Network Optimization Models. Chapter 10: Hillier and Lieberman Chapter 8: Decision Tools for Agribusiness Dr. Hurley s AGB 328 Course

Size: px
Start display at page:

Download "Network Optimization Models. Chapter 10: Hillier and Lieberman Chapter 8: Decision Tools for Agribusiness Dr. Hurley s AGB 328 Course"

Transcription

1 Network Optimization Models Chapter 10: Hillier and Lieberman Chapter 8: Decision Tools for Agribusiness Dr. Hurley s AGB 328 Course

2 Terms to Know Nodes, Arcs, Directed Arc, Undirected Arc, Links, Directed Network, Undirected Network, Path, Directed Path, Undirected Path, Cycle, Connected, Connected Network, Tree, Spanning Tree, Arc Capacity, Supply Node, Demand Node, Transshipment Node, Sink, Source, Residual Network, Residual Capacity, Augmenting Path, Cut, Cut Value, Max-Flow Min-Cut Theorem, Feasible Solutions Property, Integer Solutions Property, Reverse Arc, Basic Arcs, Nonbasic Arcs

3 Terms to Know Cont. Spanning Tree Solution, Feasible Spanning Tree, Fundamental Theorem for the Network Simplex Method, Program Evaluation and Review Technique (PERT), Critical Path Method (CPM), Immediate Successor, Immediate Predecessor, Project Network, Activity-on-Arc, Activity-on-Node, Project Duration, Critical Path, Crashing an Activity, Crashing the Project, Normal Point, Crash Point, Marginal Cost Analysis

4 The Shortest Path Problem A shortest path problem usually has a node known as the origin and a node known as the destination The objective of this problem is to find the shortest path from the origin node to the destination node The shortest path could be measured in time, distance, etc. Since this problem is a special case of the linear programming problem, the simplex method could be used to solve it

5 Mathematical Model for Seervada Shortest Path Problem min w.r.t. x OA,x OB,x OC, x AB,x AD,x BC,x BD,x BE, x CB,x CE,x DE,x DT,x ED,x ET 2 x OA + 5x OB + 4x OC + 2x AB + 7x AD + 1x BC + 4x BD + 3x BE + 1x CB + 4x CE + 1x DE + 1x ED + 5x DT + 7x ET Subject To: x OA + x OC + x OB = 1 x OA x AD x AB = 0 x OB + x AB + x CB x BC x BD x BE = 0 x OC + x BC x CB x CE = 0 x AD + x BD + x ED x DE x DT = 0 x BE + x CE + x DE x ED x ET = 0 x DT + x ET = 1 x OA, x OB, x OC, x AB, x AD, x BC, x BD, x BE, x CB, x CE, x DE, x DT, x ED, x ET (0,1)

6 Seervada Spreadsheet Model Examine in Class

7 Minimum Spanning Tree Problems The goal of the minimum spanning tree problem is to connect all the nodes either directly or indirectly at the lowest cost The minimum spanning tree problem will have one less link than the number of nodes in the optimal solution The solution to the minimum spanning tree problem can be accomplished using the greedy algorithm

8 Greedy Algorithm Choose any two nodes initially and connect them Identify the closest unconnected node and then connect it Continue until all nodes have been connected to the tree Ties can be broken arbitrarily

9 The Maximum Flow Problem The purpose of the maximum flow problem is to get as much flow through the network based on the capacity constraints of the network This can be measured by the amount leaving the source or by the amount entering the sink It has a source where supply originates from and a sink which absorbs the supply that makes it through the network

10 Augmenting Path Algorithm for Maximum Flow Problems Identify an augmenting path that takes flow from the source to the sink in the residual network such that every arc on this path has strictly positive residual If this path does not exist, you have the optimal Identify the residual capacity c* by finding the minimum of the residual capacities of the arcs on the path Increase the flow in this path by c* Decrease the residual capacities by c* for each arc on the augmenting path

11 Max-Flow Min-Cut Theorem Another way of figuring out the maximum flow is by using the Max-Flow Min-Cut Theorem The theorem states that if you have a single source and sink, then the maximum flow through the network is equal to the smallest cut value for all the cuts of the network The cut value is found by summing up all the arcs which are directly affected by the cut of a network A cut is defined as a set of directed arcs that separate the source from the sink

12 Mathematical Model for the Seervada Max Flow Problem max x w.r.t. x OA,x OB,x OC,x AB,x AD,x OA +x OB + x OC BC, x BD,x BE,x CE,x DT,x ED,x ET x OA x AB x AD = 0 x OB + x AB x BC x BD x BE = 0 x OC + x BC x CE = 0 x AD + x BD x DT + x ED = 0 x BE + x CE x ED x ET = 0 0 x OA 5, 0 x OB 7, 0 x OC 4, 0 x AB 1, 0 x AD 3, 0 x BC 2, 0 x BD 4, 0 x BE 5, 0 x CE 4, 0 x DT 9, 0 x ED 1,0 x ET 6 Note: This is based on Figure in the text.

13 Excel Formulation of Seervada Max Flow Problem Examined in Class

14 In Class Max Flow Activity (Not Graded) 0 B 7 0 F 7 A C E 3 0 G I D 4 0 H 7

15 Minimum Cost Flow Problem Requirements At least one supply node At least one demand node The network is directed and connected If the node is not a supply or demand node, then it is a transshipment node Flow through an arc is directed There is enough arc capacity to get the total supply to the total demand Costs are proportional to the amount of flow The objective is to minimize cost

16 Minimum Cost Flow General Mathematical Model x ij = the arc representing the flow from nodes i to j c ij = the cost of flow through x ij u ij = the arc capacity for x ij b i = net flow generated at node i Supply node (b i > 0), demand node (b i < 0), transshipment node (b i = 0) n n Minimimze Z = i=1 j=1 c ij x ij Subject to: n n j=1 x ij j=1 x ji = b i for each node i 0 x ij u ij for each arc

17 Minimum Cost Flow Problem in Excel We will examine the Distribution Unlimited Co. in class

18 What is Project Management Project management can be defined as the coordination of activities with the potential use of many organizations, both internal and external to the business, in order to conduct a large scale project from beginning to end. There are two management science techniques that are used for project management: Program and Evaluation Review Technique (PERT) Critical Path Method (CPM)

19 PERT/CPM PERT PERT was designed to examine projects from the standpoint of uncertainty. CPM CPM was designed to examine projects from the standpoint of costs. PERT and CPM techniques have been combined over time. PERT and CPM both rely heavily on the use of networks to help plan and display the coordination of all the activities for a project.

20 The Reliable Construction Company Reliable has just secured a contract to construct a new plant for a major manufacturer. The contract is for $5.4 million to cover all costs and any profits. The plant must be finished in a year. A penalty of $300,000 will be assessed if Reliable does not complete the project within 47 weeks. A bonus of $150,000 will be paid to Reliable if the plant is completed within 40 weeks.

21 Needed Terminology Activity A distinct task that needs to be performed as part of the project. Start Node This is a node that represents the beginning of the project. Finish Node This node represents the end of the project.

22 Needed Terminology Cont. Immediate Predecessor These are activities that must be completed by no later than the start time of the given activity. Immediate Successor Given the immediate predecessor of an activity, this activity becomes the immediate successor of each of these immediate predecessors. If an immediate successor has multiple immediate predecessors, then all must be finished before an activity can begin.

23 Activity List for Reliable Construction Activity Activity Description Immediate Predecessors Estimated Duration (Weeks) A Excavate 2 B Lay the foundation A 4 C Put up the rough wall B 10 D Put up the roof C 6 E Install the exterior plumbing C 4 F Install the interior plumbing E 5 G Put up the exterior siding D 7 H Do the exterior painting E, G 9 I Do the electrical work C 7 J Put up the wallboard F, I 8 K Install the flooring J 4 L Do the interior painting J 5 M Install the exterior fixtures H 2 N Install the interior fixtures K, L 6

24 Questions Needed to be Answered How can the project be displayed graphically? How much time is required to finish the project if no delays occur? When is earliest start and finish times for each activity if no delays occur? What activities are critical bottleneck activities where delays must be avoided to finish the project on time?

25 Questions Needed to be Answered Cont. For non bottleneck activities, how much can an activity be delayed and yet still keep the project on time? What is the probability of completing the project by the deadline? What is the least amount of money needed to expedite the project to obtain the bonus? How should costs be monitored to keep the project within budget?

26 Project Network A project network is a network diagram that uses nodes and arcs to represent the progression of the activities for a project from start to finish. Three pieces of information needed: Activity information Precedence relationship Time information

27 Project Network Cont. Two types of project networks Activity-on-Arc (AOA) On this diagram, the activity is represented on an arc, while a node is used to separate an activity from its immediate predecessors. Activity-on-Node (AON) On this diagram, the activity is represented by the node, while the arc is used to showed the precedence relationship between the activities.

28 START 0 Activity Code A 2 A. Excavate B. Foundation C. Rough wall B 4 D. Roof E. Exterior plumbing C 10 F. Interior plumbing G. Exterior siding H. Exterior painting D 6 E 4 I 7 I. Electrical work J. Wallboard K. Flooring L. Interior painting G 7 F 5 M. Exterior fixtures N. Interior fixtures J 8 H 9 K 4 L 5 M 2 N 6 FINISH 0

29 Scheduling Using PERT/CPM A path through a project network is a route that follows a set of arcs from the start node to the finish node. The length of a path is defined as the sum of the durations of the activities of the path. What are the paths and their corresponding lengths for Reliable?

30 Critical Path This is the path that has the longest length through the project. The shortest time that a project can conceivably be finished is the critical path. Why?

31 More Terminology Earliest start time of an activity (ES) The time at which an activity will begin if there are no delays in a project. Earliest finish time of an activity (EF) The time at which an activity will finish if there are no delays in a project. Latest start time of an activity (LS) The latest possible time that an activity can start without delaying the project.

32 More Terminology Cont. Latest finish time of an activity (LF) The latest possible time that an activity can be completed without delaying the project. Forward pass The process of moving through a project from start to finish to determine the earliest start and finish times for the activities in the project.

33 More Terminology Cont. Backward pass The process of moving through a project from finish to start to determine the latest start and finish times for the activities in the project. Slack for an activity The amount of time that a particular activity can be delayed without delaying the whole project. It is calculated by taking the difference between the latest finish time with the earliest finish time.

34 More Terminology Cont. Earliest start time rule The earliest start time for an activity is equal to the largest of the earliest finish times of its immediate predecessors. Latest finish time rule The latest finish time is equal to the smallest of the latest start times of its immediate successors.

35 Procedure for Obtaining Earliest Times Step 1: For the activity that starts the project, assign an earliest start time of zero, i.e., ES=0. Step 2: For each activity whose ES has just been obtained, calculate its earliest finish time as ES plus duration of the activity. Step 3: For each new activity whose immediate predecessors have EF values, obtain its ES by using the earliest start time rule.

36 Procedure for Obtaining Earliest Times Cont. Step 4: Apply step 2 to calculate EF. Step 5: Repeat step 3 until ES and EF have been obtained for all activities including the finish node.

37 Procedure for Obtaining Latest Times Step 1: For each of the activities that together complete the project, set its latest finish time equal to the earliest finish time of the finish node. Step 2: For each activity whose LF value has just been obtained, calculate its latest start time as LS equals LF minus the duration of the activity.

38 Procedure for Obtaining Latest Times Cont. Step 3: For each new activity whose immediate successors now have LS values, obtain its LF by applying the latest finish time rule. Step 4: Apply step 2 to calculate its LS. Step 5: Repeat step 3 until LF and LS have been obtained for all activities.

39 START 0 S = (0, 0) F = (0, 0) A 2 S = (0, 0) F = (2, 2) B 4 S = (2, 2) F = (6, 6) C 10 S = (6, 6) F = (16, 16) D 6 S = (16, 20) F = (22, 26) E 4 S = (16, 16) F = (20, 20) I 7 S = (16, 18) F = (23, 25) G 7 S = (22, 26) F = (29, 33) F 5 S = (20, 20) F = (25, 25) H 9 S = (29, 33) F = (38, 42) J 8 S = (25, 25) F = (33, 33) K 4 S = (33, 34) F = (37, 38) L 5 S = (33, 33) F = (38, 38) M 2 S = (38, 42) F = (40, 44) N 6 S = (38, 38) F = (44, 44) FINISH 0 S = (44, 44) F = (44, 44)

40 Ways of Finding the Critical Path Examine all the paths and find the path with the maximum length. Calculate the slack for an activity. If the slack is zero, it is on the critical path. If the slack is positive, it is not on the critical path.

41 Time-Cost Trade-Offs Reliable had an incentive bonus of $150,000 to finish the project in 40 weeks. Is it worth while for Reliable to speed-up the project?

42 Crashing Crashing an activity refers to taking on extra expenditures in order to reduce the duration of an activity below its expected value. Crashing a project refers to crashing a number of activities to reduce the duration of the project.

43 CPM Method of Time-Cost Trade- Offs This is a method concerned with whether it is worthwhile to crash activities to reduce the anticipated duration of the project to a desired value. This assumes that there is a trade-off between time and cost that has an inverse relationship.

44 More Terminology Normal Point is the time and cost of an activity when it is performed in a normal way. Crash point show the time and cost when the activity is fully crashed.

45 Graph of Normal and Crash Points Activity cost Crash cost Crash Normal cost Normal Crash time Normal time Activity duration

46 Marginal Cost Analysis It is a method of using the marginal cost of crashing individual activities on the current critical path to determine the least expensive way of reducing the project duration to an acceptable level. This method requires you to calculate the cost per desired time unit and compare each cost with the other costs.

47 Time (weeks) Cost Maximum Reduction Activity Normal Crash Normal Crash in Time (weeks) Crash Cost per Week Saved A 2 1 $180,000 $280,000 1 $100,000 B , , ,000 C , , ,000 D , , ,000 E , , ,000 F , , ,000 G ,000 1,020, ,000 H , , ,000 I , , ,000 J , , ,000 K , , ,000 L , , ,000 M , , ,000 N , , ,000

48 Marginal Cost Analysis Cont. Once the marginal cost for crashing each activity has been conducted, you next want to choose the crashing that has the smallest marginal cost. Next, calculate the effect that the crash has on each path. Note: Crashing can potentially cause another path to become a critical path.

49 Solving Crashing Problems Using LP There are three decisions to be made: The start time of each activity The reduction in each activity due to crashing The finish time of the project LP model will be examined in class.

Modelling with linear programming

Modelling with linear programming Modelling with linear programming jla@imm.dtu.dk Informatics and Mathematical Modeling Technical University of Denmark 1 Decision models Real world abstraction Model interpretation A model is a carefully

More information

NETWORK OPTIMIZATION MODELS

NETWORK OPTIMIZATION MODELS NETWORK OPTIMIZATION MODELS Network models Transportation, electrical and communication networks pervade our daily lives. Network representation are widely used in: Production, distribution, project planning,

More information

Construction Planning & scheduling. Precedence Networks. Precedence networks

Construction Planning & scheduling. Precedence Networks. Precedence networks Construction Planning & scheduling Precedence Networks Dr. Maha alkasasbeh are the most common type of network schedule in use today Most scheduling software these days require the user to input the information

More information

Overview. H. R. Alvarez A., Ph. D.

Overview. H. R. Alvarez A., Ph. D. Network Modeling Overview Networks arise in numerous settings: transportation, electrical, and communication networks, for example. Network representations also are widely used for problems in such diverse

More information

Network Optimization Problems. Chapter 6: Hillier and Hillier

Network Optimization Problems. Chapter 6: Hillier and Hillier Network Optimization Problems Chapter 6: Hillier and Hillier Agenda Minimum-Cost Flow Problems Case Study: Distribution Unlimited Co. Maximum Flow Problems Case Study: BMZ Company Shortest Path Problems

More information

Introduction to Linear Programming. Chapter 3: Hillier and Lieberman Chapter 3: Decision Tools for Agribusiness Dr. Hurley s AGB 328 Course

Introduction to Linear Programming. Chapter 3: Hillier and Lieberman Chapter 3: Decision Tools for Agribusiness Dr. Hurley s AGB 328 Course Introduction to Linear Programming Chapter 3: Hillier and Lieberman Chapter 3: Decision Tools for Agribusiness Dr Hurley s AGB 328 Course Terms to Know Simplex Method, Feasible Region, Slope- Intercept

More information

YEAR 12 FURTHER MATHS UNIT 4 MODULE 2 NETWORKS AND DECISION MATHEMATICS CRITICAL PATH ANALYSIS

YEAR 12 FURTHER MATHS UNIT 4 MODULE 2 NETWORKS AND DECISION MATHEMATICS CRITICAL PATH ANALYSIS YEAR 12 FURTHER MATHS UNIT 4 MODULE 2 NETWORKS AND DECISION MATHEMATICS CRITICAL PATH ANALYSIS Directed graphs or digraphs can be used to model situations where an order or direction is implied. For example,

More information

if i is a predecessor of j, and there i is an immediate predecessor (IP) of j is no other job for which i is a predecessor and j a successor. Then j i

if i is a predecessor of j, and there i is an immediate predecessor (IP) of j is no other job for which i is a predecessor and j a successor. Then j i 8.1 Project management applications Katta G. Murty, IOE 612 Lecture slides 8 Large projects consist of many individual jobs (or activities) with a predecessor ordering among them. Job i is a pre- if j

More information

ADMS 3330 FALL 2008 EXAM All Multiple choice Exam (See Answer Key on last page)

ADMS 3330 FALL 2008 EXAM All Multiple choice Exam (See Answer Key on last page) MULTIPLE CHOICE. Choose the letter corresponding to the one alternative that best completes the statement or answers the question. 1. Which of the following are assumptions or requirements of the transportation

More information

Chalmers University of Technology. Network Models. April 11, Birgit Grohe

Chalmers University of Technology. Network Models. April 11, Birgit Grohe Chalmers University of Technology Applied Optimisation lp 4 VT08 Network Models April 11, 2008 Birgit Grohe Network Models - Examples Many different problems can be formulated as graph/network models:

More information

Network Models - Examples. Network Models. Definition and Terminology. The Minimum Spanning Tree (MST) Problem

Network Models - Examples. Network Models. Definition and Terminology. The Minimum Spanning Tree (MST) Problem Chalmers University of Technology Applied Optimisa- Network Models - Examples tion lp 4 VT08 Network Models April 11, 2008 Birgit Grohe Many different problems can be formulated as graph/network models:

More information

4. Linear Programming

4. Linear Programming /9/08 Systems Analysis in Construction CB Construction & Building Engineering Department- AASTMT by A h m e d E l h a k e e m & M o h a m e d S a i e d. Linear Programming Optimization Network Models -

More information

APPM 4120/5120 Exam #2 Practice Solutions Spring 2015

APPM 4120/5120 Exam #2 Practice Solutions Spring 2015 APPM 4120/5120 Exam #2 Practice Solutions Spring 2015 You are not allowed to use textbooks, class notes. Problem #1 (20 points): Consider the following activity-on-arc project network, where the 12 arcs

More information

Graphs and Network Flows IE411. Lecture 21. Dr. Ted Ralphs

Graphs and Network Flows IE411. Lecture 21. Dr. Ted Ralphs Graphs and Network Flows IE411 Lecture 21 Dr. Ted Ralphs IE411 Lecture 21 1 Combinatorial Optimization and Network Flows In general, most combinatorial optimization and integer programming problems are

More information

Linear programming II João Carlos Lourenço

Linear programming II João Carlos Lourenço Decision Support Models Linear programming II João Carlos Lourenço joao.lourenco@ist.utl.pt Academic year 2012/2013 Readings: Hillier, F.S., Lieberman, G.J., 2010. Introduction to Operations Research,

More information

Linear Programming: Basic Concepts. Chapter 2: Hillier and Hillier

Linear Programming: Basic Concepts. Chapter 2: Hillier and Hillier Linear Programming: Basic Concepts Chapter 2: Hillier and Hillier Agenda Define Linear Programming The Case of the Wyndor Glass Co. A Maximization Problem Developing a Mathematical Representation of Wyndor

More information

1. What do you get as the integer and noninteger parts if you factor this as we did with our cutting planes:

1. What do you get as the integer and noninteger parts if you factor this as we did with our cutting planes: 1. What do you get as the integer and noninteger parts if you factor this as we did with our cutting planes: x 1 = -8.75-3.1 x 2 + 4.2 x 3 + 7 x 5-8 x 6 2. What constraint is added? 3. What do you need

More information

Network Flow Models. Chapter Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall

Network Flow Models. Chapter Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall Network Flow Models Chapter 7 7-1 Chapter Topics The Shortest Route Problem The Minimal Spanning Tree Problem The Maximal Flow Problem 7-2 Network Components A network is an arrangement of paths (branches)

More information

Lecture notes on Transportation and Assignment Problem (BBE (H) QTM paper of Delhi University)

Lecture notes on Transportation and Assignment Problem (BBE (H) QTM paper of Delhi University) Transportation and Assignment Problems The transportation model is a special class of linear programs. It received this name because many of its applications involve determining how to optimally transport

More information

COT 6936: Topics in Algorithms! Giri Narasimhan. ECS 254A / EC 2443; Phone: x3748

COT 6936: Topics in Algorithms! Giri Narasimhan. ECS 254A / EC 2443; Phone: x3748 COT 6936: Topics in Algorithms! Giri Narasimhan ECS 254A / EC 2443; Phone: x3748 giri@cs.fiu.edu http://www.cs.fiu.edu/~giri/teach/cot6936_s12.html https://moodle.cis.fiu.edu/v2.1/course/view.php?id=174

More information

0.0.1 Network Analysis

0.0.1 Network Analysis Graph Theory 0.0.1 Network Analysis Prototype Example: In Algonquian Park the rangers have set up snowmobile trails with various stops along the way. The system of trails is our Network. The main entrance

More information

Introduction. Linear because it requires linear functions. Programming as synonymous of planning.

Introduction. Linear because it requires linear functions. Programming as synonymous of planning. LINEAR PROGRAMMING Introduction Development of linear programming was among the most important scientific advances of mid-20th cent. Most common type of applications: allocate limited resources to competing

More information

Department of Mathematics Oleg Burdakov of 30 October Consider the following linear programming problem (LP):

Department of Mathematics Oleg Burdakov of 30 October Consider the following linear programming problem (LP): Linköping University Optimization TAOP3(0) Department of Mathematics Examination Oleg Burdakov of 30 October 03 Assignment Consider the following linear programming problem (LP): max z = x + x s.t. x x

More information

Maximum flow problem CE 377K. March 3, 2015

Maximum flow problem CE 377K. March 3, 2015 Maximum flow problem CE 377K March 3, 2015 Informal evaluation results 2 slow, 16 OK, 2 fast Most unclear topics: max-flow/min-cut, WHAT WILL BE ON THE MIDTERM? Most helpful things: review at start of

More information

Network Analysis. Links, nodes, trees, graphs, paths and cycles what does it all mean? Minimal spanning tree shortest route maximum flow

Network Analysis. Links, nodes, trees, graphs, paths and cycles what does it all mean? Minimal spanning tree shortest route maximum flow Network Analysis Minimal spanning tree shortest route maximum flow Links, nodes, trees, graphs, paths and cycles what does it all mean? Real OR in action! 1 Network Terminology Graph - set of points (nodes)

More information

Material handling and Transportation in Logistics. Paolo Detti Dipartimento di Ingegneria dell Informazione e Scienze Matematiche Università di Siena

Material handling and Transportation in Logistics. Paolo Detti Dipartimento di Ingegneria dell Informazione e Scienze Matematiche Università di Siena Material handling and Transportation in Logistics Paolo Detti Dipartimento di Ingegneria dell Informazione e Scienze Matematiche Università di Siena Introduction to Graph Theory Graph Theory As Mathematical

More information

5.4 Pure Minimal Cost Flow

5.4 Pure Minimal Cost Flow Pure Minimal Cost Flow Problem. Pure Minimal Cost Flow Networks are especially convenient for modeling because of their simple nonmathematical structure that can be easily portrayed with a graph. This

More information

Generalized Network Flow Programming

Generalized Network Flow Programming Appendix C Page Generalized Network Flow Programming This chapter adapts the bounded variable primal simplex method to the generalized minimum cost flow problem. Generalized networks are far more useful

More information

Introduction to Management Science (8th Edition, Bernard W. Taylor III) Chapter 12 Network Flow Models. Chapter 12 - Network Flow Models 1

Introduction to Management Science (8th Edition, Bernard W. Taylor III) Chapter 12 Network Flow Models. Chapter 12 - Network Flow Models 1 Introduction to Management Science (8th Edition, Bernard W. Taylor III) Chapter 12 Network Flow Models Chapter 12 - Network Flow Models 1 Chapter Topics The Shortest Route Problem The Minimal Spanning

More information

Australian Journal of Basic and Applied Sciences. Meeting the Desired Fuzzy Shortest Possible Duration to Complete the Project at Fuzzy Least Cost

Australian Journal of Basic and Applied Sciences. Meeting the Desired Fuzzy Shortest Possible Duration to Complete the Project at Fuzzy Least Cost Australian Journal of Basic and Applied Sciences, 9(23) July 2, Pages: 36-43 ISSN:99-878 Australian Journal of Basic and Applied Sciences Journal home page: www.ajbasweb.com Meeting the Desired Shortest

More information

Introduction to Mathematical Programming IE406. Lecture 16. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 16. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 16 Dr. Ted Ralphs IE406 Lecture 16 1 Reading for This Lecture Bertsimas 7.1-7.3 IE406 Lecture 16 2 Network Flow Problems Networks are used to model

More information

Ryerson Polytechnic University Department of Mathematics, Physics, and Computer Science Final Examinations, April, 2003

Ryerson Polytechnic University Department of Mathematics, Physics, and Computer Science Final Examinations, April, 2003 Ryerson Polytechnic University Department of Mathematics, Physics, and Computer Science Final Examinations, April, 2003 MTH 503 - Operations Research I Duration: 3 Hours. Aids allowed: Two sheets of notes

More information

OVERVIEW OF THE NETWORK OPTIMIZATION PROGRAM (NOP) A. INTRODUCTION

OVERVIEW OF THE NETWORK OPTIMIZATION PROGRAM (NOP) A. INTRODUCTION OVERVIEW OF THE NETWORK OPTIMIZATION PROGRAM (NOP) A. INTRODUCTION NOP is a 32-bit GUI application. This helps the user to use and understand the system quickly. Opening and saving input files have become

More information

Dependency Table Example. Task ID Name Predecessors 1 A 2 B 3 C 4 D 1 5 E 1;2 6 F 1;2 7 G 5;6 8 H 4;5

Dependency Table Example. Task ID Name Predecessors 1 A 2 B 3 C 4 D 1 5 E 1;2 6 F 1;2 7 G 5;6 8 H 4;5 Dependency Table Example Task ID Name Predecessors 1 A 2 B 3 C 4 D 1 5 E 1;2 6 F 1;2 7 G 5;6 8 H 4;5 Dependent tasks Dependency Matrix 1 2 3 4 5 6 7 8 9 10 1 x 2 x x 3 x x 4 x 5 x x 6 x 7 x 8 x 9 x x 10

More information

A NEW APPROACH TO FULLY FUZZY

A NEW APPROACH TO FULLY FUZZY 44 CHAPTER 4 A NEW APPROACH TO FULLY FUZZY TIME-COST TRADE-OFF IN A PROJECT NETWORK 4.1 INTRODUCTION Project management involves project scheduling, planning, evaluating and controlling. Activity networks

More information

CS261: Problem Set #2

CS261: Problem Set #2 CS261: Problem Set #2 Due by 11:59 PM on Tuesday, February 9, 2016 Instructions: (1) Form a group of 1-3 students. You should turn in only one write-up for your entire group. (2) Submission instructions:

More information

Chapter 5 Graph Algorithms Algorithm Theory WS 2012/13 Fabian Kuhn

Chapter 5 Graph Algorithms Algorithm Theory WS 2012/13 Fabian Kuhn Chapter 5 Graph Algorithms Algorithm Theory WS 2012/13 Fabian Kuhn Graphs Extremely important concept in computer science Graph, : node (or vertex) set : edge set Simple graph: no self loops, no multiple

More information

CSC 8301 Design & Analysis of Algorithms: Linear Programming

CSC 8301 Design & Analysis of Algorithms: Linear Programming CSC 8301 Design & Analysis of Algorithms: Linear Programming Professor Henry Carter Fall 2016 Iterative Improvement Start with a feasible solution Improve some part of the solution Repeat until the solution

More information

M. Yamuna* et al. /International Journal of Pharmacy & Technology

M. Yamuna* et al. /International Journal of Pharmacy & Technology ISSN: 0975-766X CODEN: IJPTFI Available Online through Research Article www.ijptonline.com FINDING CRITICAL PATH OF A NETWORK USING MODIFIED DIJKSTRA S ALGORITHM Shantan Sawa, Shivangee Sabharwal, Purushottam

More information

Copyright 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin Introduction to the Design & Analysis of Algorithms, 2 nd ed., Ch.

Copyright 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin Introduction to the Design & Analysis of Algorithms, 2 nd ed., Ch. Iterative Improvement Algorithm design technique for solving optimization problems Start with a feasible solution Repeat the following step until no improvement can be found: change the current feasible

More information

PBW 654 Applied Statistics - I Urban Operations Research. Unit 3. Network Modelling

PBW 654 Applied Statistics - I Urban Operations Research. Unit 3. Network Modelling PBW 54 Applied Statistics - I Urban Operations Research Unit 3 Network Modelling Background So far, we treated urban space as a continuum, where an entity could travel from any point to any other point

More information

Final Exam Spring 2003

Final Exam Spring 2003 .8 Final Exam Spring Name Instructions.. Please answer all questions in the exam books that are provided.. Please budget your time carefully. It is often a good idea to read the entire exam first, so that

More information

ME 391Q Network Flow Programming

ME 391Q Network Flow Programming ME 9Q Network Flow Programming Final Exam, Summer 00. ( Points) The figure below shows an undirected network. The parameters on the edges are the edge lengths. Find the shortest path tree using Dijkstra

More information

Tuesday, April 10. The Network Simplex Method for Solving the Minimum Cost Flow Problem

Tuesday, April 10. The Network Simplex Method for Solving the Minimum Cost Flow Problem . Tuesday, April The Network Simplex Method for Solving the Minimum Cost Flow Problem Quotes of the day I think that I shall never see A poem lovely as a tree. -- Joyce Kilmer Knowing trees, I understand

More information

Outline: Finish uncapacitated simplex method Negative cost cycle algorithm The max-flow problem Max-flow min-cut theorem

Outline: Finish uncapacitated simplex method Negative cost cycle algorithm The max-flow problem Max-flow min-cut theorem Outline: Finish uncapacitated simplex method Negative cost cycle algorithm The max-flow problem Max-flow min-cut theorem Uncapacitated Networks: Basic primal and dual solutions Flow conservation constraints

More information

LECTURES 3 and 4: Flows and Matchings

LECTURES 3 and 4: Flows and Matchings LECTURES 3 and 4: Flows and Matchings 1 Max Flow MAX FLOW (SP). Instance: Directed graph N = (V,A), two nodes s,t V, and capacities on the arcs c : A R +. A flow is a set of numbers on the arcs such that

More information

and 6.855J March 6, Maximum Flows 2

and 6.855J March 6, Maximum Flows 2 5.08 and.855j March, 00 Maximum Flows Network Reliability Communication Network What is the maximum number of arc disjoint paths from s to t? How can we determine this number? Theorem. Let G = (N,A) be

More information

Solutions for Operations Research Final Exam

Solutions for Operations Research Final Exam Solutions for Operations Research Final Exam. (a) The buffer stock is B = i a i = a + a + a + a + a + a 6 + a 7 = + + + + + + =. And the transportation tableau corresponding to the transshipment problem

More information

Simulation. Lecture O1 Optimization: Linear Programming. Saeed Bastani April 2016

Simulation. Lecture O1 Optimization: Linear Programming. Saeed Bastani April 2016 Simulation Lecture O Optimization: Linear Programming Saeed Bastani April 06 Outline of the course Linear Programming ( lecture) Integer Programming ( lecture) Heuristics and Metaheursitics (3 lectures)

More information

Chapter 11: PERT for Project Planning and Scheduling

Chapter 11: PERT for Project Planning and Scheduling Chapter 11: PERT for Project Planning and Scheduling PERT, the Project Evaluation and Review Technique, is a network-based aid for planning and scheduling the many interrelated tasks in a large and complex

More information

Linear Programming. Course review MS-E2140. v. 1.1

Linear Programming. Course review MS-E2140. v. 1.1 Linear Programming MS-E2140 Course review v. 1.1 Course structure Modeling techniques Linear programming theory and the Simplex method Duality theory Dual Simplex algorithm and sensitivity analysis Integer

More information

Notes on Network Optimization CE 4920 Stephen Boyles Fall 2009

Notes on Network Optimization CE 4920 Stephen Boyles Fall 2009 Notes on Network Optimization CE 9 Stephen Boyles Fall 9 Introduction and Preliminaries From this point on, the remaining course material takes on a more tangible form than nonlinear or linear programming

More information

Chapter 6: Activity Planning Part 2

Chapter 6: Activity Planning Part 2 Chapter 6: Activity Planning Part 2 NET481: Project Management Afnan Albahli " Representing Lagged Activities Lag activities: are two activities that will be undertaken in parallel but there is a lag between

More information

Konigsberg Bridge Problem

Konigsberg Bridge Problem Graphs Konigsberg Bridge Problem c C d g A Kneiphof e D a B b f c A C d e g D a b f B Euler s Graph Degree of a vertex: the number of edges incident to it Euler showed that there is a walk starting at

More information

CMPSCI 311: Introduction to Algorithms Practice Final Exam

CMPSCI 311: Introduction to Algorithms Practice Final Exam CMPSCI 311: Introduction to Algorithms Practice Final Exam Name: ID: Instructions: Answer the questions directly on the exam pages. Show all your work for each question. Providing more detail including

More information

Page 1. Kobrin/Losquadro Math 8. Unit 10 - Types of Numbers Test Review. Questions 1 and 2 refer to the following:

Page 1. Kobrin/Losquadro Math 8. Unit 10 - Types of Numbers Test Review. Questions 1 and 2 refer to the following: 9195-1 - Page 1 Name: Date: Kobrin/Losquadro Math 8 Unit 10 - Types of Numbers Test Review Questions 1 and 2 refer to the following: Use the number line below to answer the given question. 1) Which of

More information

4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Mathematical programming (optimization) problem: min f (x) s.t. x X R n set of feasible solutions with linear objective function

More information

COST OPTIMIZATION OF CONSTRUCTION PROJECT SCHEDULES

COST OPTIMIZATION OF CONSTRUCTION PROJECT SCHEDULES COST OPTIMIZATION OF CONSTRUCTION PROJECT SCHEDULES Uroš Klanšek University of Maribor, Faculty of Civil Engineering, Maribor, Slovenia uros.klansek@uni-mb.si Mirko Pšunder University of Maribor, Faculty

More information

Primal Simplex Algorithm for the Pure Minimal Cost Flow Problem

Primal Simplex Algorithm for the Pure Minimal Cost Flow Problem Primal Simplex Algorithm for the Pure Minimal Cost Flow Problem Algorithm This section describes the adaptation of the primal simplex algorithm for solving a pure network flow program; that is, the problem

More information

Graphs and Network Flows IE411. Lecture 13. Dr. Ted Ralphs

Graphs and Network Flows IE411. Lecture 13. Dr. Ted Ralphs Graphs and Network Flows IE411 Lecture 13 Dr. Ted Ralphs IE411 Lecture 13 1 References for Today s Lecture IE411 Lecture 13 2 References for Today s Lecture Required reading Sections 21.1 21.2 References

More information

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs Introduction to Mathematical Programming IE496 Final Review Dr. Ted Ralphs IE496 Final Review 1 Course Wrap-up: Chapter 2 In the introduction, we discussed the general framework of mathematical modeling

More information

Problem set 2. Problem 1. Problem 2. Problem 3. CS261, Winter Instructor: Ashish Goel.

Problem set 2. Problem 1. Problem 2. Problem 3. CS261, Winter Instructor: Ashish Goel. CS261, Winter 2017. Instructor: Ashish Goel. Problem set 2 Electronic submission to Gradescope due 11:59pm Thursday 2/16. Form a group of 2-3 students that is, submit one homework with all of your names.

More information

George B. Dantzig Mukund N. Thapa. Linear Programming. 1: Introduction. With 87 Illustrations. Springer

George B. Dantzig Mukund N. Thapa. Linear Programming. 1: Introduction. With 87 Illustrations. Springer George B. Dantzig Mukund N. Thapa Linear Programming 1: Introduction With 87 Illustrations Springer Contents FOREWORD PREFACE DEFINITION OF SYMBOLS xxi xxxiii xxxvii 1 THE LINEAR PROGRAMMING PROBLEM 1

More information

Tribhuvan University Institute Of Science and Technology Tribhuvan University Institute of Science and Technology

Tribhuvan University Institute Of Science and Technology Tribhuvan University Institute of Science and Technology Tribhuvan University Institute Of Science and Technology Tribhuvan University Institute of Science and Technology Course Title: Linear Programming Full Marks: 50 Course No. : Math 403 Pass Mark: 17.5 Level

More information

Friday 5 June 2015 Morning

Friday 5 June 2015 Morning Oxford Cambridge and RSA Friday 5 June 2015 Morning AS GCE MATHEMATICS 4736/01 Decision Mathematics 1 QUESTION PAPER * 3 2 4 8 7 7 8 5 4 8 * Candidates answer on the Printed Answer Book. OCR supplied materials:

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Combinatorial Optimization G. Guérard Department of Nouvelles Energies Ecole Supérieur d Ingénieurs Léonard de Vinci Lecture 1 GG A.I. 1/34 Outline 1 Motivation 2 Geometric resolution

More information

TIM 206 Lecture Notes Integer Programming

TIM 206 Lecture Notes Integer Programming TIM 206 Lecture Notes Integer Programming Instructor: Kevin Ross Scribe: Fengji Xu October 25, 2011 1 Defining Integer Programming Problems We will deal with linear constraints. The abbreviation MIP stands

More information

Minimum Cost Edge Disjoint Paths

Minimum Cost Edge Disjoint Paths Minimum Cost Edge Disjoint Paths Theodor Mader 15.4.2008 1 Introduction Finding paths in networks and graphs constitutes an area of theoretical computer science which has been highly researched during

More information

Questions Total Points Score

Questions Total Points Score HKUST Department of Computer Science and Engineering # COMP3711H: Design and Analysis of Algorithms Fall 2016 Final Examination Date: Friday December 16, 2016 Time: 16:30-19:30 Venue: LG3 Multipurpose

More information

4 Linear Programming (LP) E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 1

4 Linear Programming (LP) E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 1 4 Linear Programming (LP) E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 1 Definition: A Linear Programming (LP) problem is an optimization problem: where min f () s.t. X n the

More information

Discrete Optimization 2010 Lecture 5 Min-Cost Flows & Total Unimodularity

Discrete Optimization 2010 Lecture 5 Min-Cost Flows & Total Unimodularity Discrete Optimization 2010 Lecture 5 Min-Cost Flows & Total Unimodularity Marc Uetz University of Twente m.uetz@utwente.nl Lecture 5: sheet 1 / 26 Marc Uetz Discrete Optimization Outline 1 Min-Cost Flows

More information

Flows on surface embedded graphs. Erin Chambers

Flows on surface embedded graphs. Erin Chambers Erin Wolf Chambers Why do computational geometers care about topology? Many areas, such as graphics, biology, robotics, and networking, use algorithms which compute information about point sets. Why do

More information

UNIVERSITY OF TORONTO Department of Computer Science April 2014 Final Exam CSC373H1S Robert Robere Duration - 3 hours No Aids Allowed.

UNIVERSITY OF TORONTO Department of Computer Science April 2014 Final Exam CSC373H1S Robert Robere Duration - 3 hours No Aids Allowed. UNIVERSITY OF TORONTO Department of Computer Science April 2014 Final Exam CSC373H1S Robert Robere Duration - 3 hours No Aids Allowed. PLEASE COMPLETE THE SECTION BELOW AND THE SECTION BEHIND THIS PAGE:

More information

INEN 420 Final Review

INEN 420 Final Review INEN 420 Final Review Office Hours: Mon, May 2 -- 2:00-3:00 p.m. Tues, May 3 -- 12:45-2:00 p.m. (Project Report/Critiques due on Thurs, May 5 by 5:00 p.m.) Tuesday, April 28, 2005 1 Final Exam: Wednesday,

More information

Job Management & Network Flows

Job Management & Network Flows Job Management & Network Flows How to solve job management problems with networks flow techniques Francesca Armandillo BMI paper Vre Universiteit Faculty of Sciences Business Mathematics and Informatics

More information

Lecture 8 Network Flow Models

Lecture 8 Network Flow Models Lecture 8 Andrew Nunekpeku / Charles Jackson Fall 2011 Outline 1 1 Assignment 4 When we ask for the solution of an LP, we typically mean tell me the values of the decision variables or what is the plan?

More information

4.1 The original problem and the optimal tableau

4.1 The original problem and the optimal tableau Chapter 4 Sensitivity analysis The sensitivity analysis is performed after a given linear problem has been solved, with the aim of studying how changes to the problem affect the optimal solution In particular,

More information

Graphs and Network Flows IE411. Lecture 20. Dr. Ted Ralphs

Graphs and Network Flows IE411. Lecture 20. Dr. Ted Ralphs Graphs and Network Flows IE411 Lecture 20 Dr. Ted Ralphs IE411 Lecture 20 1 Network Simplex Algorithm Input: A network G = (N, A), a vector of capacities u Z A, a vector of costs c Z A, and a vector of

More information

Application of Bounded Variable Simplex Algorithm in Solving Maximal Flow Model

Application of Bounded Variable Simplex Algorithm in Solving Maximal Flow Model Dhaka Univ. J. Sci. (): 9-, 3 (January) Application of Bounded Variable Simplex Algorithm in Solving Maximal Flow Model Sohana Jahan, Marzia Yesmin and Fatima Tuj Jahra Department of Mathematics,University

More information

Partha Sarathi Mandal

Partha Sarathi Mandal MA 515: Introduction to Algorithms & MA353 : Design and Analysis of Algorithms [3-0-0-6] Lecture 39 http://www.iitg.ernet.in/psm/indexing_ma353/y09/index.html Partha Sarathi Mandal psm@iitg.ernet.in Dept.

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Given an NP-hard problem, what should be done? Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one of three desired features. Solve problem to optimality.

More information

Advanced Algorithms Class Notes for Monday, October 23, 2012 Min Ye, Mingfu Shao, and Bernard Moret

Advanced Algorithms Class Notes for Monday, October 23, 2012 Min Ye, Mingfu Shao, and Bernard Moret Advanced Algorithms Class Notes for Monday, October 23, 2012 Min Ye, Mingfu Shao, and Bernard Moret Greedy Algorithms (continued) The best known application where the greedy algorithm is optimal is surely

More information

Project Management Foundations

Project Management Foundations Using Oracle Primavera P6 for Project Management Foundations Course ecpm102 for P6 Power Client Release 8 Course Companion Book For additional copies please contact us: CPM Solutions Ltd. Suite #200, 4170

More information

3 INTEGER LINEAR PROGRAMMING

3 INTEGER LINEAR PROGRAMMING 3 INTEGER LINEAR PROGRAMMING PROBLEM DEFINITION Integer linear programming problem (ILP) of the decision variables x 1,..,x n : (ILP) subject to minimize c x j j n j= 1 a ij x j x j 0 x j integer n j=

More information

22 Elementary Graph Algorithms. There are two standard ways to represent a

22 Elementary Graph Algorithms. There are two standard ways to represent a VI Graph Algorithms Elementary Graph Algorithms Minimum Spanning Trees Single-Source Shortest Paths All-Pairs Shortest Paths 22 Elementary Graph Algorithms There are two standard ways to represent a graph

More information

Network optimization: An overview

Network optimization: An overview Network optimization: An overview Mathias Johanson Alkit Communications 1 Introduction Various kinds of network optimization problems appear in many fields of work, including telecommunication systems,

More information

physicsandmathstutor.com

physicsandmathstutor.com ADVANCED GCE MATHEMATICS 4737 Decision Mathematics 2 Candidates answer on the Answer Booklet OCR Supplied Materials: 8 page Answer Booklet Graph paper List of Formulae (MF1) Other Materials Required: None

More information

Chapter 9. Greedy Technique. Copyright 2007 Pearson Addison-Wesley. All rights reserved.

Chapter 9. Greedy Technique. Copyright 2007 Pearson Addison-Wesley. All rights reserved. Chapter 9 Greedy Technique Copyright 2007 Pearson Addison-Wesley. All rights reserved. Greedy Technique Constructs a solution to an optimization problem piece by piece through a sequence of choices that

More information

Repetition: Primal Dual for Set Cover

Repetition: Primal Dual for Set Cover Repetition: Primal Dual for Set Cover Primal Relaxation: k min i=1 w ix i s.t. u U i:u S i x i 1 i {1,..., k} x i 0 Dual Formulation: max u U y u s.t. i {1,..., k} u:u S i y u w i y u 0 Harald Räcke 428

More information

2.3 Optimal paths. Optimal (shortest or longest) paths have a wide range of applications:

2.3 Optimal paths. Optimal (shortest or longest) paths have a wide range of applications: . Optimal paths Optimal (shortest or longest) paths have a wide range of applications: Google maps, GPS navigators planning and management of transportation, electrical and telecommunication networks project

More information

OPTIMIZAÇÃO E DECISÃO 09/10

OPTIMIZAÇÃO E DECISÃO 09/10 OPTIMIZAÇÃO E DECISÃO 09/10 PL #7 Integer Programming Alexandra Moutinho (from Hillier & Lieberman Introduction to Operations Research, 8 th edition) Problem 1 Pawtucket University is planning to buy new

More information

15-451/651: Design & Analysis of Algorithms October 11, 2018 Lecture #13: Linear Programming I last changed: October 9, 2018

15-451/651: Design & Analysis of Algorithms October 11, 2018 Lecture #13: Linear Programming I last changed: October 9, 2018 15-451/651: Design & Analysis of Algorithms October 11, 2018 Lecture #13: Linear Programming I last changed: October 9, 2018 In this lecture, we describe a very general problem called linear programming

More information

Reducing Project Duration

Reducing Project Duration CHAPTER NINE Reducing Project Duration McGraw-Hill/Irwin Copyright 2011 by The McGraw-Hill Companies, Inc. All rights reserved. Where We Are Now 9 2 Rationale for Reducing Project Duration Time Is Money:

More information

x ji = s i, i N, (1.1)

x ji = s i, i N, (1.1) Dual Ascent Methods. DUAL ASCENT In this chapter we focus on the minimum cost flow problem minimize subject to (i,j) A {j (i,j) A} a ij x ij x ij {j (j,i) A} (MCF) x ji = s i, i N, (.) b ij x ij c ij,

More information

CSCI 5654 (Fall 2013): Network Simplex Algorithm for Transshipment Problems.

CSCI 5654 (Fall 2013): Network Simplex Algorithm for Transshipment Problems. CSCI 5654 (Fall 21): Network Simplex Algorithm for Transshipment Problems. Sriram Sankaranarayanan November 14, 21 1 Introduction e will present the basic ideas behind the network Simplex algorithm for

More information

EXERCISES SHORTEST PATHS: APPLICATIONS, OPTIMIZATION, VARIATIONS, AND SOLVING THE CONSTRAINED SHORTEST PATH PROBLEM. 1 Applications and Modelling

EXERCISES SHORTEST PATHS: APPLICATIONS, OPTIMIZATION, VARIATIONS, AND SOLVING THE CONSTRAINED SHORTEST PATH PROBLEM. 1 Applications and Modelling SHORTEST PATHS: APPLICATIONS, OPTIMIZATION, VARIATIONS, AND SOLVING THE CONSTRAINED SHORTEST PATH PROBLEM EXERCISES Prepared by Natashia Boland 1 and Irina Dumitrescu 2 1 Applications and Modelling 1.1

More information

Primavera P6 Exercise Worksheet

Primavera P6 Exercise Worksheet Primavera P6 Exercise Worksheet Revision 3.0 P6 Exercise Worksheet Preparing for the Exercises Ten Six Consulting recommends that you download and install your own standalone copy of Primavera P6 Professional

More information

Lecture 10,11: General Matching Polytope, Maximum Flow. 1 Perfect Matching and Matching Polytope on General Graphs

Lecture 10,11: General Matching Polytope, Maximum Flow. 1 Perfect Matching and Matching Polytope on General Graphs CMPUT 675: Topics in Algorithms and Combinatorial Optimization (Fall 2009) Lecture 10,11: General Matching Polytope, Maximum Flow Lecturer: Mohammad R Salavatipour Date: Oct 6 and 8, 2009 Scriber: Mohammad

More information

Combinatorial Optimization

Combinatorial Optimization Combinatorial Optimization Frank de Zeeuw EPFL 2012 Today Introduction Graph problems - What combinatorial things will we be optimizing? Algorithms - What kind of solution are we looking for? Linear Programming

More information

MEI Conference 2009: D2

MEI Conference 2009: D2 D Networks MEI Conference 009: D Travelling Salesperson Problem 7 A B Route Inspection Problems (Chinese Postman) () A 7 B () 4 () C Identify the odd vertices in the network Consider all the routes joining

More information