Orthopedic MRI Protocols. Philips Panorama HFO

Size: px
Start display at page:

Download "Orthopedic MRI Protocols. Philips Panorama HFO"

Transcription

1 Orthopedic MRI Protocols Philips Panorama HFO 1

2 2

3 Prepared in collaboration with Dr. John F. Feller, Medical Director of Desert Medical Imaging, Palm Springs, CA. Desert Medical Imaging will provide the highest quality patient care possible in an outpatient imaging center. Orthopedic imaging protocols at DMI are set up to have a comprehensive joint examination in 25 minutes. Total number of scans is minimized by careful selection of orientations and contrasts. This allows 3 to 4:30 minutes per series to acquire high quality images using dedicated orthopedic coils. Examcards can be downloaded from: 3

4 HFO Shoulder Protocols AX PD DR SPAIR SAG T2 4 COR T2 SPAIR COR T1

5 HFO Shoulder Protocols HFO Shoulder Protocols ST-Shoulder Sequence AX PD DR SPAIR SAG T2 COR T2 SPAIR COR T1 Resolution (mm) 0.60 x 0.76 x x 0.73 x x 0.88 x x 0.56 x 3.80 FOV (mm) 145 x x x x 137 Matrix (Freq. X Phase) 240 x x x x 245 Phase Direction AP AP RL RL # of slices TE/TR (msec) 30/ / / /596 Echo Train (ETL/TF) 16 Asym. 19 Linear 16 Asym. 7 Asym. Echo Spacing (msec) 8 N/A 9 9 WFS (BW) 0.62 (+/-28kHz) 0.71 (+/-27kHz) 0.75 (+/-25kHz) 0.64 (+/-42kHz) SENSE/CLEAR No CLEAR No CLEAR Foldover Supp.(NPW) Yes Yes Yes Yes DRIVE (FRFSE) Yes No No No Fat Sat SPAIR (TI 100) No SPAIR (TI 100) No NSA (NEX) Scan Time 04:54 03:40 03:21 04:16 5

6 HFO Wrist Protocols AX PD SPIR COR T1 SE 6 COR PD SPIR SAG PD SPIR

7 HFO Wrist Protocols HFO Wrist Protocols ST-SENSE Wrist Sequence AX PD SPIR COR T1 SE COR PD SPIR SAG PD SPIR Resolution (mm) 0.39 x 0.52 x x 0.41 x x 0.48 x x 0.52 x 3.00 FOV (mm) 100 x x x x 100 Matrix (Freq. x Phase) 256 x x x x 192 Phase Direction AP AP FH FH # of slices TE/TR (msec) 35/ /500 24/ /1669 Echo Train (ETL/TF) 12 Asym. N/A 10 Asym. 12 Asym. Echo Spacing (msec) 11,5 N/A 12 10,5 WFS (BW) 1.00 (+/-19kHz) 1.50 (+/-15kHz) 1.03 (+/-20kHz) 0.81(+/-19kHz) SENSE/CLEAR SENSE 1.0 CLEAR SENSE 1.0 SENSE 1.0 Foldover Supp.(NPW) Yes No Yes Yes DRIVE (FRFSE) No No Yes No Fat Sat SPIR No SPIR SPIR NSA (NEX) Scan Time 3:31 4:04 3:26 3:37 7

8 HFO Knee Protocols AX PD SPIR COR T1 8 COR PD SPIR SAG PD

9 HFO Knee Protocols HFO Knee Protocols ST-Knee Sequence AX PD SPIR COR T1 COR PD SPIR SAG PD Resolution (mm) 0.55 x 0.72 x x 0.66 x x 0.65 x x 0.47 x 3.00 FOV (mm) 160 x x x x 170 Matrix (Freq. x Phase) 292 x x x x 364 Phase Direction RL RL RL FH # of slices TE/TR (msec) 30/ /530 30/ /2500 Echo Train (ETL/TF) 13 Asym. 6 Asym. 13 Asym. 13 Asym. Echo Spacing (msec) WFS (BW) 1.00 (+/-21kHz) 0.69 (+/-36kHz) 1.07 (+/-23kHz) 0.86 (+/-32kHz) SENSE/CLEAR CLEAR CLEAR no CLEAR Foldover Supp.(NPW) Yes Yes Yes Yes DRIVE (FRFSE) Yes No Yes Yes Fat Sat SPIR No SPIR No NSA (NEX) Scan Time 02:55 02:21 03:25 04:45 9

10 HFO Elbow Protocols AX PD SPIR COR PD SPIR 10 COR T1 SAG PD SPIR

11 HFO Elbow Protocols HFO Elbow Protocols ST-Knee Sequence AX PD SPIR COR PD SPIR COR T1 SAG PD SPIR Resolution (mm) 0.44 x 0.59 x x 0.58 x x 0.53 x x 0.67 x 3.50 FOV (mm) 130 x x x x 140 Matrix (Freq. x Phase) 296 x x x x 208 Phase Direction AP AP AP FH # of slices TE/TR (msec) 30/ / /534 30/2074 Echo Train (ETL/TF) 11 Asym. 11 Asym. 3 Asym. 13 Asym. Echo Spacing (msec) WFS (BW) 1.10 (+/-20kHz) 1.10 (+/-22kHz) 0.8 (+/-35kHz) 0.82 (+/-25kHz) SENSE/CLEAR No No CLEAR No Foldover Supp.(NPW) No No No Yes DRIVE (FRFSE) Yes Yes No Yes Fat Sat SPIR SPIR No SPIR NSA (NEX) Scan Time 02:56 02:41 03:07 03:23 11

12 Abbreviations Asym.: ETL/TF: FOV: FFE: DRIVE (FRFSE): IP: NSA (NEX): FOS/NPW: PD: SAR: SNR: SPAIR: WFS: Asymmetric-space profile order Echo Train Length or Turbo Factor, the number of k-space lines after an excitation pulse Field of View Fast Field Echo, also GRE Driven Equilibrium mode, also called Fast Recovery Fast Spin Echo In-Phase, gradient echo TE to keep fat and water in resonance Number of Signal Averages or Number of Excitations Foldover Suppression/No Phase Wrap Proton Density, weighting for short TE, long TR spin-echo scans Specific Absorption Rate; tissue heating measure limited by the FDA Signal to Noise Ratio, measure of image quality Fat suppression technique using adiabatic pulses Water-Fat Shift, a measure of receiver bandwidth (BW) 12

13 Protocol optimization In MRI, SNR can be traded like currency for imaging speed or resolution. When optimizing protocols, start by defining the necessary image resolution (voxel size) and the contrast (TR/TE). Dedicated solenoid technology (ST) coils are recommended for the best signal. High SNR with good in-plane and through-plane resolution is achieved in multi-slice scans by using thin 3-4 mm slices. DMI has optimized protocols to be 3:00 to 4:30 minutes per series. Faster scanning can be achieved by using slightly larger voxels. 13

14 HFO unique Benefits of the open vertical field design of the HFO for MSK imaging. The 60 cm lateral patient movement allows iso-center imaging of all joints. - Robust fat-suppression in wrist, elbow, shoulder and hip - Comfortable patient positioning HFO fits very large patients (550 lb. table weight limit). Vertical field allows using coils based on solenoids (ST coils). - Solenoid loops encircle the anatomy with high signal from the center of the loop. - Solenoid elements receive signal from the anatomy beyond the coil housing, allowing an open, lightweight coil design. - ST-coils have short cables and connect to the patient table. Joints can be imaged in anatomical or provocative position. - ABER of the shoulder - Flexion extension of the knee - Range of motion studies - Using kinematic devices for shoulder, knee and neck HFO specific What you have to know when setting up HFO protocols. Magic angle effects in tendon - Because of the field orientation, magic angle affect is absent in the supraspinatus tendon. - Tendons that are now at 54 with respect to the vertical field will show magic angle effect. If necessary, increase TE to evaluate these tendons. T1 is shorter at 1.0T then on 1.5T or 3.0T. - TR s on proton density weighted can be shorter. - TR on T1-weighted images should be between 450 and 650 ms. 14

15 Full-capability software platform Panorama High Field Open uses the same software as the Achieva cylindrical systems. SmartExam for automated scan setup. Smart Exam recognizes anatomical landmarks for automated, reproducible scan positioning and slice orientation planning and is available for Knee, Shoulder, Spine and Brain. Shared development with Achieva systems: - SENSE parallel imaging - SPAIR fat-suppression - Asymmetric TSE - 3D Imaging - Quantitative T2-values Turbo or Fast Spin Echo Asymmetric k-space profile ordering is used to reduce scan time by 30% in PD and T1w exams while minimizing blurring. Asymmetric Turbo Spin Echo scans permit independent specification of TE, Echo Spacing, and Echo Train Length. Shot length (ETL x Echo Spacing) should not exceed 4 x TE. Echo spacing in these protocols is set at 9-12 msec, balancing shot length against imaging bandwidth (see Bandwidth box). If a different profile order is used (such as linear or centric), reduce the ETL on these protocols by about 30%. Scan times will increase proportionately. DRIVE (Driven Equilibrium) or Fast Recovery FSE (FRFSE) - Consider use to brighten fluid when TR < 2500 ms 15

16 Bandwidth and Water-Fat Shift (WFS) Direct specification of Water-Fat Shift in pixels is used as an alternative to bandwidth in khz. WFS is a field strength, pixel size, and FOV independent measure of potential artifact and impact on SNR. - By entering WFS, the user specifies the chemical shift he or she is willing to accept. - For MSK imaging, keep WFS between pixels to avoid obscuring pathology ( mm shift, depending on anatomy). Reducing WFS (increasing BW) reduces SNR, and vice versa. - Given TSE echo spacing, the system will maximize WFS, and so maximize signal, while not exceeding the chemical shift artifact limits set by the user. WFS is derived from frequency difference between water and fat: about 145 Hz at 1.0T. Conversion formula: 1.0T: BW (khz) = khz x frequency matrix/wfs pixels Examples: WFS = 1 pixel with a 384 matrix at 1.0T BW (khz) = khz x 384/1 = +/- 28 khz 16

17 Image resolution Voxel size is specified explicitly. This allows for maximum flexibility in protocol optimization for specific body parts. Resolution remains fixed independent of FOV changes, and precludes the need for other adjustments, such as rectangular FOV or scan percentage, that could inadvertently change voxel dimensions. The in-plane voxel size is related to the FOV/Matrix; voxel dimensions presented correspond to frequency x phase x slice thickness. Reconstruction resolution can be independently specified. Display resolution should not be confused with the acquired voxel size. Interpolation (ZIP) is used to reduce the reconstructed voxel size, which can improve the visualization of thin curved structures like cartilage. With dedicated ST coils and optimized pulse sequences, voxel sizes are similar on HFO to those on 1.5 T. For example, Sagittal TSE PD Knee at a 17cm FOV: 3 mm slices, 0.45x0.65 mm acquired resolution MR arthrography MR Arthrography is commonly based on T1-weighted fat suppressed imaging. Set a TR range for T1-weighted (T)SE scans to ensure TR between 450 and 650 ms independent of the number of slices needed. Use SPIR not STIR. Consider T1w-TSE with short echo trains (2-5 echoes) instead of T1 Spin Echo. Isotropic 3D gradient echo scans using water excitation such as ProSet can supply high SNR with T1-weighting, permitting arbitrary slice plane reformatting. 17

18 Fat suppression techniques Uniform fat suppression improves CNR for better specificity. SPIR (Spectral Presaturation Inversion Recovery) - Uses smaller flip angle inversion pulse than SPAIR - Saturation strength (weak/medium/strong) selected by operator SPAIR (SPectral Attenuated Inversion Recovery) - Fat saturation very robust against RF inhomogeneity - Adjustable degree of fat suppression: Increase SPAIR inversion time (TI) to increase signal to noise (SNR) ProSet (Water selective excitation) - Best for 3D gradient echoes STIR (Short Tau Inversion Recovery) - Robust against B0 and RF inhomogeneity - Helpful with metal artifact imaging - Do not use with contrast enhancement Controlling phase wrap Phase wrap control varies with the acquisition technique (multiple choices). Define a large enough FOV to completely cover the anatomy. This will prevent aliasing, and helps to have a robust protocol that works on large patients. Use foldover suppression: - If NSA is 2 or 3, the acquired FOV is doubled or tripled respectively behind the scenes and the number of averages actually obtained is 1. - If NSA = 1, aliasing is avoided by use of saturation bands. Use saturation bands to eliminate signal from adjacent anatomy that is vulnerable to motion (e.g. lungs in shoulder imaging). 18

19 Metal implants or prior surgery Implanted metal may produce artifacts, but that doesn t preclude diagnostic quality images. Artifacts are proportional to field strength, so 1.0T is a great choice. Use Spin echo and Turbo Spin Echo methods. For a TSE, select echo spacing shortest. On HFO use WFS < 0.7 pixels, or select minimum WFS. Use thin slices (< 4 mm). For fat suppression, consider using STIR. A T2*w gradient echo (FFE) scan can be used to identify prior surgical procedure sites. Image contrast options Advanced MSK imaging is more than just spin echoes. The FFE family explained: FFE (GRASS) - T2*w imaging identifying prior surgery - 3D joint imaging with high fluid signal and intermediate cartilage signal; use flip angles (WATSf) mffe (MERGE, MEDIC) - T2*w imaging with high signal/resolution, e.g. in wrist T1-FFE (SPGR, FLASH) - 3D imaging with high cartilage signal using low flip angles (WATSc) - 3D imaging in MR arthrography Balanced-FFE (FIESTA, TrueFISP) - High fluid signal is achieved with steady state imaging and flip angles. On the HFO, use TR/TE shortest. 19

20 Philips Healthcare is part of Royal Philips Electronics How to reach us fax: Asia Europe, Middle East, Africa Latin America North America (toll free, US only) Please visit Koninklijke Philips Electronics N.V. All rights are reserved. Philips Healthcare reserves the right to make changes in specifications and/or to discontinue any product at any time without notice or obligation and will not be liable for any consequences resulting from the use of this publication. Printed in The Netherlands * NOV 2009

ADNI, ADNI_QH, SURVEY. Geometry. connection

ADNI, ADNI_QH, SURVEY. Geometry. connection ADNI, ADNI_QH, SURVEY Geometry Coil selection = Head connection = d Multi coil Homogeneity correction ne FOV (mm) = 250.00 RFOV (%) = 100.00 Foldover suppression Matrix scan = 256 reconstruction = 256

More information

New Technology Allows Multiple Image Contrasts in a Single Scan

New Technology Allows Multiple Image Contrasts in a Single Scan These images were acquired with an investigational device. PD T2 T2 FLAIR T1 MAP T1 FLAIR PSIR T1 New Technology Allows Multiple Image Contrasts in a Single Scan MR exams can be time consuming. A typical

More information

MRI. When to use What sequences. Outline 2012/09/19. Sequence: Definition. Basic Principles: Step 2. Basic Principles: Step 1. Govind Chavhan, MD

MRI. When to use What sequences. Outline 2012/09/19. Sequence: Definition. Basic Principles: Step 2. Basic Principles: Step 1. Govind Chavhan, MD MRI When to use What sequences Govind Chavhan, MD Assistant Professor and Staff Radiologist The Hospital For Sick Children, Toronto Planning Acquisition Post processing Interpretation Patient history and

More information

Philips MRI Protocol Dump Created on Comment Software Stream

Philips MRI Protocol Dump Created on Comment Software Stream Page 1 of 5 Philips MRI Protocol Dump Created on 2/17/2011 4:11:01 PM Comment Created by ExamCard_to_XML with inputs: "J:\ADNI GO - ADNI 2 Phantom5.ExamCard" on system (BU SCHOOL OF MEDICINE :: 192.168.71.10)

More information

GE Healthcare CLINICAL GALLERY. Discovery * MR750w 3.0T. This brochure is intended for European healthcare professionals.

GE Healthcare CLINICAL GALLERY. Discovery * MR750w 3.0T. This brochure is intended for European healthcare professionals. GE Healthcare CLINICAL GALLERY Discovery * MR750w 3.0T This brochure is intended for European healthcare professionals. NEURO PROPELLER delivers high resolution, motion insensitive imaging in all planes.

More information

MRI image formation 8/3/2016. Disclosure. Outlines. Chen Lin, PhD DABR 3. Indiana University School of Medicine and Indiana University Health

MRI image formation 8/3/2016. Disclosure. Outlines. Chen Lin, PhD DABR 3. Indiana University School of Medicine and Indiana University Health MRI image formation Indiana University School of Medicine and Indiana University Health Disclosure No conflict of interest for this presentation 2 Outlines Data acquisition Spatial (Slice/Slab) selection

More information

As fl exible as your care requires

As fl exible as your care requires As fl exible as your care requires Philips Ingenuity Flex 32 CT Built on Ingenuity The Philips Ingenuity Flex 32 helps you provide excellent care with outstanding flexibility, now and in the future. Built

More information

A Virtual MR Scanner for Education

A Virtual MR Scanner for Education A Virtual MR Scanner for Education Hackländer T, Schalla C, Trümper A, Mertens H, Hiltner J, Cramer BM Hospitals of the University Witten/Herdecke, Department of Radiology Wuppertal, Germany Purpose A

More information

MRI Physics II: Gradients, Imaging

MRI Physics II: Gradients, Imaging MRI Physics II: Gradients, Imaging Douglas C., Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor Magnetic Fields in MRI B 0 The main magnetic field. Always on (0.5-7 T) Magnetizes

More information

Lab Location: MRI, B2, Cardinal Carter Wing, St. Michael s Hospital, 30 Bond Street

Lab Location: MRI, B2, Cardinal Carter Wing, St. Michael s Hospital, 30 Bond Street Lab Location: MRI, B2, Cardinal Carter Wing, St. Michael s Hospital, 30 Bond Street MRI is located in the sub basement of CC wing. From Queen or Victoria, follow the baby blue arrows and ride the CC south

More information

SIEMENS MAGNETOM Avanto syngo MR B15

SIEMENS MAGNETOM Avanto syngo MR B15 \\USER\INVESTIGATORS\Ravi\ADNI-Subject\Localizer TA: 0:10 PAT: Voxel size: 1.9 1.5 8.0 mm Rel. SNR: 1.00 SIEMENS: gre Properties Prio Recon Before measurement After measurement Load to viewer Inline movie

More information

syngo MR E11 Operator Manual Ortho Answers for life.

syngo MR E11 Operator Manual Ortho Answers for life. www.siemens.com/healthcare syngo MR E11 Operator Manual Ortho Answers for life. syngo MR E11 Operator Manual Ortho Legend Indicates a hint Is used to provide information on how to avoid operating errors

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 MIT OpenCourseWare http://ocw.mit.edu HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Fast Imaging UCLA. Class Business. Class Business. Daniel B. Ennis, Ph.D. Magnetic Resonance Research Labs. Tuesday (3/7) from 6-9pm HW #1 HW #2

Fast Imaging UCLA. Class Business. Class Business. Daniel B. Ennis, Ph.D. Magnetic Resonance Research Labs. Tuesday (3/7) from 6-9pm HW #1 HW #2 Fast Imaging Daniel B. Ennis, Ph.D. Magnetic Resonance Research Labs Class Business Tuesday (3/7) from 6-9pm 6:00-7:30pm Groups Avanto Sara Said, Yara Azar, April Pan Skyra Timothy Marcum, Diana Lopez,

More information

Scan Acceleration with Rapid Gradient-Echo

Scan Acceleration with Rapid Gradient-Echo Scan Acceleration with Rapid Gradient-Echo Hsiao-Wen Chung ( 鍾孝文 ), Ph.D., Professor Dept. Electrical Engineering, National Taiwan Univ. Dept. Radiology, Tri-Service General Hospital 1 of 214 The Need

More information

COBRE Scan Information

COBRE Scan Information COBRE Scan Information Below is more information on the directory structure for the COBRE imaging data. Also below are the imaging parameters for each series. Directory structure: var/www/html/dropbox/1139_anonymized/human:

More information

ADNI GO - ADNI 2 Human7 (9) 38:30.1

ADNI GO - ADNI 2 Human7 (9) 38:30.1 Philips RI Protocol Dump Create on 11/25/2013 11:40:24 A Comment Create by ExamCar_to_XL with inputs: "K:\ADNI GO - ADNI 2 Human7.ExamCar" on system (BU SCHOOL OF EDICINE :: 192.168.71.10) Software Stream

More information

Breast MRI Accreditation Program Clinical Image Quality Guide

Breast MRI Accreditation Program Clinical Image Quality Guide Breast MRI Accreditation Program Clinical Image Quality Guide Introduction This document provides guidance on breast MRI clinical image quality and describes the criteria used by the ACR Breast MRI Accreditation

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 MIT OpenCourseWare http://ocw.mit.edu HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

SIEMENS MAGNETOM Avanto syngo MR B15

SIEMENS MAGNETOM Avanto syngo MR B15 \\USER\INVESTIGATORS\Ravi\ADNI-phantom\QC Phantom-Localizer TA: 0:10 PAT: Voxel size: 1.9 1.5 8.0 mm Rel. SNR: 1.00 SIEMENS: gre Properties Prio Recon Before measurement After measurement Load to viewer

More information

Page 1 of 9. Protocol: adult_other_adni3basichumanprotocol25x_ _ _1. 3 Plane Localizer. 3 Plane Localizer PATIENT POSITION

Page 1 of 9. Protocol: adult_other_adni3basichumanprotocol25x_ _ _1. 3 Plane Localizer. 3 Plane Localizer PATIENT POSITION 3 Localizer FOV 26.0 Slice Thickness 5.0 Slice Spacing 0.0 Freq 256 Phase 128 3-PLANE 3 Localizer Unswap Phase Correction Gradient Echo Imaging Options Seq, Fast Recon All Images 3 Localizer Pause / SCIC

More information

MR Advance Techniques. Vascular Imaging. Class III

MR Advance Techniques. Vascular Imaging. Class III MR Advance Techniques Vascular Imaging Class III 1 Vascular Imaging There are several methods that can be used to evaluate the cardiovascular systems with the use of MRI. MRI will aloud to evaluate morphology

More information

Field Maps. 1 Field Map Acquisition. John Pauly. October 5, 2005

Field Maps. 1 Field Map Acquisition. John Pauly. October 5, 2005 Field Maps John Pauly October 5, 25 The acquisition and reconstruction of frequency, or field, maps is important for both the acquisition of MRI data, and for its reconstruction. Many of the imaging methods

More information

M R I Physics Course

M R I Physics Course M R I Physics Course Multichannel Technology & Parallel Imaging Nathan Yanasak, Ph.D. Jerry Allison Ph.D. Tom Lavin, B.S. Department of Radiology Medical College of Georgia References: 1) The Physics of

More information

SIEMENS MAGNETOM Verio syngo MR B15V

SIEMENS MAGNETOM Verio syngo MR B15V \\USER\ZAHID_RESEARCH\MS\No Name\3D SWI TA: 6:39 PAT: 2 Voxel size: 1.0 0.5 2.0 mm Rel. SNR: 1.00 SIEMENS: gre Properties Prio Recon Before measurement After measurement Load to viewer Inline movie Auto

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006 MIT OpenCourseWare http://ocw.mit.edu HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

(a Scrhon5 R2iwd b. P)jc%z 5. ivcr3. 1. I. ZOms Xn,s. 1E IDrAS boms. EE225E/BIOE265 Spring 2013 Principles of MRI. Assignment 8 Solutions

(a Scrhon5 R2iwd b. P)jc%z 5. ivcr3. 1. I. ZOms Xn,s. 1E IDrAS boms. EE225E/BIOE265 Spring 2013 Principles of MRI. Assignment 8 Solutions EE225E/BIOE265 Spring 2013 Principles of MRI Miki Lustig Assignment 8 Solutions 1. Nishimura 7.1 P)jc%z 5 ivcr3. 1. I Due Wednesday April 10th, 2013 (a Scrhon5 R2iwd b 0 ZOms Xn,s r cx > qs 4-4 8ni6 4

More information

MSK EXTREME. V-SPEC Technology HIGH FIELD 1.0 TESLA TRULY OPEN, DEDICATED MRI. The Power of High Field. Rapid ROI. Optimized Performance

MSK EXTREME. V-SPEC Technology HIGH FIELD 1.0 TESLA TRULY OPEN, DEDICATED MRI. The Power of High Field. Rapid ROI. Optimized Performance MSK EXTREME HIGH FIELD 1.0 TESLA TRULY OPEN, DEDICATED MRI The Power of High Field Rapid ROI Optimized Performance High Throughput Ease of Use Increased Patient Comfort V-SPEC Technology THE POWER OF HIGH

More information

Slide 1. Technical Aspects of Quality Control in Magnetic Resonance Imaging. Slide 2. Annual Compliance Testing. of MRI Systems.

Slide 1. Technical Aspects of Quality Control in Magnetic Resonance Imaging. Slide 2. Annual Compliance Testing. of MRI Systems. Slide 1 Technical Aspects of Quality Control in Magnetic Resonance Imaging Slide 2 Compliance Testing of MRI Systems, Ph.D. Department of Radiology Henry Ford Hospital, Detroit, MI Slide 3 Compliance Testing

More information

Qualitative Comparison of Conventional and Oblique MRI for Detection of Herniated Spinal Discs

Qualitative Comparison of Conventional and Oblique MRI for Detection of Herniated Spinal Discs Qualitative Comparison of Conventional and Oblique MRI for Detection of Herniated Spinal Discs Doug Dean Final Project Presentation ENGN 2500: Medical Image Analysis May 16, 2011 Outline Review of the

More information

Module 4. K-Space Symmetry. Review. K-Space Review. K-Space Symmetry. Partial or Fractional Echo. Half or Partial Fourier HASTE

Module 4. K-Space Symmetry. Review. K-Space Review. K-Space Symmetry. Partial or Fractional Echo. Half or Partial Fourier HASTE MRES 7005 - Fast Imaging Techniques Module 4 K-Space Symmetry Review K-Space Review K-Space Symmetry Partial or Fractional Echo Half or Partial Fourier HASTE Conditions for successful reconstruction Interpolation

More information

Error! Bookmark not defined. Error! Bookmark not defined.

Error! Bookmark not defined. Error! Bookmark not defined. MRI-Neuro Protocols Brain Protocols... 2 WITH AND WITHOUT... 3 WITHOUT CONTRT... 4 HHT... 5 MS WITH AND WITHOUT CONTRT... 6 MS WITHOUT CONTRT... 7 PEDIATRIC... 8 PEDIATRIC WITH CONTRT... 9 PITUITARY NO

More information

White Pixel Artifact. Caused by a noise spike during acquisition Spike in K-space <--> sinusoid in image space

White Pixel Artifact. Caused by a noise spike during acquisition Spike in K-space <--> sinusoid in image space White Pixel Artifact Caused by a noise spike during acquisition Spike in K-space sinusoid in image space Susceptibility Artifacts Off-resonance artifacts caused by adjacent regions with different

More information

Improve your image. ClearVue 550 ultrasound system. The print quality of this copy is not an accurate representation of the original.

Improve your image. ClearVue 550 ultrasound system. The print quality of this copy is not an accurate representation of the original. Improve your image ClearVue 550 ultrasound system Not yet available in the U.S. Smart and intuitive One look at the Philips ClearVue 550 ultrasound system and you ll see the smooth, graceful lines and

More information

Advancements in molecular medicine

Advancements in molecular medicine Advancements in molecular medicine Philips Ingenuity TF PET/MR attenuation correction Z. Hu, 1 S. Renisch, 2 B. Schweizer, 3 T. Blaffert, 2 N. Ojha, 1 T. Guo, 1 J. Tang, 1 C. Tung, 1 J. Kaste, 1 V. Schulz,

More information

MRI Imaging Options. Frank R. Korosec, Ph.D. Departments of Radiology and Medical Physics University of Wisconsin Madison

MRI Imaging Options. Frank R. Korosec, Ph.D. Departments of Radiology and Medical Physics University of Wisconsin Madison MRI Imaging Options Frank R. Korosec, Ph.D. Departments of Radiolog and Medical Phsics Universit of Wisconsin Madison f.korosec@hosp.wisc.edu As MR imaging becomes more developed, more imaging options

More information

Supplementary methods

Supplementary methods Supplementary methods This section provides additional technical details on the sample, the applied imaging and analysis steps and methods. Structural imaging Trained radiographers placed all participants

More information

SIEMENS MAGNETOM TrioTim syngo MR B17

SIEMENS MAGNETOM TrioTim syngo MR B17 \\USER\KNARRGROUP\MultiBand\LavretskyMultiBand\trufi localizer 3-plane TA: 5.1 s PAT: Voxel size: 1.2 1.2 5. Rel. SNR: 1.00 SIEMENS: trufi Load to stamp Slice group 1 Slices 1 Dist. factor 20 % Phase enc.

More information

Clinical Importance. Aortic Stenosis. Aortic Regurgitation. Ultrasound vs. MRI. Carotid Artery Stenosis

Clinical Importance. Aortic Stenosis. Aortic Regurgitation. Ultrasound vs. MRI. Carotid Artery Stenosis Clinical Importance Rapid cardiovascular flow quantitation using sliceselective Fourier velocity encoding with spiral readouts Valve disease affects 10% of patients with heart disease in the U.S. Most

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS2007W1 SEMESTER 2 EXAMINATION 2014-2015 MEDICAL PHYSICS Duration: 120 MINS (2 hours) This paper contains 10 questions. Answer all questions in Section A and only two questions

More information

Siemens AG, Healthcare Sector. syngo MR D13 0. Supplement - Parameters and image text 0.

Siemens AG, Healthcare Sector. syngo MR D13 0. Supplement - Parameters and image text 0. Siemens AG, Healthcare Sector 0 0 n.a. English Cs2 syngo Neuro Operator MR-05014 630 05/2010 01 02 Informatik, Manual D11 Cape syngo MR D13 0.0 Supplement - Parameters and image text 0. syngo MR D13 0.

More information

Midterm Review

Midterm Review Midterm Review - 2017 EE369B Concepts Noise Simulations with Bloch Matrices, EPG Gradient Echo Imaging 1 About the Midterm Monday Oct 30, 2017. CCSR 4107 Up to end of C2 1. Write your name legibly on this

More information

XI Signal-to-Noise (SNR)

XI Signal-to-Noise (SNR) XI Signal-to-Noise (SNR) Lecture notes by Assaf Tal n(t) t. Noise. Characterizing Noise Noise is a random signal that gets added to all of our measurements. In D it looks like this: while in D

More information

A Model-Independent, Multi-Image Approach to MR Inhomogeneity Correction

A Model-Independent, Multi-Image Approach to MR Inhomogeneity Correction Tina Memo No. 2007-003 Published in Proc. MIUA 2007 A Model-Independent, Multi-Image Approach to MR Inhomogeneity Correction P. A. Bromiley and N.A. Thacker Last updated 13 / 4 / 2007 Imaging Science and

More information

Table of Contents MRI Neuro protocols

Table of Contents MRI Neuro protocols Table of Contents MRI Neuro protocols 1. MRI Soft-tissue neck 2. MRI Head: a. Head with and without contrast b. Perfusion post processing c. CSF flow analysis d. Deep brain stimulator e. Brain spectroscopy

More information

Chapter 3 Set Redundancy in Magnetic Resonance Brain Images

Chapter 3 Set Redundancy in Magnetic Resonance Brain Images 16 Chapter 3 Set Redundancy in Magnetic Resonance Brain Images 3.1 MRI (magnetic resonance imaging) MRI is a technique of measuring physical structure within the human anatomy. Our proposed research focuses

More information

Lucy Phantom MR Grid Evaluation

Lucy Phantom MR Grid Evaluation Lucy Phantom MR Grid Evaluation Anil Sethi, PhD Loyola University Medical Center, Maywood, IL 60153 November 2015 I. Introduction: The MR distortion grid, used as an insert with Lucy 3D QA phantom, is

More information

TOF-MRA Using Multi-Oblique-Stack Acquisition (MOSA)

TOF-MRA Using Multi-Oblique-Stack Acquisition (MOSA) JOURNAL OF MAGNETIC RESONANCE IMAGING 26:432 436 (2007) Technical Note TOF-MRA Using Multi-Oblique-Stack Acquisition (MOSA) Ed X. Wu, PhD, 1,2 * Edward S. Hui, BEng, 1,2 and Jerry S. Cheung, BEng 1,2 Purpose:

More information

A novel noise removal using homomorphic normalization for multi-echo knee MRI

A novel noise removal using homomorphic normalization for multi-echo knee MRI A novel noise removal using homomorphic normalization for multi-echo knee MRI Xuenan Cui 1a),HakilKim 1b), Seongwook Hong 1c), and Kyu-Sung Kwack 2d) 1 School of Information and Communication Engineering,

More information

Exam 8N080 - Introduction MRI

Exam 8N080 - Introduction MRI Exam 8N080 - Introduction MRI Friday January 23 rd 2015, 13.30-16.30h For this exam you may use an ordinary calculator (not a graphical one). In total there are 6 assignments and a total of 65 points can

More information

Diffusion MRI Acquisition. Karla Miller FMRIB Centre, University of Oxford

Diffusion MRI Acquisition. Karla Miller FMRIB Centre, University of Oxford Diffusion MRI Acquisition Karla Miller FMRIB Centre, University of Oxford karla@fmrib.ox.ac.uk Diffusion Imaging How is diffusion weighting achieved? How is the image acquired? What are the limitations,

More information

SIEMENS MAGNETOM Skyra syngo MR D13

SIEMENS MAGNETOM Skyra syngo MR D13 Page 1 of 8 SIEMENS MAGNETOM Skyra syngo MR D13 \\USER\CIND\StudyProtocols\PTSA\*dm_ep2d_mono70_b0_p2_iso2.0 TA:1:05 PAT:2 Voxel size:2.0 2.0 2.0 mm Rel. SNR:1.00 :epse Properties Routine Prio Recon Load

More information

TOPICS 2/5/2006 8:17 PM. 2D Acquisition 3D Acquisition

TOPICS 2/5/2006 8:17 PM. 2D Acquisition 3D Acquisition TOPICS 2/5/2006 8:17 PM 2D Acquisition 3D Acquisition 2D Acquisition Involves two main steps : Slice Selection Slice selection is accomplished by spatially saturating (single or multi slice imaging) or

More information

Applications Guide for Interleaved

Applications Guide for Interleaved Applications Guide for Interleaved rephase/dephase MRAV Authors: Yongquan Ye, Ph.D. Dongmei Wu, MS. Tested MAGNETOM Systems : 7TZ, TRIO a Tim System, Verio MR B15A (N4_VB15A_LATEST_20070519) MR B17A (N4_VB17A_LATEST_20090307_P8)

More information

Tina Pavlin 12 March 2013

Tina Pavlin 12 March 2013 Table of Contents Chapter 1 General... 2 Spectrometer Reset... 2 Adjustment of DC- offset (Zipper Artifact)... 2 Removal of Zipper Artifact... 2 Prescription for Decreasing TE... 2 EPIs... 3 Chapter 2

More information

What is pmri? Overview. The Need for Speed: A Technical and Clinical Primer for Parallel MR Imaging 8/1/2011

What is pmri? Overview. The Need for Speed: A Technical and Clinical Primer for Parallel MR Imaging 8/1/2011 The Need for Speed: A Technical and Clinical Primer for Parallel MR Imaging Nathan Yanasak, Ph.D. Chair, AAPM TG118 Assistant Professor Department of Radiology Director, Core Imaging Facility for Small

More information

Parallel Magnetic Resonance Imaging (pmri): How Does it Work, and What is it Good For?

Parallel Magnetic Resonance Imaging (pmri): How Does it Work, and What is it Good For? Parallel Magnetic Resonance Imaging (pmri): How Does it Work, and What is it Good For? Nathan Yanasak, Ph.D. Chair, AAPM TG118 Department of Radiology Georgia Regents University Overview Phased-array coils

More information

Imaging Notes, Part IV

Imaging Notes, Part IV BME 483 MRI Notes 34 page 1 Imaging Notes, Part IV Slice Selective Excitation The most common approach for dealing with the 3 rd (z) dimension is to use slice selective excitation. This is done by applying

More information

Role of Parallel Imaging in High Field Functional MRI

Role of Parallel Imaging in High Field Functional MRI Role of Parallel Imaging in High Field Functional MRI Douglas C. Noll & Bradley P. Sutton Department of Biomedical Engineering, University of Michigan Supported by NIH Grant DA15410 & The Whitaker Foundation

More information

SIEMENS MAGNETOM Verio syngo MR B17

SIEMENS MAGNETOM Verio syngo MR B17 \\USER\Dr. Behrmann\routine\Ilan\ep2d_bold_PMU_resting TA: 8:06 PAT: Voxel size: 3.03.03.0 mm Rel. SNR: 1.00 USER: ep2d_bold_pmu Properties Special sat. Prio Recon System Before measurement Body After

More information

If it matters to you, it matters to us

If it matters to you, it matters to us If it matters to you, it matters to us Philips clinical innovations in nuclear medicine Innovation with insight We understand that clinical innovations are only as valuable as the day-to-day difference

More information

Digital Image Processing

Digital Image Processing Digital Image Processing SPECIAL TOPICS CT IMAGES Hamid R. Rabiee Fall 2015 What is an image? 2 Are images only about visual concepts? We ve already seen that there are other kinds of image. In this lecture

More information

CHAPTER 9: Magnetic Susceptibility Effects in High Field MRI

CHAPTER 9: Magnetic Susceptibility Effects in High Field MRI Figure 1. In the brain, the gray matter has substantially more blood vessels and capillaries than white matter. The magnified image on the right displays the rich vasculature in gray matter forming porous,

More information

T 1 MAPPING FOR DCE-MRI

T 1 MAPPING FOR DCE-MRI T 1 MAPPING FOR DCE-MRI A dissertation submitted to the Faculty of Medicine, University of Malaya in partial fulfillment of the requirements for the degree of Master of Medical Physics By NURUN NAJWA BINTI

More information

Image Acquisition Systems

Image Acquisition Systems Image Acquisition Systems Goals and Terminology Conventional Radiography Axial Tomography Computer Axial Tomography (CAT) Magnetic Resonance Imaging (MRI) PET, SPECT Ultrasound Microscopy Imaging ITCS

More information

Fast Imaging Trajectories: Non-Cartesian Sampling (1)

Fast Imaging Trajectories: Non-Cartesian Sampling (1) Fast Imaging Trajectories: Non-Cartesian Sampling (1) M229 Advanced Topics in MRI Holden H. Wu, Ph.D. 2018.05.03 Department of Radiological Sciences David Geffen School of Medicine at UCLA Class Business

More information

surface Image reconstruction: 2D Fourier Transform

surface Image reconstruction: 2D Fourier Transform 2/1/217 Chapter 2-3 K-space Intro to k-space sampling (chap 3) Frequenc encoding and Discrete sampling (chap 2) Point Spread Function K-space properties K-space sampling principles (chap 3) Basic Contrast

More information

Always in touch. IntelliVue Telemetry System with Smart-hopping technology, surveillance of ambulatory cardiac patients

Always in touch. IntelliVue Telemetry System with Smart-hopping technology, surveillance of ambulatory cardiac patients Always in touch with Smart-hopping technology, surveillance of ambulatory cardiac patients Real clinical network strength includes flexibility When you have mobile cardiac patients who need constant monitoring,

More information

E-MRI a standard in imaging

E-MRI a standard in imaging The Compact E-MRI E-MRI a standard in imaging Thanks to an excellent cost/benefit ratio, dedicated MRI systems have become a reality in the world of diagnostic imaging. The aging of the population together

More information

divided into structured and unstructured artifacts. Hence unstructured artifact is defined as an random noise, and

divided into structured and unstructured artifacts. Hence unstructured artifact is defined as an random noise, and Improving Quality of MR Images Caused by Ghosting and Noise S. Jayaprakash 1, C. Madhubala 2 1 Head of the Department, CSE Dept., Idhaya Engineering College for Women 2 PG Scholar, CSE Department, Idhaya

More information

Use of MRI in Radiotherapy: Technical Consideration

Use of MRI in Radiotherapy: Technical Consideration Use of MRI in Radiotherapy: Technical Consideration Yanle Hu, PhD Department of Radiation Oncology, Mayo Clinic Arizona 04/07/2018 2015 MFMER slide-1 Conflict of Interest: None 2015 MFMER slide-2 Objectives

More information

Functional analysis with DTI and diffusion-neurography of cranial nerves

Functional analysis with DTI and diffusion-neurography of cranial nerves Functional analysis with DTI and diffusion-neurography of cranial nerves Poster No.: C-1942 Congress: ECR 2013 Type: Educational Exhibit Authors: J. P. Martínez Barbero, T. Martín Noguerol, A. Luna Alcalá;

More information

Fits you like no other

Fits you like no other Fits you like no other BrightView X and XCT specifications The new BrightView X system is a fully featured variableangle camera that is field-upgradeable to BrightView XCT without any increase in room

More information

Head motion in diffusion MRI

Head motion in diffusion MRI Head motion in diffusion MRI Anastasia Yendiki HMS/MGH/MIT Athinoula A. Martinos Center for Biomedical Imaging 11/06/13 Head motion in diffusion MRI 0/33 Diffusion contrast Basic principle of diffusion

More information

Abbie M. Diak, PhD Loyola University Medical Center Dept. of Radiation Oncology

Abbie M. Diak, PhD Loyola University Medical Center Dept. of Radiation Oncology Abbie M. Diak, PhD Loyola University Medical Center Dept. of Radiation Oncology Outline High Spectral and Spatial Resolution MR Imaging (HiSS) What it is How to do it Ways to use it HiSS for Radiation

More information

A Novel Iterative Thresholding Algorithm for Compressed Sensing Reconstruction of Quantitative MRI Parameters from Insufficient Data

A Novel Iterative Thresholding Algorithm for Compressed Sensing Reconstruction of Quantitative MRI Parameters from Insufficient Data A Novel Iterative Thresholding Algorithm for Compressed Sensing Reconstruction of Quantitative MRI Parameters from Insufficient Data Alexey Samsonov, Julia Velikina Departments of Radiology and Medical

More information

Computational Medical Imaging Analysis Chapter 4: Image Visualization

Computational Medical Imaging Analysis Chapter 4: Image Visualization Computational Medical Imaging Analysis Chapter 4: Image Visualization Jun Zhang Laboratory for Computational Medical Imaging & Data Analysis Department of Computer Science University of Kentucky Lexington,

More information

The SIMRI project A versatile and interactive MRI simulator *

The SIMRI project A versatile and interactive MRI simulator * COST B21 Meeting, Lodz, 6-9 Oct. 2005 The SIMRI project A versatile and interactive MRI simulator * H. Benoit-Cattin 1, G. Collewet 2, B. Belaroussi 1, H. Saint-Jalmes 3, C. Odet 1 1 CREATIS, UMR CNRS

More information

Following on from the two previous chapters, which considered the model of the

Following on from the two previous chapters, which considered the model of the Chapter 5 Simulator validation Following on from the two previous chapters, which considered the model of the simulation process and how this model was implemented in software, this chapter is concerned

More information

Computational Medical Imaging Analysis

Computational Medical Imaging Analysis Computational Medical Imaging Analysis Chapter 2: Image Acquisition Systems Jun Zhang Laboratory for Computational Medical Imaging & Data Analysis Department of Computer Science University of Kentucky

More information

Super-resolution Reconstruction of Fetal Brain MRI

Super-resolution Reconstruction of Fetal Brain MRI Super-resolution Reconstruction of Fetal Brain MRI Ali Gholipour and Simon K. Warfield Computational Radiology Laboratory Children s Hospital Boston, Harvard Medical School Worshop on Image Analysis for

More information

Data. MAGNETOM Symphony, A Tim System Matrix Coils

Data. MAGNETOM Symphony, A Tim System Matrix Coils Data MAGNETOM Symphony, A Tim System Matrix Coils Head Matrix Coil The Head Matrix coil is part of the standard system configuration. 12-element design with 12 integrated preamplifiers, two rings of 6

More information

Parallel Imaging. Marcin.

Parallel Imaging. Marcin. Parallel Imaging Marcin m.jankiewicz@gmail.com Parallel Imaging initial thoughts Over the last 15 years, great progress in the development of pmri methods has taken place, thereby producing a multitude

More information

Improved Spatial Localization in 3D MRSI with a Sequence Combining PSF-Choice, EPSI and a Resolution Enhancement Algorithm

Improved Spatial Localization in 3D MRSI with a Sequence Combining PSF-Choice, EPSI and a Resolution Enhancement Algorithm Improved Spatial Localization in 3D MRSI with a Sequence Combining PSF-Choice, EPSI and a Resolution Enhancement Algorithm L.P. Panych 1,3, B. Madore 1,3, W.S. Hoge 1,3, R.V. Mulkern 2,3 1 Brigham and

More information

Fits you like no other

Fits you like no other Fits you like no other Philips BrightView X and XCT specifications The new BrightView X system is a fully featured variableangle camera that is field-upgradeable to BrightView XCT without any increase

More information

Improve your image. ClearVue 550 ultrasound system

Improve your image. ClearVue 550 ultrasound system Improve your image ClearVue 550 ultrasound system Smart and intuitive One look at the Philips ClearVue 550 ultrasound system and you ll see the smooth, graceful lines and elegant design that show this

More information

Magnetic Resonance Elastography (MRE) of Liver Disease

Magnetic Resonance Elastography (MRE) of Liver Disease Magnetic Resonance Elastography (MRE) of Liver Disease Authored by: Jennifer Dolan Fox, PhD VirtualScopics Inc. jennifer_fox@virtualscopics.com 1-585-249-6231 1. Overview of MRE Imaging MRE is a magnetic

More information

Supplementary Information

Supplementary Information Supplementary Information Magnetic resonance imaging reveals functional anatomy and biomechanics of a living dragon tree Linnea Hesse 1,2,*, Tom Masselter 1,2,3, Jochen Leupold 4, Nils Spengler 5, Thomas

More information

Bucky to DR in one smart step. Philips ProGrade DR solution specifications

Bucky to DR in one smart step. Philips ProGrade DR solution specifications Bucky to DR in one smart step Philips ProGrade DR solution specifications Contents 1 Introduction 3 2 System overview 4 3 SkyPlate detector 6 4 Battery and battery charger 7 5 Eleva workspot 8 6 Detector

More information

Tutorial on access to, and use of OAI Images

Tutorial on access to, and use of OAI Images Tutorial on access to, and use of OAI Images John Lynch, PhD OAI Coordinating Center UCSF, San Francisco jlynch@psg.ucsf.edu Overview Image Releases: process and nomenclature What has been released & What

More information

Optimizing MR Scan Design for Parameter Estimation (with Application to T 1, T 2 Relaxometry)

Optimizing MR Scan Design for Parameter Estimation (with Application to T 1, T 2 Relaxometry) Optimizing MR Scan Design for Parameter Estimation (with Application to T 1, T 2 Relaxometry) Gopal Nataraj *, Jon-Fredrik Nielsen, and Jeffrey A. Fessler * Depts. of * EECS and Biomedical Engineering

More information

ExamCard Editor. ExamCard Editor allows you to:

ExamCard Editor. ExamCard Editor allows you to: The is a feature that allows you to manage ExamCard libraries outside the scan environment. You can do this while another patient is scanned. You use the to create and modify ExamCards, but you cannot

More information

Outline: Contrast-enhanced MRA

Outline: Contrast-enhanced MRA Outline: Contrast-enhanced MRA Background Technique Clinical Indications Future Directions Disclosures: GE Health Care: Research support Consultant: Bracco, Bayer The Basics During rapid IV infusion, Gadolinium

More information

ADAPTIVE GRAPH CUTS WITH TISSUE PRIORS FOR BRAIN MRI SEGMENTATION

ADAPTIVE GRAPH CUTS WITH TISSUE PRIORS FOR BRAIN MRI SEGMENTATION ADAPTIVE GRAPH CUTS WITH TISSUE PRIORS FOR BRAIN MRI SEGMENTATION Abstract: MIP Project Report Spring 2013 Gaurav Mittal 201232644 This is a detailed report about the course project, which was to implement

More information

Basic principles of MR image analysis. Basic principles of MR image analysis. Basic principles of MR image analysis

Basic principles of MR image analysis. Basic principles of MR image analysis. Basic principles of MR image analysis Basic principles of MR image analysis Basic principles of MR image analysis Julien Milles Leiden University Medical Center Terminology of fmri Brain extraction Registration Linear registration Non-linear

More information

MEDICAL IMAGE COMPUTING (CAP 5937) LECTURE 4: Pre-Processing Medical Images (II)

MEDICAL IMAGE COMPUTING (CAP 5937) LECTURE 4: Pre-Processing Medical Images (II) SPRING 2016 1 MEDICAL IMAGE COMPUTING (CAP 5937) LECTURE 4: Pre-Processing Medical Images (II) Dr. Ulas Bagci HEC 221, Center for Research in Computer Vision (CRCV), University of Central Florida (UCF),

More information

MRI Image Quality Assessment

MRI Image Quality Assessment in partnership with MRI Image Quality Assessment David Collins CR-UK Cancer Imaging Centre, The Institute of Cancer Research Making the discoveries that defeat cancer Overview Current Practice Quality

More information

SIEMENS MAGNETOM Symphony syngo MR A30

SIEMENS MAGNETOM Symphony syngo MR A30 \\USER\ADNI STUDY\MAIN PROTOCOL\HUMAN PROTOCOL\localizer Scan Time: 9.2 [s] Voxel size: 2.2 1.1 10.0 [mm] Rel. SNR: 1.00 SIEMENS: gre Slice group 1 Slice group 2 Slice group 3 280 [mm] 10 [mm] 20 [ms]

More information

Technological Advances and Challenges: Experience with Time-Of-Flight PET Combined with 3T MRI. Floris Jansen, GE Healthcare July, 2015

Technological Advances and Challenges: Experience with Time-Of-Flight PET Combined with 3T MRI. Floris Jansen, GE Healthcare July, 2015 Technological Advances and Challenges: Experience with Time-Of-Flight PET Combined with 3T MRI Floris Jansen, GE Healthcare July, 2015 PET/MR 101 : challenges Thermal Workflow & Apps RF interactions?!!

More information

Gradient-Echo. Spin-Echo. Echo planar. Assessment of Regional Function Assessment of Global. Parallel Imaging. Function. Steady State Imaging

Gradient-Echo. Spin-Echo. Echo planar. Assessment of Regional Function Assessment of Global. Parallel Imaging. Function. Steady State Imaging Gradient-Echo Spin-Echo James W. Goldfarb Ph.D. Department of Research and Education St. Francis Hospital Program in Biomedical Engineering SUNY Stony Brook Echo planar Assessment of Regional Function

More information