galerkin Spectral Element Approimations for CFD D.A. Kopriva Florida State Universit Tallahassee, FL 3236 G.B. Jacobs San Diego State Universit San Diego, CA 92182 September 3, 211 1 Code

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY. Analyzing wind flow around the square plate using ADINA Project. Ankur Bajoria

MASSACHUSETTS INSTITUTE OF TECHNOLOGY. Analyzing wind flow around the square plate using ADINA Project. Ankur Bajoria MASSACHUSETTS INSTITUTE OF TECHNOLOGY Analyzing wind flow around the square plate using ADINA 2.094 - Project Ankur Bajoria May 1, 2008 Acknowledgement I would like to thank ADINA R & D, Inc for the full

More information

A High-Order Accurate Unstructured GMRES Solver for Poisson s Equation

A High-Order Accurate Unstructured GMRES Solver for Poisson s Equation A High-Order Accurate Unstructured GMRES Solver for Poisson s Equation Amir Nejat * and Carl Ollivier-Gooch Department of Mechanical Engineering, The University of British Columbia, BC V6T 1Z4, Canada

More information

Final Report. Discontinuous Galerkin Compressible Euler Equation Solver. May 14, Andrey Andreyev. Adviser: Dr. James Baeder

Final Report. Discontinuous Galerkin Compressible Euler Equation Solver. May 14, Andrey Andreyev. Adviser: Dr. James Baeder Final Report Discontinuous Galerkin Compressible Euler Equation Solver May 14, 2013 Andrey Andreyev Adviser: Dr. James Baeder Abstract: In this work a Discontinuous Galerkin Method is developed for compressible

More information

Development of an Integrated Computational Simulation Method for Fluid Driven Structure Movement and Acoustics

Development of an Integrated Computational Simulation Method for Fluid Driven Structure Movement and Acoustics Development of an Integrated Computational Simulation Method for Fluid Driven Structure Movement and Acoustics I. Pantle Fachgebiet Strömungsmaschinen Karlsruher Institut für Technologie KIT Motivation

More information

A methodology for the rigorous verification of plasma simulation codes

A methodology for the rigorous verification of plasma simulation codes A methodology for the rigorous verification of plasma simulation codes Fabio Riva P. Ricci, C. Beadle, F.D. Halpern, S. Jolliet, J. Loizu, J. Morales, A. Mosetto, P. Paruta, C. Wersal École Polytechnique

More information

PROTECTION AGAINST MODELING AND SIMULATION UNCERTAINTIES IN DESIGN OPTIMIZATION NSF GRANT DMI

PROTECTION AGAINST MODELING AND SIMULATION UNCERTAINTIES IN DESIGN OPTIMIZATION NSF GRANT DMI PROTECTION AGAINST MODELING AND SIMULATION UNCERTAINTIES IN DESIGN OPTIMIZATION NSF GRANT DMI-9979711 Bernard Grossman, William H. Mason, Layne T. Watson, Serhat Hosder, and Hongman Kim Virginia Polytechnic

More information

Investigation of cross flow over a circular cylinder at low Re using the Immersed Boundary Method (IBM)

Investigation of cross flow over a circular cylinder at low Re using the Immersed Boundary Method (IBM) Computational Methods and Experimental Measurements XVII 235 Investigation of cross flow over a circular cylinder at low Re using the Immersed Boundary Method (IBM) K. Rehman Department of Mechanical Engineering,

More information

Introduction to ANSYS CFX

Introduction to ANSYS CFX Workshop 03 Fluid flow around the NACA0012 Airfoil 16.0 Release Introduction to ANSYS CFX 2015 ANSYS, Inc. March 13, 2015 1 Release 16.0 Workshop Description: The flow simulated is an external aerodynamics

More information

Multigrid Solvers in CFD. David Emerson. Scientific Computing Department STFC Daresbury Laboratory Daresbury, Warrington, WA4 4AD, UK

Multigrid Solvers in CFD. David Emerson. Scientific Computing Department STFC Daresbury Laboratory Daresbury, Warrington, WA4 4AD, UK Multigrid Solvers in CFD David Emerson Scientific Computing Department STFC Daresbury Laboratory Daresbury, Warrington, WA4 4AD, UK david.emerson@stfc.ac.uk 1 Outline Multigrid: general comments Incompressible

More information

Debojyoti Ghosh. Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering

Debojyoti Ghosh. Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering Debojyoti Ghosh Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering To study the Dynamic Stalling of rotor blade cross-sections Unsteady Aerodynamics: Time varying

More information

PRACE Workshop, Worksheet 2

PRACE Workshop, Worksheet 2 PRACE Workshop, Worksheet 2 Stockholm, December 3, 2013. 0 Download files http://csc.kth.se/ rvda/prace files ws2.tar.gz. 1 Introduction In this exercise, you will have the opportunity to work with a real

More information

Fluent User Services Center

Fluent User Services Center Solver Settings 5-1 Using the Solver Setting Solver Parameters Convergence Definition Monitoring Stability Accelerating Convergence Accuracy Grid Independence Adaption Appendix: Background Finite Volume

More information

An Overview of Computational Fluid Dynamics

An Overview of Computational Fluid Dynamics An Overview of Computational Fluid Dynamics Dr. Nor Azwadi bin Che Sidik Faculty of Mechanical Engineering Universiti Teknologi Malaysia INSPIRING CREATIVE AND INNOVATIVE MINDS 1 What is CFD? C computational

More information

NUMERICAL 3D TRANSONIC FLOW SIMULATION OVER A WING

NUMERICAL 3D TRANSONIC FLOW SIMULATION OVER A WING Review of the Air Force Academy No.3 (35)/2017 NUMERICAL 3D TRANSONIC FLOW SIMULATION OVER A WING Cvetelina VELKOVA Department of Technical Mechanics, Naval Academy Nikola Vaptsarov,Varna, Bulgaria (cvetelina.velkova1985@gmail.com)

More information

CFD Simulation for Stratified Oil-Water Two-Phase Flow in a Horizontal Pipe

CFD Simulation for Stratified Oil-Water Two-Phase Flow in a Horizontal Pipe CFD Simulation for Stratified Oil-Water Two-Phase Flow in a Horizontal Pipe Adib Zulhilmi Mohd Alias, a, Jaswar Koto, a,b,* and Yasser Mohamed Ahmed, a a) Department of Aeronautics, Automotive and Ocean

More information

A higher-order finite volume method with collocated grid arrangement for incompressible flows

A higher-order finite volume method with collocated grid arrangement for incompressible flows Computational Methods and Experimental Measurements XVII 109 A higher-order finite volume method with collocated grid arrangement for incompressible flows L. Ramirez 1, X. Nogueira 1, S. Khelladi 2, J.

More information

CFD Best Practice Guidelines: A process to understand CFD results and establish Simulation versus Reality

CFD Best Practice Guidelines: A process to understand CFD results and establish Simulation versus Reality CFD Best Practice Guidelines: A process to understand CFD results and establish Simulation versus Reality Judd Kaiser ANSYS Inc. judd.kaiser@ansys.com 2005 ANSYS, Inc. 1 ANSYS, Inc. Proprietary Overview

More information

Development of a Maxwell Equation Solver for Application to Two Fluid Plasma Models. C. Aberle, A. Hakim, and U. Shumlak

Development of a Maxwell Equation Solver for Application to Two Fluid Plasma Models. C. Aberle, A. Hakim, and U. Shumlak Development of a Maxwell Equation Solver for Application to Two Fluid Plasma Models C. Aberle, A. Hakim, and U. Shumlak Aerospace and Astronautics University of Washington, Seattle American Physical Society

More information

LS-DYNA 980 : Recent Developments, Application Areas and Validation Process of the Incompressible fluid solver (ICFD) in LS-DYNA.

LS-DYNA 980 : Recent Developments, Application Areas and Validation Process of the Incompressible fluid solver (ICFD) in LS-DYNA. 12 th International LS-DYNA Users Conference FSI/ALE(1) LS-DYNA 980 : Recent Developments, Application Areas and Validation Process of the Incompressible fluid solver (ICFD) in LS-DYNA Part 1 Facundo Del

More information

Realistic Animation of Fluids

Realistic Animation of Fluids Realistic Animation of Fluids p. 1/2 Realistic Animation of Fluids Nick Foster and Dimitri Metaxas Realistic Animation of Fluids p. 2/2 Overview Problem Statement Previous Work Navier-Stokes Equations

More information

2-D Tank Sloshing Using the Coupled Eulerian- LaGrangian (CEL) Capability of Abaqus/Explicit

2-D Tank Sloshing Using the Coupled Eulerian- LaGrangian (CEL) Capability of Abaqus/Explicit 2-D Tank Sloshing Using the Coupled Eulerian- LaGrangian (CEL) Capability of Abaqus/Explicit Jeff D. Tippmann, Sharat C. Prasad 2, and Parthiv N. Shah ATA Engineering, Inc. San Diego, CA 923 2 Dassault

More information

3D Modeling of Urban Areas for Built Environment CFD Applications

3D Modeling of Urban Areas for Built Environment CFD Applications 3D Modeling of Urban Areas for Built Environment CFD Applications using C A.W.M. (Jos) van Schijndel Eindhoven University of Technology P.O. Box 513; 5600 MB Eindhoven; Netherlands, A.W.M.v.Schijndel@tue.nl

More information

Available online at ScienceDirect. Procedia Engineering 111 (2015 )

Available online at   ScienceDirect. Procedia Engineering 111 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 111 (2015 ) 115 120 XXV R-S-P seminar, Theoretical Foundation of Civil Engineering (24RSP) (TFoCE 2015) Numerical simulation

More information

A Hybrid Magnetic Field Solver Using a Combined Finite Element/Boundary Element Field Solver

A Hybrid Magnetic Field Solver Using a Combined Finite Element/Boundary Element Field Solver A Hybrid Magnetic Field Solver Using a Combined Finite Element/Boundary Element Field Solver Abstract - The dominant method to solve magnetic field problems is the finite element method. It has been used

More information

Coupled Analysis of FSI

Coupled Analysis of FSI Coupled Analysis of FSI Qin Yin Fan Oct. 11, 2008 Important Key Words Fluid Structure Interface = FSI Computational Fluid Dynamics = CFD Pressure Displacement Analysis = PDA Thermal Stress Analysis = TSA

More information

Principles of benchmark studies (Verification & Validation)

Principles of benchmark studies (Verification & Validation) COST TU0904 Integrated Fire Engineering and Response MC and WG s meetings 2012 October 8 9, Zadar, CROATIA Principles of benchmark studies (Verification & Validation) Les aw Kwa niewski Warsaw University

More information

Modeling and simulation the incompressible flow through pipelines 3D solution for the Navier-Stokes equations

Modeling and simulation the incompressible flow through pipelines 3D solution for the Navier-Stokes equations Modeling and simulation the incompressible flow through pipelines 3D solution for the Navier-Stokes equations Daniela Tudorica 1 (1) Petroleum Gas University of Ploiesti, Department of Information Technology,

More information

NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011

NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011 NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011 First-Order Hyperbolic System Method If you have a CFD book for hyperbolic problems, you have a CFD book for all problems.

More information

Stratified Oil-Water Two-Phases Flow of Subsea Pipeline

Stratified Oil-Water Two-Phases Flow of Subsea Pipeline Stratified Oil-Water Two-Phases Flow of Subsea Pipeline Adib Zulhilmi Mohd Alias, a, Jaswar Koto, a,b,*, Yasser Mohamed Ahmed, a and Abd Khair Junaidi, b a) Department of Aeronautics, Automotive and Ocean

More information

New Conjugate-Heat Transfer Solvers in the Compressible CESE Solver in LS-DYNA

New Conjugate-Heat Transfer Solvers in the Compressible CESE Solver in LS-DYNA New Conjugate-Heat Transfer Solvers in the Compressible CESE Solver in LS-DYNA Grant O. Cook, Jr. and Zeng-Chan Zhang Livermore Software Technology Corp., Livermore, CA 94551 Abstract Standard coupling

More information

CFD MODELING FOR PNEUMATIC CONVEYING

CFD MODELING FOR PNEUMATIC CONVEYING CFD MODELING FOR PNEUMATIC CONVEYING Arvind Kumar 1, D.R. Kaushal 2, Navneet Kumar 3 1 Associate Professor YMCAUST, Faridabad 2 Associate Professor, IIT, Delhi 3 Research Scholar IIT, Delhi e-mail: arvindeem@yahoo.co.in

More information

Application of CFD to Industrial Safety Studies (with Prediction Accuracy and Error estimations)

Application of CFD to Industrial Safety Studies (with Prediction Accuracy and Error estimations) School of Mechanical Aerospace and Civil Engineering University of Manchester First Year Transfer Report Application of CFD to Industrial Safety Studies (with Prediction Accuracy and Error estimations)

More information

Modeling and Simulation of Single Phase Fluid Flow and Heat Transfer in Packed Beds

Modeling and Simulation of Single Phase Fluid Flow and Heat Transfer in Packed Beds Modeling and Simulation of Single Phase Fluid Flow and Heat Transfer in Packed Beds by:- Balaaji Mahadevan Shaurya Sachdev Subhanshu Pareek Amol Deshpande Birla Institute of Technology and Science, Pilani

More information

CFD in COMSOL Multiphysics

CFD in COMSOL Multiphysics CFD in COMSOL Multiphysics Christian Wollblad Copyright 2017 COMSOL. Any of the images, text, and equations here may be copied and modified for your own internal use. All trademarks are the property of

More information

Parallel High-Order Geometric Multigrid Methods on Adaptive Meshes for Highly Heterogeneous Nonlinear Stokes Flow Simulations of Earth s Mantle

Parallel High-Order Geometric Multigrid Methods on Adaptive Meshes for Highly Heterogeneous Nonlinear Stokes Flow Simulations of Earth s Mantle ICES Student Forum The University of Texas at Austin, USA November 4, 204 Parallel High-Order Geometric Multigrid Methods on Adaptive Meshes for Highly Heterogeneous Nonlinear Stokes Flow Simulations of

More information

C. A. D. Fraga Filho 1,2, D. F. Pezzin 1 & J. T. A. Chacaltana 1. Abstract

C. A. D. Fraga Filho 1,2, D. F. Pezzin 1 & J. T. A. Chacaltana 1. Abstract Advanced Computational Methods and Experiments in Heat Transfer XIII 15 A numerical study of heat diffusion using the Lagrangian particle SPH method and the Eulerian Finite-Volume method: analysis of convergence,

More information

Lagrangian and Eulerian Representations of Fluid Flow: Kinematics and the Equations of Motion

Lagrangian and Eulerian Representations of Fluid Flow: Kinematics and the Equations of Motion Lagrangian and Eulerian Representations of Fluid Flow: Kinematics and the Equations of Motion James F. Price Woods Hole Oceanographic Institution Woods Hole, MA, 02543 July 31, 2006 Summary: This essay

More information

Finite Element Convergence for Time-Dependent PDEs with a Point Source in COMSOL 4.2

Finite Element Convergence for Time-Dependent PDEs with a Point Source in COMSOL 4.2 Finite Element Convergence for Time-Dependent PDEs with a Point Source in COMSOL 4.2 David W. Trott and Matthias K. Gobbert Department of Mathematics and Statistics, University of Maryland, Baltimore County,

More information

A COUPLED FINITE VOLUME SOLVER FOR THE SOLUTION OF LAMINAR TURBULENT INCOMPRESSIBLE AND COMPRESSIBLE FLOWS

A COUPLED FINITE VOLUME SOLVER FOR THE SOLUTION OF LAMINAR TURBULENT INCOMPRESSIBLE AND COMPRESSIBLE FLOWS A COUPLED FINITE VOLUME SOLVER FOR THE SOLUTION OF LAMINAR TURBULENT INCOMPRESSIBLE AND COMPRESSIBLE FLOWS L. Mangani Maschinentechnik CC Fluidmechanik und Hydromaschinen Hochschule Luzern Technik& Architektur

More information

Lecture 1 GENERAL INTRODUCTION: HISTORICAL BACKGROUND AND SPECTRUM OF APPLICATIONS

Lecture 1 GENERAL INTRODUCTION: HISTORICAL BACKGROUND AND SPECTRUM OF APPLICATIONS Lecture 1 GENERAL INTRODUCTION: HISTORICAL BACKGROUND AND SPECTRUM OF APPLICATIONS 1.1 INTRODUCTION Analysis of physical problems in any area of engineering and science involves a multipronged approach:

More information

A 3D VOF model in cylindrical coordinates

A 3D VOF model in cylindrical coordinates A 3D VOF model in cylindrical coordinates Marmar Mehrabadi and Markus Bussmann Department of Mechanical and Industrial Engineering, University of Toronto Recently, volume of fluid (VOF) methods have improved

More information

Stream Function-Vorticity CFD Solver MAE 6263

Stream Function-Vorticity CFD Solver MAE 6263 Stream Function-Vorticity CFD Solver MAE 66 Charles O Neill April, 00 Abstract A finite difference CFD solver was developed for transient, two-dimensional Cartesian viscous flows. Flow parameters are solved

More information

EVALUATE SHOCK CAPTURING CAPABILITY WITH THE NUMERICAL METHODS IN OpenFOAM

EVALUATE SHOCK CAPTURING CAPABILITY WITH THE NUMERICAL METHODS IN OpenFOAM THERMAL SCIENCE: Year 2013, Vol. 17, No. 4, pp. 1255-1260 1255 Open forum EVALUATE SHOCK CAPTURING CAPABILITY WITH THE NUMERICAL METHODS IN OpenFOAM by Reza KHODADADI AZADBONI a*, Mohammad Rahim MALEKBALA

More information

A Finite Element Solution Of The Beam Equation Via Matlab

A Finite Element Solution Of The Beam Equation Via Matlab A Finite Element Solution Of The Beam Equation Via Matlab We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your computer,

More information

Introduction to Aerodynamic Shape Optimization

Introduction to Aerodynamic Shape Optimization Introduction to Aerodynamic Shape Optimization 1. Aircraft Process 2. Aircraft Methods a. Inverse Surface Methods b. Inverse Field Methods c. Numerical Optimization Methods Aircraft Process Conceptual

More information

Proposal of Research Activity. PhD Course in Space Sciences, Technologies and Measurements (STMS)

Proposal of Research Activity. PhD Course in Space Sciences, Technologies and Measurements (STMS) Proposal of Research Activity PhD Course in Space Sciences, Technologies and Measurements (STMS) Curriculum: Sciences and Technologies for Aeronautics and Satellite Applications (STASA) XXXIV Cycle PhD

More information

The 3D DSC in Fluid Simulation

The 3D DSC in Fluid Simulation The 3D DSC in Fluid Simulation Marek K. Misztal Informatics and Mathematical Modelling, Technical University of Denmark mkm@imm.dtu.dk DSC 2011 Workshop Kgs. Lyngby, 26th August 2011 Governing Equations

More information

Verification of Moving Mesh Discretizations

Verification of Moving Mesh Discretizations Verification of Moving Mesh Discretizations Krzysztof J. Fidkowski High Order CFD Workshop Kissimmee, Florida January 6, 2018 How can we verify moving mesh results? Goal: Demonstrate accuracy of flow solutions

More information

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF ORIFICE PLATE METERING SITUATIONS UNDER ABNORMAL CONFIGURATIONS

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF ORIFICE PLATE METERING SITUATIONS UNDER ABNORMAL CONFIGURATIONS COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF ORIFICE PLATE METERING SITUATIONS UNDER ABNORMAL CONFIGURATIONS Dr W. Malalasekera Version 3.0 August 2013 1 COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF ORIFICE PLATE

More information

Supersonic Flow Over a Wedge

Supersonic Flow Over a Wedge SPC 407 Supersonic & Hypersonic Fluid Dynamics Ansys Fluent Tutorial 2 Supersonic Flow Over a Wedge Ahmed M Nagib Elmekawy, PhD, P.E. Problem Specification A uniform supersonic stream encounters a wedge

More information

McNair Scholars Research Journal

McNair Scholars Research Journal McNair Scholars Research Journal Volume 2 Article 1 2015 Benchmarking of Computational Models against Experimental Data for Velocity Profile Effects on CFD Analysis of Adiabatic Film-Cooling Effectiveness

More information

COMPUTATIONAL DYNAMICS

COMPUTATIONAL DYNAMICS COMPUTATIONAL DYNAMICS THIRD EDITION AHMED A. SHABANA Richard and Loan Hill Professor of Engineering University of Illinois at Chicago A John Wiley and Sons, Ltd., Publication COMPUTATIONAL DYNAMICS COMPUTATIONAL

More information

Parallelization study of a VOF/Navier-Stokes model for 3D unstructured staggered meshes

Parallelization study of a VOF/Navier-Stokes model for 3D unstructured staggered meshes Parallelization study of a VOF/Navier-Stokes model for 3D unstructured staggered meshes L. Jofre, O. Lehmkuhl, R. Borrell, J. Castro and A. Oliva Corresponding author: cttc@cttc.upc.edu Centre Tecnològic

More information

CS205b/CME306. Lecture 9

CS205b/CME306. Lecture 9 CS205b/CME306 Lecture 9 1 Convection Supplementary Reading: Osher and Fedkiw, Sections 3.3 and 3.5; Leveque, Sections 6.7, 8.3, 10.2, 10.4. For a reference on Newton polynomial interpolation via divided

More information

http://miccom-center.org Topic: Continuum-Particle Simulation Software (COPSS-Hydrodynamics) Presenter: Jiyuan Li, The University of Chicago 2017 Summer School 1 What is Continuum-Particle Simulation?

More information

Facundo DEL PIN / Iñaki ÇALDICHOURY / Rodrigo PAZ / / Livermore Software Technology Corporation

Facundo DEL PIN / Iñaki ÇALDICHOURY / Rodrigo PAZ / / Livermore Software Technology Corporation LS-DYNA R R7 : Strong Fluid Structure Interaction (FSI) capabilities and associated meshing tools for the incompressible CFD solver (ICFD), applications and examples Facundo DEL PIN / Iñaki ÇALDICHOURY

More information

Applications of ICFD /SPH Solvers by LS-DYNA to Solve Water Splashing Impact to Automobile Body. Abstract

Applications of ICFD /SPH Solvers by LS-DYNA to Solve Water Splashing Impact to Automobile Body. Abstract Applications of ICFD /SPH Solvers by LS-DYNA to Solve Water Splashing Impact to Automobile Body George Wang (1 ), Kevin Gardner (3), Eric DeHoff (1), Facundo del Pin (2), Inaki Caldichoury (2), Edouard

More information

Mutltiphysics for Ironcad Demonstration Models (Rev. 1.1)

Mutltiphysics for Ironcad Demonstration Models (Rev. 1.1) Centrifuge Model The centrifuge model demonstrates how to perform a rotational spinning centrifugal load analysis. It also demonstrates how to group different parts with/without the intended initial bonding

More information

UNCERTAINTIES FOR A TRANSONIC DIFFUSER PROBLEM. William H. Mason, and Layne T. Watson

UNCERTAINTIES FOR A TRANSONIC DIFFUSER PROBLEM. William H. Mason, and Layne T. Watson QUANTITATIVE RELATIVE COMPARISON OF CFD SIMULATION UNCERTAINTIES FOR A TRANSONIC DIFFUSER PROBLEM Serhat Hosder, Bernard Grossman, Raphael T. Haftka, William H. Mason, and Layne T. Watson Multidisciplinary

More information

Realtime Water Simulation on GPU. Nuttapong Chentanez NVIDIA Research

Realtime Water Simulation on GPU. Nuttapong Chentanez NVIDIA Research 1 Realtime Water Simulation on GPU Nuttapong Chentanez NVIDIA Research 2 3 Overview Approaches to realtime water simulation Hybrid shallow water solver + particles Hybrid 3D tall cell water solver + particles

More information

CFD V&V Workshop for CFD V&V Benchmark Case Study. ASME 2015 V&V Symposium

CFD V&V Workshop for CFD V&V Benchmark Case Study. ASME 2015 V&V Symposium CFD V&V Workshop for CFD V&V Benchmark Case Study ASME 2015 V&V Symposium ASME V&V 30 Committee Las Vegas, Nevada May 14, 2015 CFD V&V Workshop Why are we here? Goals CFD V&V Benchmark Case Study State

More information

ANSYS FLUENT. Airfoil Analysis and Tutorial

ANSYS FLUENT. Airfoil Analysis and Tutorial ANSYS FLUENT Airfoil Analysis and Tutorial ENGR083: Fluid Mechanics II Terry Yu 5/11/2017 Abstract The NACA 0012 airfoil was one of the earliest airfoils created. Its mathematically simple shape and age

More information

A Particle Cellular Automata Model for Fluid Simulations

A Particle Cellular Automata Model for Fluid Simulations Annals of University of Craiova, Math. Comp. Sci. Ser. Volume 36(2), 2009, Pages 35 41 ISSN: 1223-6934 A Particle Cellular Automata Model for Fluid Simulations Costin-Radu Boldea Abstract. A new cellular-automaton

More information

Fluid Mechanics Simulation Essentials R2014X

Fluid Mechanics Simulation Essentials R2014X Fluid Mechanics Simulation Essentials R2014X About this Course Course objectives Upon completion of this course you will be able to: Set up and create CFD, CHT and FSI models in the 3DEXPERIENCE Platform

More information

Appendix P. Multi-Physics Simulation Technology in NX. Christian Ruel (Maya Htt, Canada)

Appendix P. Multi-Physics Simulation Technology in NX. Christian Ruel (Maya Htt, Canada) 251 Appendix P Multi-Physics Simulation Technology in NX Christian Ruel (Maya Htt, Canada) 252 Multi-Physics Simulation Technology in NX Abstract As engineers increasingly rely on simulation models within

More information

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil Verification and Validation of Turbulent Flow around a Clark-Y Airfoil 1. Purpose 58:160 Intermediate Mechanics of Fluids CFD LAB 2 By Tao Xing and Fred Stern IIHR-Hydroscience & Engineering The University

More information

Realistic Animation of Fluids

Realistic Animation of Fluids 1 Realistic Animation of Fluids Nick Foster and Dimitris Metaxas Presented by Alex Liberman April 19, 2005 2 Previous Work Used non physics-based methods (mostly in 2D) Hard to simulate effects that rely

More information

The Immersed Interface Method

The Immersed Interface Method The Immersed Interface Method Numerical Solutions of PDEs Involving Interfaces and Irregular Domains Zhiiin Li Kazufumi Ito North Carolina State University Raleigh, North Carolina Society for Industrial

More information

Navier-Stokes & Flow Simulation

Navier-Stokes & Flow Simulation Last Time? Navier-Stokes & Flow Simulation Optional Reading for Last Time: Spring-Mass Systems Numerical Integration (Euler, Midpoint, Runge-Kutta) Modeling string, hair, & cloth HW2: Cloth & Fluid Simulation

More information

Application of Finite Volume Method for Structural Analysis

Application of Finite Volume Method for Structural Analysis Application of Finite Volume Method for Structural Analysis Saeed-Reza Sabbagh-Yazdi and Milad Bayatlou Associate Professor, Civil Engineering Department of KNToosi University of Technology, PostGraduate

More information

Use of CFD in Design and Development of R404A Reciprocating Compressor

Use of CFD in Design and Development of R404A Reciprocating Compressor Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2006 Use of CFD in Design and Development of R404A Reciprocating Compressor Yogesh V. Birari

More information

An explicit feature control approach in structural topology optimization

An explicit feature control approach in structural topology optimization th World Congress on Structural and Multidisciplinary Optimisation 07 th -2 th, June 205, Sydney Australia An explicit feature control approach in structural topology optimization Weisheng Zhang, Xu Guo

More information