Figure 1: 2D arm. Figure 2: 2D arm with labelled angles

Size: px
Start display at page:

Download "Figure 1: 2D arm. Figure 2: 2D arm with labelled angles"

Transcription

1 2D Kinematics Consier a robotic arm. We can sen it commans like, move that joint so it bens at an angle θ. Once we ve set each joint, that s all well an goo. More interesting, though, is the question of once we set these angles, where is the en of the robotic han? This is kinematics. We ll also look at the problem of inverse kinematics, where we want the en of the han to be at a certain point, an so nee to figure out what angles to set the joints to. Before we move on to the full arm, with all of its possible egrees of freeom, it is easier to consier a two-imensional arm like the following, where our goal is to fin at which point in Cartesian XY plane the en of the arm is locate. Now, suppose that we know the following: Figure : 2D arm We set the first joint to rise from the X-axis at an angle of π/4 raians (the re angle in Figure 2, an the first link (the name for the part of the arm connecting two joints) is 5 meters long. We set the secon joint to be π/6 raians from straight (the blue angle in Figure 2), an the secon link is 3 meters long. Figure 2: 2D arm with labelle angles Notice that on the secon joint, our information is relative from the location of the first link. So, where is the en of the arm? Your first solution may involve trigonometry, so let s o that. The secon joint is locate at (5 cos(π/4), 5 sin(π/4)). That s easy enough. This means the en of the arm is at (5 cos(π/4) + 3 cos(π/4 π/6), 5 sin(π/4) + 3 sin(π/4 π/6), or about (6.4, 4.3). An that s right, it works! But, perhaps you can see why we won t want to o this for a more complicate arm.

2 You have to be constantly keeping track of the total angles (like when we ha to o π/4 π/6 above). A in another imension, an the trigonometric solution woul get very hairy inee. So let s try something else. Matrix Aition an Multiplication To get this one, we re going to nee some very basic linear algebra, which we ve seen before. First, note that to a (or subtract) two matrices, they must be the same size an shape. This is because matrix aition (an subtraction) is merely piecewise: a b c + g h i j a + g b + h c + i + j. e f k l e + k f + l So, if they re not the same size, aition or subtraction just oesn t make any sense. Before we talk about matrix multiplication, let s efine how we talk about matrix sizes. If a matrix M is m n, that means it has m rows, an n columns. Now, if A an B are matrices, an we want to perform the multiplication AB, then the number of columns in A an the number of rows of B must match. In other wors, if A is m n, then B must be n p. The result of this multiplication woul be m p, where the ith row an the jth column are the ot prouct of the ith row of A an the jth column of B. Consier, for example, the following multiplication: a b c e f Transformational Matrices g h i ag + bh + ci g + eh + f i Now the thing that s going to make our life easier is we can represent a point (x, y) in some coorinate frame x as a vector,. It turns out that we can move this point aroun in our space by using transformation y matrices. Scaling Suppose we have some point (x, y), an we like to move it so that the x-coorinate is five times bigger than it was before. What matrix can we use to perform this transformation? If you look at how matrices are multiplie, hopefully it s clear this can be accomplishe with 5 0 x 5x + 0y 5x 0 x + y y To expan this a bit, if you like to scale x by some factor a, an y by some factor b, you nee the following transformation: a 0 x ax 0 b y by Rotation Now suppose we have some point (x 0, ), an we woul like to perform a rotation aroun the origin by some angle φ, like in Figure 3. x0 x It s not immeiately clear how to change into. So let s just start writing own things that we know, an see if we can solve for x an y. We ll efine to be the istance from the origin for both points (since it s a rotation, it will be the same). y 2

3 (x_, y_) ϕ (x_0, y_0) θ Figure 3: Rotating a point aroun the origin φ raians cos(θ) x 0 () sin(θ) (2) cos(φ + θ) x (3) sin(φ + θ) y (4) cos(φ + θ) cos(φ) cos(θ) sin(φ) sin(θ) (5) sin(φ + θ) sin(φ) cos(θ) + cos(φ) sin(θ) (6) OK, so an 2 are true just because that s how we convert the polar coorinates (θ, ) to the Cartesian coorinates (x 0, ). 3 an 4 are similar. 5 an 6 are just trigonometric ientities. So now we can set 3 equal to 5, an set 4 equal to 6, an then plug in an 2 wherever possible. Multiply both sies by... x y x cos(φ) cos(θ) sin(φ) sin(θ) sin(φ) cos(θ) cos(φ) sin(θ) cos(φ) x 0 sin(φ) y sin(φ) x 0 + cos(φ) x cos(φ)x 0 sin(φ) y sin(φ)x 0 + cos(φ) An we ve got it! That, we can o as a matrix. To rotate by φ, cos(φ) sin(φ) x0 sin(φ) cos(φ) x y Translation Translating by some istance (not scaling, but just picking it up an moving it some istance in some irection) requires a little bit ifferent intuition. No 2 2 matrix exists that will perform this translation, since our only tool is multiplication, an we nee to o aition. The key is to use Homogeneous Matrices, an a a imension to our points. To move our point in the x irection by m, an in the y irection by n, we multiply as follows: 0 m 0 n x 0 x 0 + m + n 0 0 3

4 Translation an Rotation Combine If we want to perform a single transformation, in which we both translate an rotate, we can combine these into a single matrix: cos(φ) sin(φ) m sin(φ) cos(φ) n x0 cos(φ)x 0 sin(φ) + m sin(φ)x + cos(φ) + n We will rarely o this explicitly, but it will be useful to refer to later. 2D Kinematics using Transformations Let s consier the rotational transformation of Figure 3. One way to look at this is that we move the point within the axes. Another way to look at it is that we ha two ifferent points, an we foun a new set of axes such that the coorinates remaine the same, but the axes were ifferent between the two points. In other wors, x x 0, but on ifferent axes (re axes vs. black axes in the figure 4). (x_, y_) ϕ (x_0, y_0) θ Figure 4: Rotating the axis aroun the origin φ raians This is what we will o for our arm; we will rotate an translate the axes, so that our final point is at the origin. So, we ll take our reference frame, or the original black axes, an rotate it π/4, creating a new frame N. We ll then translate along that frame s x-axis 5 meters, creating a new frame N 2. We ll then rotate π/6 raians, creating N 3. We ll then translate along the x-axis to the en of the arm, creating N 4. These can be seen in Figure 5. N_ N_2 N_3 N_4 N_R Figure 5: Transforme axes 4

5 The matrix transformations to o this, therefore, are: cos(π/4) sin(π/4) 0 sin(π/4) cos(π/4) } {{ } Rotate to N ( R T ) Translate to N 2 ( T 2 ) When you perform all this multiplication, you get cos( π/6) sin(π/6) 0 sin(π/6) cos(π/6) } {{ } Rotate to N 3 ( 2 T 3 ) Translate to N 4 ( 3 T 4 ) 0 0 Starting at the origin, or, the same location in the reference frame that we got from our trigonometry. You ll notice our notation, A T B, which is how we notate a transition matrix from frame A to frame B. R T 4 R T T 2 2 T 3 3 T 4. It turns out all of this is much, much easier than trying to o trig, because everything is relative to where you were before. In our thir transformation matrix above, we in t nee to know that before, we ha alreay rotate π/4 raians; we only neee to know that now, we rotate own π/6 from wherever it is we alreay are. This concept keeps things much simpler with 3D arms. Calculating Orientation The above etails how to fin the position of the enpoint of the arm. But, what if we are also intereste in the orientation? In 3D, this will mean the roll, pitch, an yaw of the en of the arm. In 2D, this means only the angle from the X axis in the reference frame. This is remarkably easy. We note that our matrix R T 4 in the above example, is itself a general transformation matrix from the reference frame R to the frame N 4, of the form iscusse in the paragram Translation an Rotation Combine. So, whatever is in the 0, 0 spot of that matrix, is the cosine of our total rotation ψ. So, ψ cos ( R T 4 0, 0). With a perfect computer, with no roun-off or precision errors, this woul be exactly correct. Unfortunately... those on t exist. The problem comes from the fact that arccos an arcsin are pretty volatile. As x approaches or -, small changes in x (like from roun-off errors) result in huge changes in arccos(x) an arcsin(x). So, just using one of those on their own is out. What s left, of course, is arctan, which is fortunately much more stable. If you remember your SOHC- AHTOA, tan(ψ) y x, so ψ tan ( y x ). But, note that because the single fraction is entere, we on t know which quarant we re in. If x an y are both positive, (meaning ψ shoul be between 0 an π/2) we ll get the same answer as if x an y are both negative (meaning ψ shoul be between π an π/2). OK. Fine. For exactly this reason, we won t use arctan(x). Instea, we ll use a commonly-provie arctan2(y,x). Notice this function takes both arguments, meaning the function knows which quarant we re suppose to be in. OK! So, arctan2 will give us a stable answer in the correct quarant... but what o we enter for its two parameters x an y? It s not the final point s x an y, as that gives us the angle from the x axis, not the orientation of the final arm segment. Remember that tan(ψ) sin(ψ) cos(ψ)... an those two things we have (sin(ψ) R T 4, 0 an cos(ψ) R T 4 0, 0). So, our final, stable answer in the correct quarant is: Huzzah! ψ arctan2( R T 4, 0, R T 4 0, 0). 5

Linear algebra deals with matrixes: two-dimensional arrays of values. Here s a matrix: [ x + 5y + 7z 9x + 3y + 11z

Linear algebra deals with matrixes: two-dimensional arrays of values. Here s a matrix: [ x + 5y + 7z 9x + 3y + 11z Basic Linear Algebra Linear algebra deals with matrixes: two-dimensional arrays of values. Here s a matrix: [ 1 5 ] 7 9 3 11 Often matrices are used to describe in a simpler way a series of linear equations.

More information

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. Preface Here are my online notes for my Calculus I course that I teach here at Lamar University. Despite the fact that these are my class notes, they shoul be accessible to anyone wanting to learn Calculus

More information

2D and 3D Transformations AUI Course Denbigh Starkey

2D and 3D Transformations AUI Course Denbigh Starkey 2D and 3D Transformations AUI Course Denbigh Starkey. Introduction 2 2. 2D transformations using Cartesian coordinates 3 2. Translation 3 2.2 Rotation 4 2.3 Scaling 6 3. Introduction to homogeneous coordinates

More information

Kinematic Analysis of a Family of 3R Manipulators

Kinematic Analysis of a Family of 3R Manipulators Kinematic Analysis of a Family of R Manipulators Maher Baili, Philippe Wenger an Damien Chablat Institut e Recherche en Communications et Cybernétique e Nantes, UMR C.N.R.S. 6597 1, rue e la Noë, BP 92101,

More information

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6 Polar Coordinates Any point in the plane can be described by the Cartesian coordinates (x, y), where x and y are measured along the corresponding axes. However, this is not the only way to represent points

More information

Dual Arm Robot Research Report

Dual Arm Robot Research Report Dual Arm Robot Research Report Analytical Inverse Kinematics Solution for Moularize Dual-Arm Robot With offset at shouler an wrist Motivation an Abstract Generally, an inustrial manipulator such as PUMA

More information

Worksheet 5. 3 Less trigonometry and more dishonesty/linear algebra knowledge Less trigonometry, less dishonesty... 4

Worksheet 5. 3 Less trigonometry and more dishonesty/linear algebra knowledge Less trigonometry, less dishonesty... 4 Worksheet 5 Contents 1 Just look at the book, on page 74 1 2 Trigonometry and honesty 1 3 Less trigonometry and more dishonesty/linear algebra knowledge 3 3.1 Less trigonometry, less dishonesty...............................

More information

Hello, welcome to the video lecture series on Digital Image Processing. So in today's lecture

Hello, welcome to the video lecture series on Digital Image Processing. So in today's lecture Digital Image Processing Prof. P. K. Biswas Department of Electronics and Electrical Communications Engineering Indian Institute of Technology, Kharagpur Module 02 Lecture Number 10 Basic Transform (Refer

More information

Laboratory I.7 Linking Up with the Chain Rule

Laboratory I.7 Linking Up with the Chain Rule Laboratory I.7 Linking Up with the Chain Rule Goal The stuent will figure out the Chain Rule for certain example functions. Before the Lab The Chain Rule is the erivative rule which accounts for function

More information

1 Finding Trigonometric Derivatives

1 Finding Trigonometric Derivatives MTH 121 Fall 2008 Essex County College Division of Matematics Hanout Version 8 1 October 2, 2008 1 Fining Trigonometric Derivatives 1.1 Te Derivative as a Function Te efinition of te erivative as a function

More information

To do this the end effector of the robot must be correctly positioned relative to the work piece.

To do this the end effector of the robot must be correctly positioned relative to the work piece. Spatial Descriptions and Transformations typical robotic task is to grasp a work piece supplied by a conveyer belt or similar mechanism in an automated manufacturing environment, transfer it to a new position

More information

Chapter 7: Analytic Trigonometry

Chapter 7: Analytic Trigonometry Chapter 7: Analytic Trigonometry 7. Trigonometric Identities Below are the basic trig identities discussed in previous chapters. Reciprocal csc(x) sec(x) cot(x) sin(x) cos(x) tan(x) Quotient sin(x) cos(x)

More information

6 Computing Derivatives the Quick and Easy Way

6 Computing Derivatives the Quick and Easy Way Jay Daigle Occiental College Mat 4: Calculus Experience 6 Computing Derivatives te Quick an Easy Way In te previous section we talke about wat te erivative is, an we compute several examples, an ten we

More information

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Seconary Eucation MARK SCHEME for the May/June 03 series 0607 CAMBRIDGE INTERNATIONAL MATHEMATICS 0607/4 Paper 4 (Extene), maximum

More information

Basics of Computational Geometry

Basics of Computational Geometry Basics of Computational Geometry Nadeem Mohsin October 12, 2013 1 Contents This handout covers the basic concepts of computational geometry. Rather than exhaustively covering all the algorithms, it deals

More information

Module13:Interference-I Lecture 13: Interference-I

Module13:Interference-I Lecture 13: Interference-I Moule3:Interference-I Lecture 3: Interference-I Consier a situation where we superpose two waves. Naively, we woul expect the intensity (energy ensity or flux) of the resultant to be the sum of the iniviual

More information

Graphics and Interaction Transformation geometry and homogeneous coordinates

Graphics and Interaction Transformation geometry and homogeneous coordinates 433-324 Graphics and Interaction Transformation geometry and homogeneous coordinates Department of Computer Science and Software Engineering The Lecture outline Introduction Vectors and matrices Translation

More information

COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates

COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates Department of Computer Science and Software Engineering The Lecture outline Introduction Vectors and matrices Translation

More information

Classical Mechanics Examples (Lagrange Multipliers)

Classical Mechanics Examples (Lagrange Multipliers) Classical Mechanics Examples (Lagrange Multipliers) Dipan Kumar Ghosh Physics Department, Inian Institute of Technology Bombay Powai, Mumbai 400076 September 3, 015 1 Introuction We have seen that the

More information

SNAP Centre Workshop. Introduction to Trigonometry

SNAP Centre Workshop. Introduction to Trigonometry SNAP Centre Workshop Introduction to Trigonometry 62 Right Triangle Review A right triangle is any triangle that contains a 90 degree angle. There are six pieces of information we can know about a given

More information

Kinematics, Kinematics Chains CS 685

Kinematics, Kinematics Chains CS 685 Kinematics, Kinematics Chains CS 685 Previously Representation of rigid body motion Two different interpretations - as transformations between different coord. frames - as operators acting on a rigid body

More information

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS PAPA CAMBRIDGE CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Seconary Eucation MARK SCHEME for the May/June 0 series CAMBRIDGE INTERNATIONAL MATHEMATICS /4 4 (Extene), maximum

More information

A Classification of 3R Orthogonal Manipulators by the Topology of their Workspace

A Classification of 3R Orthogonal Manipulators by the Topology of their Workspace A Classification of R Orthogonal Manipulators by the Topology of their Workspace Maher aili, Philippe Wenger an Damien Chablat Institut e Recherche en Communications et Cybernétique e Nantes, UMR C.N.R.S.

More information

Affine Transformations Computer Graphics Scott D. Anderson

Affine Transformations Computer Graphics Scott D. Anderson Affine Transformations Computer Graphics Scott D. Anderson 1 Linear Combinations To understand the poer of an affine transformation, it s helpful to understand the idea of a linear combination. If e have

More information

Polar Coordinates. 2, π and ( )

Polar Coordinates. 2, π and ( ) Polar Coordinates Up to this point we ve dealt exclusively with the Cartesian (or Rectangular, or x-y) coordinate system. However, as we will see, this is not always the easiest coordinate system to work

More information

10.2 Calculus with Parametric Curves

10.2 Calculus with Parametric Curves CHAPTER 1. PARAMETRIC AND POLAR 91 1.2 Calculus with Parametric Curves Example 1. Return to the parametric equations in Example 2 from the previous section: x t + sin() y t + cos() (a) Find the Cartesian

More information

Answers to practice questions for Midterm 1

Answers to practice questions for Midterm 1 Answers to practice questions for Midterm Paul Hacking /5/9 (a The RREF (reduced row echelon form of the augmented matrix is So the system of linear equations has exactly one solution given by x =, y =,

More information

Bends, Jogs, And Wiggles for Railroad Tracks and Vehicle Guide Ways

Bends, Jogs, And Wiggles for Railroad Tracks and Vehicle Guide Ways Ben, Jogs, An Wiggles for Railroa Tracks an Vehicle Guie Ways Louis T. Klauer Jr., PhD, PE. Work Soft 833 Galer Dr. Newtown Square, PA 19073 lklauer@wsof.com Preprint, June 4, 00 Copyright 00 by Louis

More information

CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES

CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES YINGYING REN Abstract. In this paper, the applications of homogeneous coordinates are discussed to obtain an efficient model

More information

MATHEMATICS FOR ENGINEERING TUTORIAL 5 COORDINATE SYSTEMS

MATHEMATICS FOR ENGINEERING TUTORIAL 5 COORDINATE SYSTEMS MATHEMATICS FOR ENGINEERING TUTORIAL 5 COORDINATE SYSTEMS This tutorial is essential pre-requisite material for anyone studying mechanical engineering. This tutorial uses the principle of learning by example.

More information

Unit 2: Trigonometry. This lesson is not covered in your workbook. It is a review of trigonometry topics from previous courses.

Unit 2: Trigonometry. This lesson is not covered in your workbook. It is a review of trigonometry topics from previous courses. Unit 2: Trigonometry This lesson is not covered in your workbook. It is a review of trigonometry topics from previous courses. Pythagorean Theorem Recall that, for any right angled triangle, the square

More information

2D Image Transforms Computer Vision (Kris Kitani) Carnegie Mellon University

2D Image Transforms Computer Vision (Kris Kitani) Carnegie Mellon University 2D Image Transforms 16-385 Computer Vision (Kris Kitani) Carnegie Mellon University Extract features from an image what do we do next? Feature matching (object recognition, 3D reconstruction, augmented

More information

Exercises of PIV. incomplete draft, version 0.0. October 2009

Exercises of PIV. incomplete draft, version 0.0. October 2009 Exercises of PIV incomplete raft, version 0.0 October 2009 1 Images Images are signals efine in 2D or 3D omains. They can be vector value (e.g., color images), real (monocromatic images), complex or binary

More information

Differentiation Using Product and Quotient Rule 1

Differentiation Using Product and Quotient Rule 1 Differentiation Using Prouct an Quotient Rule 1 1.. ( + 1)( + + 1) + 1 + +. 4. (7 + 15) ( 7 + 15) 5. 6. ( + 7) (5 + 14) 7. 9. + 4 ( 1) (10 + ) 8 + 49 6 4 + 7 10. 8. 1 4 1 11. 1. 1 ( + 1) ( 1) 1. 04 + 59

More information

Math Boot Camp: Coordinate Systems

Math Boot Camp: Coordinate Systems Math Boot Camp: Coordinate Systems You can skip this boot camp if you can answer the following question: Staying on a sphere of radius R, what is the shortest distance between the point (0, 0, R) on the

More information

Vector Calculus: Understanding the Cross Product

Vector Calculus: Understanding the Cross Product University of Babylon College of Engineering Mechanical Engineering Dept. Subject : Mathematics III Class : 2 nd year - first semester Date: / 10 / 2016 2016 \ 2017 Vector Calculus: Understanding the Cross

More information

Inverse Kinematics. Given a desired position (p) & orientation (R) of the end-effector

Inverse Kinematics. Given a desired position (p) & orientation (R) of the end-effector Inverse Kinematics Given a desired position (p) & orientation (R) of the end-effector q ( q, q, q ) 1 2 n Find the joint variables which can bring the robot the desired configuration z y x 1 The Inverse

More information

A Quick Review of Trigonometry

A Quick Review of Trigonometry A Quick Review of Trigonometry As a starting point, we consider a ray with vertex located at the origin whose head is pointing in the direction of the positive real numbers. By rotating the given ray (initial

More information

Ch. 7.4, 7.6, 7.7: Complex Numbers, Polar Coordinates, ParametricFall equations / 17

Ch. 7.4, 7.6, 7.7: Complex Numbers, Polar Coordinates, ParametricFall equations / 17 Ch. 7.4, 7.6, 7.7: Complex Numbers, Polar Coordinates, Parametric equations Johns Hopkins University Fall 2014 Ch. 7.4, 7.6, 7.7: Complex Numbers, Polar Coordinates, ParametricFall equations 2014 1 / 17

More information

Fundamentals of Robotics Study of a Robot - Chapter 2 and 3

Fundamentals of Robotics Study of a Robot - Chapter 2 and 3 Fundamentals of Robotics Study of a Robot - Chapter 2 and 3 Sergi Valverde u1068016@correu.udg.edu Daniel Martínez u1068321@correu.udg.edu June 9, 2011 1 Introduction This report introduces the second

More information

+ i a y )( cosφ + isinφ) ( ) + i( a x. cosφ a y. = a x

+ i a y )( cosφ + isinφ) ( ) + i( a x. cosφ a y. = a x Rotation Matrices and Rotated Coordinate Systems Robert Bernecky April, 2018 Rotated Coordinate Systems is a confusing topic, and there is no one standard or approach 1. The following provides a simplified

More information

Trigonometry. 9.1 Radian and Degree Measure

Trigonometry. 9.1 Radian and Degree Measure Trigonometry 9.1 Radian and Degree Measure Angle Measures I am aware of three ways to measure angles: degrees, radians, and gradians. In all cases, an angle in standard position has its vertex at the origin,

More information

Table of Laplace Transforms

Table of Laplace Transforms Table of Laplace Transforms 1 1 2 3 4, p > -1 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Heaviside Function 27 28. Dirac Delta Function 29 30. 31 32. 1 33 34. 35 36. 37 Laplace Transforms

More information

MTH 120 Fall 2007 Essex County College Division of Mathematics Handout Version 6 1 October 3, 2007

MTH 120 Fall 2007 Essex County College Division of Mathematics Handout Version 6 1 October 3, 2007 MTH 10 Fall 007 Essex County College Division of Mathematics Handout Version 6 1 October, 007 1 Inverse Functions This section is a simple review of inverses as presented in MTH-119. Definition: A function

More information

Forward kinematics and Denavit Hartenburg convention

Forward kinematics and Denavit Hartenburg convention Forward kinematics and Denavit Hartenburg convention Prof. Enver Tatlicioglu Department of Electrical & Electronics Engineering Izmir Institute of Technology Chapter 5 Dr. Tatlicioglu (EEE@IYTE) EE463

More information

(a) Find the equation of the plane that passes through the points P, Q, and R.

(a) Find the equation of the plane that passes through the points P, Q, and R. Math 040 Miterm Exam 1 Spring 014 S o l u t i o n s 1 For given points P (, 0, 1), Q(, 1, 0), R(3, 1, 0) an S(,, 0) (a) Fin the equation of the plane that passes through the points P, Q, an R P Q = 0,

More information

COMP30019 Graphics and Interaction Three-dimensional transformation geometry and perspective

COMP30019 Graphics and Interaction Three-dimensional transformation geometry and perspective COMP30019 Graphics and Interaction Three-dimensional transformation geometry and perspective Department of Computing and Information Systems The Lecture outline Introduction Rotation about artibrary axis

More information

Computer Graphics with OpenGL ES (J. Han) Chapter IV Spaces and Transforms

Computer Graphics with OpenGL ES (J. Han) Chapter IV Spaces and Transforms Chapter IV Spaces and Transforms Scaling 2D scaling with the scaling factors, s x and s y, which are independent. Examples When a polygon is scaled, all of its vertices are processed by the same scaling

More information

521493S Computer Graphics Exercise 2 Solution (Chapters 4-5)

521493S Computer Graphics Exercise 2 Solution (Chapters 4-5) 5493S Computer Graphics Exercise Solution (Chapters 4-5). Given two nonparallel, three-dimensional vectors u and v, how can we form an orthogonal coordinate system in which u is one of the basis vectors?

More information

CONSTRUCTION AND ANALYSIS OF INVERSIONS IN S 2 AND H 2. Arunima Ray. Final Paper, MATH 399. Spring 2008 ABSTRACT

CONSTRUCTION AND ANALYSIS OF INVERSIONS IN S 2 AND H 2. Arunima Ray. Final Paper, MATH 399. Spring 2008 ABSTRACT CONSTUCTION AN ANALYSIS OF INVESIONS IN S AN H Arunima ay Final Paper, MATH 399 Spring 008 ASTACT The construction use to otain inversions in two-imensional Eucliean space was moifie an applie to otain

More information

Graphing Trigonometric Functions: Day 1

Graphing Trigonometric Functions: Day 1 Graphing Trigonometric Functions: Day 1 Pre-Calculus 1. Graph the six parent trigonometric functions.. Apply scale changes to the six parent trigonometric functions. Complete the worksheet Exploration:

More information

Robot Inverse Kinematics Asanga Ratnaweera Department of Mechanical Engieering

Robot Inverse Kinematics Asanga Ratnaweera Department of Mechanical Engieering PR 5 Robot Dynamics & Control /8/7 PR 5: Robot Dynamics & Control Robot Inverse Kinematics Asanga Ratnaweera Department of Mechanical Engieering The Inverse Kinematics The determination of all possible

More information

AP Calculus Summer Review Packet

AP Calculus Summer Review Packet AP Calculus Summer Review Packet Name: Date began: Completed: **A Formula Sheet has been stapled to the back for your convenience!** Email anytime with questions: danna.seigle@henry.k1.ga.us Complex Fractions

More information

autorob.github.io Inverse Kinematics UM EECS 398/598 - autorob.github.io

autorob.github.io Inverse Kinematics UM EECS 398/598 - autorob.github.io autorob.github.io Inverse Kinematics Objective (revisited) Goal: Given the structure of a robot arm, compute Forward kinematics: predicting the pose of the end-effector, given joint positions. Inverse

More information

Modeling Transformations

Modeling Transformations Modeling Transformations Connelly Barnes CS 4810: Graphics Acknowledgment: slides by Connelly Barnes, Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin Modeling Transformations

More information

1 Introduction to Matlab

1 Introduction to Matlab 1 Introduction to Matlab 1. What is Matlab? Matlab is a computer program designed to do mathematics. You might think of it as a super-calculator. That is, once Matlab has been started, you can enter computations,

More information

Planar Robot Kinematics

Planar Robot Kinematics V. Kumar lanar Robot Kinematics The mathematical modeling of spatial linkages is quite involved. t is useful to start with planar robots because the kinematics of planar mechanisms is generally much simpler

More information

Matrix Inverse 2 ( 2) 1 = 2 1 2

Matrix Inverse 2 ( 2) 1 = 2 1 2 Name: Matrix Inverse For Scalars, we have what is called a multiplicative identity. This means that if we have a scalar number, call it r, then r multiplied by the multiplicative identity equals r. Without

More information

3D Rotations and Complex Representations. Computer Graphics CMU /15-662, Fall 2017

3D Rotations and Complex Representations. Computer Graphics CMU /15-662, Fall 2017 3D Rotations and Complex Representations Computer Graphics CMU 15-462/15-662, Fall 2017 Rotations in 3D What is a rotation, intuitively? How do you know a rotation when you see it? - length/distance is

More information

Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations

Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations 1 Definition of polar coordinates Let us first recall the definition of Cartesian coordinates: to each point in the plane we can

More information

Lecture 3.5: Sumary of Inverse Kinematics Solutions

Lecture 3.5: Sumary of Inverse Kinematics Solutions MCE/EEC 647/747: Robot Dynamics and Control Lecture 3.5: Sumary of Inverse Kinematics Solutions Reading: SHV Sect.2.5.1, 3.3 Mechanical Engineering Hanz Richter, PhD MCE647 p.1/13 Inverse Orientation:

More information

Robotics kinematics and Dynamics

Robotics kinematics and Dynamics Robotics kinematics and Dynamics C. Sivakumar Assistant Professor Department of Mechanical Engineering BSA Crescent Institute of Science and Technology 1 Robot kinematics KINEMATICS the analytical study

More information

TABLE OF CONTENTS CHAPTER 1 LIMIT AND CONTINUITY... 26

TABLE OF CONTENTS CHAPTER 1 LIMIT AND CONTINUITY... 26 TABLE OF CONTENTS CHAPTER LIMIT AND CONTINUITY... LECTURE 0- BASIC ALGEBRAIC EXPRESSIONS AND SOLVING EQUATIONS... LECTURE 0- INTRODUCTION TO FUNCTIONS... 9 LECTURE 0- EXPONENTIAL AND LOGARITHMIC FUNCTIONS...

More information

Section 4.1: Introduction to Trigonometry

Section 4.1: Introduction to Trigonometry Section 4.1: Introduction to Trigonometry Review of Triangles Recall that the sum of all angles in any triangle is 180. Let s look at what this means for a right triangle: A right angle is an angle which

More information

Fall 2015 Trigonometry: Week 7

Fall 2015 Trigonometry: Week 7 Fall 2015 Trigonometry: Week 7 Today s Topics/Activities: 1. More Practice Solving Equations 2. More Practice Graphing and Unsolving (by framing) 3. Ungraphing From Data Points 4. Ungraphing From Stories

More information

4.7a Trig Inverses.notebook September 18, 2014

4.7a Trig Inverses.notebook September 18, 2014 WARM UP 9 18 14 Recall from Algebra 2 (or possibly see for the first time...): In order for a function to have an inverse that is also a function, it must be one to one, which means it must pass the horizontal

More information

Visualisation Pipeline : The Virtual Camera

Visualisation Pipeline : The Virtual Camera Visualisation Pipeline : The Virtual Camera The Graphics Pipeline 3D Pipeline The Virtual Camera The Camera is defined by using a parallelepiped as a view volume with two of the walls used as the near

More information

Chapter 2 Trigonometry

Chapter 2 Trigonometry Chapter 2 Trigonometry 1 Chapter 2 Trigonometry Angles in Standard Position Angles in Standard Position Any angle may be viewed as the rotation of a ray about its endpoint. The starting position of the

More information

GCSE Maths: Formulae you ll need to know not

GCSE Maths: Formulae you ll need to know not GCSE Maths: Formulae you ll need to know As provided by AQA, these are the formulae required for the new GCSE These will not be given in the exam, so you will need to recall as well as use these formulae.

More information

A Simple Introduction to Omni Roller Robots (3rd April 2015)

A Simple Introduction to Omni Roller Robots (3rd April 2015) A Simple Introduction to Omni Roller Robots (3rd April 2015) Omni wheels have rollers all the way round the tread so they can slip laterally as well as drive in the direction of a regular wheel. The three-wheeled

More information

Supplementary Material: The Rotation Matrix

Supplementary Material: The Rotation Matrix Supplementary Material: The Rotation Matrix Computer Science 4766/6778 Department of Computer Science Memorial University of Newfoundland January 16, 2014 COMP 4766/6778 (MUN) The Rotation Matrix January

More information

Introduction to Homogeneous Transformations & Robot Kinematics

Introduction to Homogeneous Transformations & Robot Kinematics Introduction to Homogeneous Transformations & Robot Kinematics Jennifer Ka Rowan Universit Computer Science Department. Drawing Dimensional Frames in 2 Dimensions We will be working in -D coordinates,

More information

1 Surprises in high dimensions

1 Surprises in high dimensions 1 Surprises in high imensions Our intuition about space is base on two an three imensions an can often be misleaing in high imensions. It is instructive to analyze the shape an properties of some basic

More information

SECTION 2. Objectives. Identify appropriate coordinate systems for solving problems with vectors.

SECTION 2. Objectives. Identify appropriate coordinate systems for solving problems with vectors. SECTION 2 Plan an Prepare Preview Vocabular Scientific Meaning The wor simultaneous is use for phenomena that occur together at the same time. Ask stuents to list some simultaneous phenomena, such as the

More information

Math 7 Elementary Linear Algebra PLOTS and ROTATIONS

Math 7 Elementary Linear Algebra PLOTS and ROTATIONS Spring 2007 PLOTTING LINE SEGMENTS Math 7 Elementary Linear Algebra PLOTS and ROTATIONS Example 1: Suppose you wish to use MatLab to plot a line segment connecting two points in the xy-plane. Recall that

More information

Today. Parity. General Polygons? Non-Zero Winding Rule. Winding Numbers. CS559 Lecture 11 Polygons, Transformations

Today. Parity. General Polygons? Non-Zero Winding Rule. Winding Numbers. CS559 Lecture 11 Polygons, Transformations CS559 Lecture Polygons, Transformations These are course notes (not used as slides) Written by Mike Gleicher, Oct. 005 With some slides adapted from the notes of Stephen Chenney Final version (after class)

More information

3D Transformations and Complex Representations. Computer Graphics CMU /15-662, Fall 2016

3D Transformations and Complex Representations. Computer Graphics CMU /15-662, Fall 2016 3D Transformations and Complex Representations Computer Graphics CMU 15-462/15-662, Fall 2016 Quiz 4: Trees and Transformations Student solutions (beautiful!): Rotations in 3D What is a rotation, intuitively?

More information

CS 106 Winter 2016 Craig S. Kaplan. Module 01 Processing Recap. Topics

CS 106 Winter 2016 Craig S. Kaplan. Module 01 Processing Recap. Topics CS 106 Winter 2016 Craig S. Kaplan Moule 01 Processing Recap Topics The basic parts of speech in a Processing program Scope Review of syntax for classes an objects Reaings Your CS 105 notes Learning Processing,

More information

Industrial Robots : Manipulators, Kinematics, Dynamics

Industrial Robots : Manipulators, Kinematics, Dynamics Industrial Robots : Manipulators, Kinematics, Dynamics z z y x z y x z y y x x In Industrial terms Robot Manipulators The study of robot manipulators involves dealing with the positions and orientations

More information

EEE 187: Robotics Summary 2

EEE 187: Robotics Summary 2 1 EEE 187: Robotics Summary 2 09/05/2017 Robotic system components A robotic system has three major components: Actuators: the muscles of the robot Sensors: provide information about the environment and

More information

Game Engineering CS S-05 Linear Transforms

Game Engineering CS S-05 Linear Transforms Game Engineering CS420-2016S-05 Linear Transforms David Galles Department of Computer Science University of San Francisco 05-0: Matrices as Transforms Recall that Matrices are transforms Transform vectors

More information

PreCalculus Unit 1: Unit Circle Trig Quiz Review (Day 9)

PreCalculus Unit 1: Unit Circle Trig Quiz Review (Day 9) PreCalculus Unit 1: Unit Circle Trig Quiz Review (Day 9) Name Date Directions: You may NOT use Right Triangle Trigonometry for any of these problems! Use your unit circle knowledge to solve these problems.

More information

Trig for right triangles is pretty straightforward. The three, basic trig functions are just relationships between angles and sides of the triangle.

Trig for right triangles is pretty straightforward. The three, basic trig functions are just relationships between angles and sides of the triangle. Lesson 10-1: 1: Right ngle Trig By this point, you ve probably had some basic trigonometry in either algebra 1 or geometry, but we re going to hash through the basics again. If it s all review, just think

More information

Polar Coordinates. OpenStax. 1 Dening Polar Coordinates

Polar Coordinates. OpenStax. 1 Dening Polar Coordinates OpenStax-CNX module: m53852 1 Polar Coordinates OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License 4.0 Abstract Locate points

More information

Introduction to Robotics

Introduction to Robotics Université de Strasbourg Introduction to Robotics Bernard BAYLE, 2013 http://eavr.u-strasbg.fr/ bernard Modelling of a SCARA-type robotic manipulator SCARA-type robotic manipulators: introduction SCARA-type

More information

Sec 4.1 Coordinates and Scatter Plots. Coordinate Plane: Formed by two real number lines that intersect at a right angle.

Sec 4.1 Coordinates and Scatter Plots. Coordinate Plane: Formed by two real number lines that intersect at a right angle. Algebra I Chapter 4 Notes Name Sec 4.1 Coordinates and Scatter Plots Coordinate Plane: Formed by two real number lines that intersect at a right angle. X-axis: The horizontal axis Y-axis: The vertical

More information

2.0 Trigonometry Review Date: Pythagorean Theorem: where c is always the.

2.0 Trigonometry Review Date: Pythagorean Theorem: where c is always the. 2.0 Trigonometry Review Date: Key Ideas: The three angles in a triangle sum to. Pythagorean Theorem: where c is always the. In trigonometry problems, all vertices (corners or angles) of the triangle are

More information

A Versatile Model-Based Visibility Measure for Geometric Primitives

A Versatile Model-Based Visibility Measure for Geometric Primitives A Versatile Moel-Base Visibility Measure for Geometric Primitives Marc M. Ellenrieer 1,LarsKrüger 1, Dirk Stößel 2, an Marc Hanheie 2 1 DaimlerChrysler AG, Research & Technology, 89013 Ulm, Germany 2 Faculty

More information

UPCAT Reviewer Booklet

UPCAT Reviewer Booklet UPCAT Reviewer Booklet I. Linear Equations y = y-value at a certain point in the graph x = x-value at a certain point in the graph b = a constant m = the slope of the line Section 1 Mathematics Linear

More information

Considering bounds for approximation of 2 M to 3 N

Considering bounds for approximation of 2 M to 3 N Consiering bouns for approximation of to (version. Abstract: Estimating bouns of best approximations of to is iscusse. In the first part I evelop a powerseries, which shoul give practicable limits for

More information

Holy Halved Heaquarters Riddler

Holy Halved Heaquarters Riddler Holy Halve Heaquarters Riler Anonymous Philosopher June 206 Laser Larry threatens to imminently zap Riler Heaquarters (which is of regular pentagonal shape with no courtyar or other funny business) with

More information

CS269I: Incentives in Computer Science Lecture #8: Incentives in BGP Routing

CS269I: Incentives in Computer Science Lecture #8: Incentives in BGP Routing CS269I: Incentives in Computer Science Lecture #8: Incentives in BGP Routing Tim Roughgaren October 19, 2016 1 Routing in the Internet Last lecture we talke about elay-base (or selfish ) routing, which

More information

Lesson #6: Basic Transformations with the Absolute Value Function

Lesson #6: Basic Transformations with the Absolute Value Function Lesson #6: Basic Transformations with the Absolute Value Function Recall: Piecewise Functions Graph:,, What parent function did this piecewise function create? The Absolute Value Function Algebra II with

More information

Polynomials. Math 4800/6080 Project Course

Polynomials. Math 4800/6080 Project Course Polnomials. Math 4800/6080 Project Course 2. The Plane. Boss, boss, ze plane, ze plane! Tattoo, Fantas Island The points of the plane R 2 are ordered pairs (x, ) of real numbers. We ll also use vector

More information

4. Use of complex numbers in deriving a solution to an LTI ODE with sinusoidal signal, and getting from such an expression to amplitude and phase lag

4. Use of complex numbers in deriving a solution to an LTI ODE with sinusoidal signal, and getting from such an expression to amplitude and phase lag Learning objectives Phase Line: 1. Interpretation of the phase line: critical points, stable vs unstable, and filling in nonconstant solutions. Horizontal translation carries solutions to other solutions.

More information

AQA GCSE Further Maths Topic Areas

AQA GCSE Further Maths Topic Areas AQA GCSE Further Maths Topic Areas This document covers all the specific areas of the AQA GCSE Further Maths course, your job is to review all the topic areas, answering the questions if you feel you need

More information

METR 4202: Advanced Control & Robotics

METR 4202: Advanced Control & Robotics Position & Orientation & State t home with Homogenous Transformations METR 4202: dvanced Control & Robotics Drs Surya Singh, Paul Pounds, and Hanna Kurniawati Lecture # 2 July 30, 2012 metr4202@itee.uq.edu.au

More information

CALCULUS II. Parametric Equations and Polar Coordinates. Paul Dawkins

CALCULUS II. Parametric Equations and Polar Coordinates. Paul Dawkins CALCULUS II Parametric Equations and Polar Coordinates Paul Dawkins Table of Contents Preface... ii Parametric Equations and Polar Coordinates... 3 Introduction... 3 Parametric Equations and Curves...

More information

Game Engineering CS S-07 Homogenous Space and 4x4 Matrices

Game Engineering CS S-07 Homogenous Space and 4x4 Matrices Game Engineering CS420-2014S-07 Homogenous Space and 4x4 Matrices David Galles Department of Computer Science University of San Francisco 07-0: Matrices and Translations Matrices are great for rotations,

More information

Additional Divide and Conquer Algorithms. Skipping from chapter 4: Quicksort Binary Search Binary Tree Traversal Matrix Multiplication

Additional Divide and Conquer Algorithms. Skipping from chapter 4: Quicksort Binary Search Binary Tree Traversal Matrix Multiplication Aitional Divie an Conquer Algorithms Skipping from chapter 4: Quicksort Binary Search Binary Tree Traversal Matrix Multiplication Divie an Conquer Closest Pair Let s revisit the closest pair problem. Last

More information