Sensor Networks for the Detection and Tracking of Radiation and Other Threats in Cities

Size: px
Start display at page:

Download "Sensor Networks for the Detection and Tracking of Radiation and Other Threats in Cities"

Transcription

1 Fakultät Informatik Institut für Systemarchitektur Professur Rechnernetze Sensor Networks for the Detection and Tracking of Radiation and Other Threats in Cities Annie H. Liu, Julian J. Bunn, K. Mani Chandy Presenter: Mariam Zia Supervisor: Dr.-Ing. habil. Waltenegus Dargie Chair of Computer Networks TU Dresden

2 Introduction FUKUSHIMA nuclear reactor raises a threat to the whole man kind. radiation affects even the milk products and the vegetables in Japan. Nuclear radiations can cause Blood cancer Destruction of blood vessels and even DEATH and many more Germany: Nuclear power plants to close by BBC News Folie 2

3 Contribution Approach for detecting and tracking radiation threats Three scenarios Detecting static threats in open fields Bayesian,Parametric and Integrated Algorithm Sensor Threat Folie 3

4 Contribution Approach for detecting and tracking radiation threats Three scenarios Detecting static threats in open fields Bayesian,Parametric and Integrated Algorithm Tracking mobile sources in open fields Integrated Algorithm, Modified Bayesian and parametric algorithm j Sensor Base Station Threat j Folie 4

5 Contribution Approach for detecting and tracking radiation threats Three scenarios Detecting static threats in open fields Bayesian,Parametric and Integrated Algorithm Tracking mobile sources in open fields Integrated Algorithm, Modified Bayesian and parametric algorithm Threat detection in city streets Optimizing number of sensors and speed Optimal strategy for patrolling Folie 5

6 Contribution Approach for detecting and tracking radiation threats Three scenarios Detecting static threats in open fields Bayesian,Parametric and Integrated Algorithm Tracking mobile sources in open fields Integrated Algorithm, Modified Bayesian and parametric algorithm Threat detection in city streets Optimizing number of sensors and speed Optimal strategy for patrolling Algorithm that optimize sensor placement Folie 6

7 Problem definition Network of identical sensors Base station Knows location of sensors M sensors j 1,, M S j = location of sensor PDF = μ, D, S j, t μ = photons/ second D = location of threat n j t = Measurement by sensor j in time interval,0 t- j Determine Threat present or not? Location of threat? Magnitude of threat? Sensor S j = *x, y, z+ n j t = A j Message (n j t, t) Base Station Threat Folie 7

8 Background noise Sources Challenges brick, rocks, concrete,etc. and sensors Two options to model Homogeneous noise background noise uniform Heterogeneous noise Difficult to make a priori estimate about noise Need the knowledge of radioactive materials present Folie 8

9 SCENARIO 1: Detecting static threats in open fields Folie 9

10 Integrated Detection Algorithm Parametric Algorithm Priors construction Bayesian Algorithm Detected? Localized? Parametric Algorithm Ksigma Background noise Threat location Threat Intensity Probability of source present Bayesian Algorithm Takes as input a priori probability Calculates a posteriori probability Requires good prior estimates Parameters estimated by K sigma Algorithm Folie 10

11 K-Sigma Algorithm Dynamic sensor grouping Values from all the sensors are not relevant Grouping of sensors using Delaunay triangulation Partitions the space into triangles Ksigma Priors construction Bayesian Detected? Localized? Folie 11

12 K-Sigma Algorithm Detected? Ksigma Priors construction Bayesian Estimating background radiation Assume that background noise is uniform Break region into quadrilateral cells Cell count: total number of photons count in each cell Cell with minimum average photon count as background count Localized? Folie 12

13 K-Sigma Algorithm Detected? Ksigma Priors construction Bayesian Estimating whether a threat is present Four possible source configurations a,b,c,d Estimate average count from each single sensor, pair of sensors (edge), sensors at corner of triangles and each cell. Compute the number of standard deviations k sigma as ksigma = (N Γ)/ Γ N = groups aggregate radiation count Γ = groups aggregate count form background estimate Localized? Γ = standard deviation of process c b a d Folie 13

14 Estimating threat intensity Photon count from the background at one sensor (Γ) Photons measured at sensor j (n j ) Flux decreases as 1/ s j x 2 Intensity estimate for sensor j for source located at x μ j x x n j Γ = v j where vj x = C μ S j x 2 j x T μ j x = v j x C T = Intensity of source at location x C = Constant of proportionality T = Time interval K-Sigma Algorithm Ksigma Priors construction Bayesian Detected? Localized? Folie 14

15 Estimating source location K-Sigma Algorithm Select quadrilateral with largest value of k sigma Compute v j (x) for all sensors in this quadrilateral for all x Find location x most consistent to threats location by computing the variance estimate m L x = v j x v x j=1 2 Ksigma Priors construction Bayesian Detected? Localized? v 1 (x 1 ) where v j x = (n j Γ) S j x 2 1 x 2 x 3 x 1 2 v 2 (x 1 ) x 4 3 v 3 (x 1 ) x 5 4 v 4 (x 1 ) Folie 15

16 Bayesian Algorithm Detected? Ksigma Priors construction Bayesian Compute a posteriori probability distribution based on a given priori distribution and likely hood values Localized? π θ = L θ; n π 0 (θ) π 0 = prior PDF π = posterior PDF θ = parameters we want to estimate L is the likelihood of observing n = n 1, n 2. n 3,, n m photons at detector j = 1,2,, m If a posteriori exceeds the threshold then we say a source is present or not. Folie 16

17 Simulation static source From Simulation for Detection and localization Radiation sensor used IPRL (Intelligent Portable Radiation Locator) grid 9 sensors Source 1mCi Cesium-137 Folie 17

18 Simulation Results static source T = 9 sec ROC- Detection results 30% of time localizes within 10 m DOCA- Localization results <20% of time localizes within 10 m T = 60 sec 80% of time localizes within 10 m 40% of time localizes within 10 m Folie 18

19 From testbed setup 3 2 grid 6 IPRL-6 sensors Source Cesium-137 Detection threshold= 0.5 Localization computed after detection At T = 60 shielding was removed Testbed Results static source Bayesian algorithm with prior probability of source present = 0.1 Source shielded Detection Results m Localization results Folie 19

20 SCENARIO 2: Tracking mobile sources in open fields Folie 20

21 Modified Parametric Algorithm Integrated Detection Algorithm Priors construction Modifications to parametric algorithm Compute adjusted weighted sum of all measurements Exponentially decay weights of old measurements T W = n t e (t T)/T 0 t=0 Modification to Bayesian Algorithm Kalman filter- used for object tracking Equal probability of moving in all directions Modified Bayesian Algorithm T 0 : decay constant Detected? Localized? Allows for smooth weight transfer by redistributing the weight of current source position estimate x to its neighbor y within radius R Z is the redistribution factor π D = y π D = y + Z π(d = x ) R2 π D = x (1 Z) π(d = x ) Folie 21

22 Simulation Results moving source Trajectory A Trajectory B The integrated algorithm shows slight improvement over parametric method in tracking a weak moving source Slide from [3] Folie 22

23 Testbed Results moving source Trajectory A 3.5 m 15 m Trajectory A Trajectory B 20 m Trajectory B Slide From [3] Folie 23

24 SCENARIO 3: Threat detection in city streets Folie 24

25 Threat Detection in City Street Background data collected by two large NaI scintillators placed in rear of van Simulated Road Side detection Detectors travel city street at constant speed 1mCi unshielded isotropic source placed at random K sigma threshold used to tell if threat present When detected simulation run terminated and record the elapsed time for detection Officers search nearby area Folie 25

26 Threat Detection in City Street How many sensors do we need? How fast should the sensor move? Folie 26

27 Threat Detection in City Street What should be the travelling strategy? Equal probability? Suboptimal Deterministic manner? Can be exploited Probabilistic strategy that specify the probability of given turn. Maximize the minimum flow among all streets Folie 27

28 OPTIMIZING SENSOR PLACEMENT Folie 28

29 Detection function definition Ability of a sensor to make correct detection decision drops as the sensor moves away from anomaly F = TPR map = 1 (1 Φ N (λ x, Γ(s))) x N n=1 dx Φ N = TPR sensor N = total number of sensors λ = f μ, x, s Signal strength Γ = s Noise strength Folie 29

30 Greedy Approximate Algorithm Algorithm for preferred placement of static threats Goal is to maximize detection function F at each step Guaranteed to perform at least a fraction of 1 1/e if function is monotone (preserves the order) Log F N + 1 Log F N 0 ten F N + 1 F(N) 0 submodular (incremental value of object diminishes in a larger context) Folie 30

31 9 seconds 600 seconds Simulation results Non-uniform background The computed placement outperforms the even-spacing placement. Folie 31

32 Comparison Approaches Current approach A Controlled Search for Radioactive Point Sources Sources Static and mobile sources Detection time 100s s Only for Static sources localization error 6.6m m 4.7m 8.6m Folie 32

33 References [1] Annie H. Liu, Julian J. Bunn, K. Mani Chandy Sensor Networks for the Detection and Tracking of Radiation and Other Threats in Cities [2] B Ristic, M Morelande, and A Gunatilaka. A controlled search for radioactive point sources. [3] Slides from talk of Annie H.Liu Folie 33

Sensor Tasking and Control

Sensor Tasking and Control Sensor Tasking and Control Outline Task-Driven Sensing Roles of Sensor Nodes and Utilities Information-Based Sensor Tasking Joint Routing and Information Aggregation Summary Introduction To efficiently

More information

Application of MCNP Code in Shielding Design for Radioactive Sources

Application of MCNP Code in Shielding Design for Radioactive Sources Application of MCNP Code in Shielding Design for Radioactive Sources Ibrahim A. Alrammah Abstract This paper presents three tasks: Task 1 explores: the detected number of as a function of polythene moderator

More information

Biometrics Technology: Image Processing & Pattern Recognition (by Dr. Dickson Tong)

Biometrics Technology: Image Processing & Pattern Recognition (by Dr. Dickson Tong) Biometrics Technology: Image Processing & Pattern Recognition (by Dr. Dickson Tong) References: [1] http://homepages.inf.ed.ac.uk/rbf/hipr2/index.htm [2] http://www.cs.wisc.edu/~dyer/cs540/notes/vision.html

More information

Non-Bayesian Classifiers Part I: k-nearest Neighbor Classifier and Distance Functions

Non-Bayesian Classifiers Part I: k-nearest Neighbor Classifier and Distance Functions Non-Bayesian Classifiers Part I: k-nearest Neighbor Classifier and Distance Functions Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Fall 2017 CS 551,

More information

Computer Vision I - Filtering and Feature detection

Computer Vision I - Filtering and Feature detection Computer Vision I - Filtering and Feature detection Carsten Rother 30/10/2015 Computer Vision I: Basics of Image Processing Roadmap: Basics of Digital Image Processing Computer Vision I: Basics of Image

More information

Inversion via Bayesian Multimodal Iterative Adaptive Processing (MIAP)

Inversion via Bayesian Multimodal Iterative Adaptive Processing (MIAP) Inversion via Bayesian Multimodal Iterative Adaptive Processing (MIAP) Leslie Collins, Yongli Yu, Peter Torrione, and Mark Kolba Electrical and Computer Engineering Duke University Work supported by DARPA/ARO

More information

Part I. Hierarchical clustering. Hierarchical Clustering. Hierarchical clustering. Produces a set of nested clusters organized as a

Part I. Hierarchical clustering. Hierarchical Clustering. Hierarchical clustering. Produces a set of nested clusters organized as a Week 9 Based in part on slides from textbook, slides of Susan Holmes Part I December 2, 2012 Hierarchical Clustering 1 / 1 Produces a set of nested clusters organized as a Hierarchical hierarchical clustering

More information

Expectation-Maximization. Nuno Vasconcelos ECE Department, UCSD

Expectation-Maximization. Nuno Vasconcelos ECE Department, UCSD Expectation-Maximization Nuno Vasconcelos ECE Department, UCSD Plan for today last time we started talking about mixture models we introduced the main ideas behind EM to motivate EM, we looked at classification-maximization

More information

Maximizing the Spread of Influence through a Social Network. David Kempe, Jon Kleinberg and Eva Tardos

Maximizing the Spread of Influence through a Social Network. David Kempe, Jon Kleinberg and Eva Tardos Maximizing the Spread of Influence through a Social Network David Kempe, Jon Kleinberg and Eva Tardos Group 9 Lauren Thomas, Ryan Lieblein, Joshua Hammock and Mary Hanvey Introduction In a social network,

More information

Segmentation and Grouping

Segmentation and Grouping Segmentation and Grouping How and what do we see? Fundamental Problems ' Focus of attention, or grouping ' What subsets of pixels do we consider as possible objects? ' All connected subsets? ' Representation

More information

Generative and discriminative classification techniques

Generative and discriminative classification techniques Generative and discriminative classification techniques Machine Learning and Category Representation 2014-2015 Jakob Verbeek, November 28, 2014 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.14.15

More information

Analysis of ARES Data using ML-EM

Analysis of ARES Data using ML-EM Analysis of ARES Data using ML-EM Nicole Eikmeier Hosting Site: Lawrence Berkeley National Laboratory Mentor(s): Brian Quiter, Mark Bandstra Abstract. Imaging analysis of background data collected from

More information

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition Pattern Recognition Kjell Elenius Speech, Music and Hearing KTH March 29, 2007 Speech recognition 2007 1 Ch 4. Pattern Recognition 1(3) Bayes Decision Theory Minimum-Error-Rate Decision Rules Discriminant

More information

Machine Learning A W 1sst KU. b) [1 P] Give an example for a probability distributions P (A, B, C) that disproves

Machine Learning A W 1sst KU. b) [1 P] Give an example for a probability distributions P (A, B, C) that disproves Machine Learning A 708.064 11W 1sst KU Exercises Problems marked with * are optional. 1 Conditional Independence I [2 P] a) [1 P] Give an example for a probability distribution P (A, B, C) that disproves

More information

Clustering Lecture 5: Mixture Model

Clustering Lecture 5: Mixture Model Clustering Lecture 5: Mixture Model Jing Gao SUNY Buffalo 1 Outline Basics Motivation, definition, evaluation Methods Partitional Hierarchical Density-based Mixture model Spectral methods Advanced topics

More information

Computer Vision I - Basics of Image Processing Part 1

Computer Vision I - Basics of Image Processing Part 1 Computer Vision I - Basics of Image Processing Part 1 Carsten Rother 28/10/2014 Computer Vision I: Basics of Image Processing Link to lectures Computer Vision I: Basics of Image Processing 28/10/2014 2

More information

Robot Mapping. Grid Maps. Gian Diego Tipaldi, Wolfram Burgard

Robot Mapping. Grid Maps. Gian Diego Tipaldi, Wolfram Burgard Robot Mapping Grid Maps Gian Diego Tipaldi, Wolfram Burgard 1 Features vs. Volumetric Maps Courtesy: D. Hähnel Courtesy: E. Nebot 2 Features So far, we only used feature maps Natural choice for Kalman

More information

Filtering Images. Contents

Filtering Images. Contents Image Processing and Data Visualization with MATLAB Filtering Images Hansrudi Noser June 8-9, 010 UZH, Multimedia and Robotics Summer School Noise Smoothing Filters Sigmoid Filters Gradient Filters Contents

More information

Verification: is that a lamp? What do we mean by recognition? Recognition. Recognition

Verification: is that a lamp? What do we mean by recognition? Recognition. Recognition Recognition Recognition The Margaret Thatcher Illusion, by Peter Thompson The Margaret Thatcher Illusion, by Peter Thompson Readings C. Bishop, Neural Networks for Pattern Recognition, Oxford University

More information

Edge and local feature detection - 2. Importance of edge detection in computer vision

Edge and local feature detection - 2. Importance of edge detection in computer vision Edge and local feature detection Gradient based edge detection Edge detection by function fitting Second derivative edge detectors Edge linking and the construction of the chain graph Edge and local feature

More information

What do we mean by recognition?

What do we mean by recognition? Announcements Recognition Project 3 due today Project 4 out today (help session + photos end-of-class) The Margaret Thatcher Illusion, by Peter Thompson Readings Szeliski, Chapter 14 1 Recognition What

More information

Mobility Models. Larissa Marinho Eglem de Oliveira. May 26th CMPE 257 Wireless Networks. (UCSC) May / 50

Mobility Models. Larissa Marinho Eglem de Oliveira. May 26th CMPE 257 Wireless Networks. (UCSC) May / 50 Mobility Models Larissa Marinho Eglem de Oliveira CMPE 257 Wireless Networks May 26th 2015 (UCSC) May 2015 1 / 50 1 Motivation 2 Mobility Models 3 Extracting a Mobility Model from Real User Traces 4 Self-similar

More information

Machine Learning A W 1sst KU. b) [1 P] For the probability distribution P (A, B, C, D) with the factorization

Machine Learning A W 1sst KU. b) [1 P] For the probability distribution P (A, B, C, D) with the factorization Machine Learning A 708.064 13W 1sst KU Exercises Problems marked with * are optional. 1 Conditional Independence a) [1 P] For the probability distribution P (A, B, C, D) with the factorization P (A, B,

More information

Joint Vanishing Point Extraction and Tracking. 9. June 2015 CVPR 2015 Till Kroeger, Dengxin Dai, Luc Van Gool, Computer Vision ETH Zürich

Joint Vanishing Point Extraction and Tracking. 9. June 2015 CVPR 2015 Till Kroeger, Dengxin Dai, Luc Van Gool, Computer Vision ETH Zürich Joint Vanishing Point Extraction and Tracking 9. June 2015 CVPR 2015 Till Kroeger, Dengxin Dai, Luc Van Gool, Computer Vision Lab @ ETH Zürich Definition: Vanishing Point = Intersection of 2D line segments,

More information

Machine Learning. Supervised Learning. Manfred Huber

Machine Learning. Supervised Learning. Manfred Huber Machine Learning Supervised Learning Manfred Huber 2015 1 Supervised Learning Supervised learning is learning where the training data contains the target output of the learning system. Training data D

More information

Sensor noise modeling using the Skellam distribution: Application to the color edge detection

Sensor noise modeling using the Skellam distribution: Application to the color edge detection Sensor noise modeling using the Skellam distribution: Application to the color edge detection Youngbae Hwang Dept. of Electrical Engineering KAIST Daejeon, Korea unicorn@rcv.kaist.ac.kr Jun-Sik Kim Robotics

More information

Bayesian Methods in Vision: MAP Estimation, MRFs, Optimization

Bayesian Methods in Vision: MAP Estimation, MRFs, Optimization Bayesian Methods in Vision: MAP Estimation, MRFs, Optimization CS 650: Computer Vision Bryan S. Morse Optimization Approaches to Vision / Image Processing Recurring theme: Cast vision problem as an optimization

More information

Combination of feature-based and geometric methods for positioning

Combination of feature-based and geometric methods for positioning Combination of feature-based and geometric methods for positioning Stefan Niedermayr, Andreas Wieser Institute of Geodesy and Geophysics 3 rd International Conference on Machine Control & Guidance, March

More information

Solution Sketches Midterm Exam COSC 6342 Machine Learning March 20, 2013

Solution Sketches Midterm Exam COSC 6342 Machine Learning March 20, 2013 Your Name: Your student id: Solution Sketches Midterm Exam COSC 6342 Machine Learning March 20, 2013 Problem 1 [5+?]: Hypothesis Classes Problem 2 [8]: Losses and Risks Problem 3 [11]: Model Generation

More information

Norbert Schuff VA Medical Center and UCSF

Norbert Schuff VA Medical Center and UCSF Norbert Schuff Medical Center and UCSF Norbert.schuff@ucsf.edu Medical Imaging Informatics N.Schuff Course # 170.03 Slide 1/67 Objective Learn the principle segmentation techniques Understand the role

More information

Robot Motion Planning

Robot Motion Planning Robot Motion Planning slides by Jan Faigl Department of Computer Science and Engineering Faculty of Electrical Engineering, Czech Technical University in Prague lecture A4M36PAH - Planning and Games Dpt.

More information

Concepts in. Edge Detection

Concepts in. Edge Detection Concepts in Edge Detection Dr. Sukhendu Das Deptt. of Computer Science and Engg., Indian Institute of Technology, Madras Chennai 600036, India. http://www.cs.iitm.ernet.in/~sdas Email: sdas@iitm.ac.in

More information

Approximately Uniform Random Sampling in Sensor Networks

Approximately Uniform Random Sampling in Sensor Networks Approximately Uniform Random Sampling in Sensor Networks Boulat A. Bash, John W. Byers and Jeffrey Considine Motivation Data aggregation Approximations to COUNT, SUM, AVG, MEDIAN Existing work does not

More information

Lecture 9: Hough Transform and Thresholding base Segmentation

Lecture 9: Hough Transform and Thresholding base Segmentation #1 Lecture 9: Hough Transform and Thresholding base Segmentation Saad Bedros sbedros@umn.edu Hough Transform Robust method to find a shape in an image Shape can be described in parametric form A voting

More information

Edge detection. Gradient-based edge operators

Edge detection. Gradient-based edge operators Edge detection Gradient-based edge operators Prewitt Sobel Roberts Laplacian zero-crossings Canny edge detector Hough transform for detection of straight lines Circle Hough Transform Digital Image Processing:

More information

Unified approach to detecting spatial outliers Shashi Shekhar, Chang-Tien Lu And Pusheng Zhang. Pekka Maksimainen University of Helsinki 2007

Unified approach to detecting spatial outliers Shashi Shekhar, Chang-Tien Lu And Pusheng Zhang. Pekka Maksimainen University of Helsinki 2007 Unified approach to detecting spatial outliers Shashi Shekhar, Chang-Tien Lu And Pusheng Zhang Pekka Maksimainen University of Helsinki 2007 Spatial outlier Outlier Inconsistent observation in data set

More information

Range Imaging Through Triangulation. Range Imaging Through Triangulation. Range Imaging Through Triangulation. Range Imaging Through Triangulation

Range Imaging Through Triangulation. Range Imaging Through Triangulation. Range Imaging Through Triangulation. Range Imaging Through Triangulation Obviously, this is a very slow process and not suitable for dynamic scenes. To speed things up, we can use a laser that projects a vertical line of light onto the scene. This laser rotates around its vertical

More information

Artistic Stylization of Images and Video Part III Anisotropy and Filtering Eurographics 2011

Artistic Stylization of Images and Video Part III Anisotropy and Filtering Eurographics 2011 Artistic Stylization of Images and Video Part III Anisotropy and Filtering Eurographics 2011 Hasso-Plattner-Institut, University of Potsdam, Germany Image/Video Abstraction Stylized Augmented Reality for

More information

Statistics 202: Data Mining. c Jonathan Taylor. Outliers Based in part on slides from textbook, slides of Susan Holmes.

Statistics 202: Data Mining. c Jonathan Taylor. Outliers Based in part on slides from textbook, slides of Susan Holmes. Outliers Based in part on slides from textbook, slides of Susan Holmes December 2, 2012 1 / 1 Concepts What is an outlier? The set of data points that are considerably different than the remainder of the

More information

Object Recognition with Invariant Features

Object Recognition with Invariant Features Object Recognition with Invariant Features Definition: Identify objects or scenes and determine their pose and model parameters Applications Industrial automation and inspection Mobile robots, toys, user

More information

MultiDimensional Signal Processing Master Degree in Ingegneria delle Telecomunicazioni A.A

MultiDimensional Signal Processing Master Degree in Ingegneria delle Telecomunicazioni A.A MultiDimensional Signal Processing Master Degree in Ingegneria delle Telecomunicazioni A.A. 205-206 Pietro Guccione, PhD DEI - DIPARTIMENTO DI INGEGNERIA ELETTRICA E DELL INFORMAZIONE POLITECNICO DI BARI

More information

Computational Intelligence

Computational Intelligence Computational Intelligence Winter Term 2016/17 Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering (LS 11) Fakultät für Informatik TU Dortmund Slides prepared by Dr. Nicola Beume (2012) Multiobjective

More information

Comparing different interpolation methods on two-dimensional test functions

Comparing different interpolation methods on two-dimensional test functions Comparing different interpolation methods on two-dimensional test functions Thomas Mühlenstädt, Sonja Kuhnt May 28, 2009 Keywords: Interpolation, computer experiment, Kriging, Kernel interpolation, Thin

More information

Machine Learning A WS15/16 1sst KU Version: January 11, b) [1 P] For the probability distribution P (A, B, C, D) with the factorization

Machine Learning A WS15/16 1sst KU Version: January 11, b) [1 P] For the probability distribution P (A, B, C, D) with the factorization Machine Learning A 708.064 WS15/16 1sst KU Version: January 11, 2016 Exercises Problems marked with * are optional. 1 Conditional Independence I [3 P] a) [1 P] For the probability distribution P (A, B,

More information

The 2-core of a Non-homogeneous Hypergraph

The 2-core of a Non-homogeneous Hypergraph July 16, 2012 k-cores A Hypergraph G on vertex set V is a collection E of subsets of V. E is the set of hyperedges. For ordinary graphs, e = 2 for all e E. The k-core of a (hyper)graph is the maximal subgraph

More information

Computer Vision 2 Lecture 8

Computer Vision 2 Lecture 8 Computer Vision 2 Lecture 8 Multi-Object Tracking (30.05.2016) leibe@vision.rwth-aachen.de, stueckler@vision.rwth-aachen.de RWTH Aachen University, Computer Vision Group http://www.vision.rwth-aachen.de

More information

COMP 465: Data Mining Still More on Clustering

COMP 465: Data Mining Still More on Clustering 3/4/015 Exercise COMP 465: Data Mining Still More on Clustering Slides Adapted From : Jiawei Han, Micheline Kamber & Jian Pei Data Mining: Concepts and Techniques, 3 rd ed. Describe each of the following

More information

This chapter explains two techniques which are frequently used throughout

This chapter explains two techniques which are frequently used throughout Chapter 2 Basic Techniques This chapter explains two techniques which are frequently used throughout this thesis. First, we will introduce the concept of particle filters. A particle filter is a recursive

More information

Big Data and Big Water: Mining Ocean Vessel Trajectory Data

Big Data and Big Water: Mining Ocean Vessel Trajectory Data Big Data and Big Water: Mining Ocean Vessel Trajectory Data Stan Matwin Institute for Big Data Analytics stan@cs.dal.ca Global AIS signal Satellites, ground stations Collectively represented, shows deep

More information

Upgraded Swimmer for Computationally Efficient Particle Tracking for Jefferson Lab s CLAS12 Spectrometer

Upgraded Swimmer for Computationally Efficient Particle Tracking for Jefferson Lab s CLAS12 Spectrometer Upgraded Swimmer for Computationally Efficient Particle Tracking for Jefferson Lab s CLAS12 Spectrometer Lydia Lorenti Advisor: David Heddle April 29, 2018 Abstract The CLAS12 spectrometer at Jefferson

More information

Lecture 10: Image Descriptors and Representation

Lecture 10: Image Descriptors and Representation I2200: Digital Image processing Lecture 10: Image Descriptors and Representation Prof. YingLi Tian Nov. 15, 2017 Department of Electrical Engineering The City College of New York The City University of

More information

A Brief Introduction to Reinforcement Learning

A Brief Introduction to Reinforcement Learning A Brief Introduction to Reinforcement Learning Minlie Huang ( ) Dept. of Computer Science, Tsinghua University aihuang@tsinghua.edu.cn 1 http://coai.cs.tsinghua.edu.cn/hml Reinforcement Learning Agent

More information

2017 Summer Course on Optical Oceanography and Ocean Color Remote Sensing. Monte Carlo Simulation

2017 Summer Course on Optical Oceanography and Ocean Color Remote Sensing. Monte Carlo Simulation 2017 Summer Course on Optical Oceanography and Ocean Color Remote Sensing Curtis Mobley Monte Carlo Simulation Delivered at the Darling Marine Center, University of Maine July 2017 Copyright 2017 by Curtis

More information

Lecture 15: Segmentation (Edge Based, Hough Transform)

Lecture 15: Segmentation (Edge Based, Hough Transform) Lecture 15: Segmentation (Edge Based, Hough Transform) c Bryan S. Morse, Brigham Young University, 1998 000 Last modified on February 3, 000 at :00 PM Contents 15.1 Introduction..............................................

More information

Reinforcement Learning (2)

Reinforcement Learning (2) Reinforcement Learning (2) Bruno Bouzy 1 october 2013 This document is the second part of the «Reinforcement Learning» chapter of the «Agent oriented learning» teaching unit of the Master MI computer course.

More information

Object recognition (part 1)

Object recognition (part 1) Recognition Object recognition (part 1) CSE P 576 Larry Zitnick (larryz@microsoft.com) The Margaret Thatcher Illusion, by Peter Thompson Readings Szeliski Chapter 14 Recognition What do we mean by object

More information

Cherenkov Radiation. Doctoral Thesis. Rok Dolenec. Supervisor: Prof. Dr. Samo Korpar

Cherenkov Radiation. Doctoral Thesis. Rok Dolenec. Supervisor: Prof. Dr. Samo Korpar Doctoral Thesis Time-of-Flight Time-of-Flight Positron Positron Emission Emission Tomography Tomography Using Using Cherenkov Cherenkov Radiation Radiation Rok Dolenec Supervisor: Prof. Dr. Samo Korpar

More information

Adaptive Isogeometric Analysis by Local h-refinement with T-splines

Adaptive Isogeometric Analysis by Local h-refinement with T-splines Adaptive Isogeometric Analysis by Local h-refinement with T-splines Michael Dörfel 1, Bert Jüttler 2, Bernd Simeon 1 1 TU Munich, Germany 2 JKU Linz, Austria SIMAI, Minisymposium M13 Outline Preliminaries:

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics FastSLAM Sebastian Thrun (abridged and adapted by Rodrigo Ventura in Oct-2008) The SLAM Problem SLAM stands for simultaneous localization and mapping The task of building a map while

More information

Tuning an Algorithm for Identifying and Tracking Cells

Tuning an Algorithm for Identifying and Tracking Cells Tuning an Algorithm for Identifying and Tracking Cells VA L L I A P PA L A K S H M A N A N N AT I O N A L S E V E R E S T O R M S L A B O R AT O R Y / U N I V E R S I T Y O F O K L A H O M A J U LY, 2

More information

Learning from Data: Adaptive Basis Functions

Learning from Data: Adaptive Basis Functions Learning from Data: Adaptive Basis Functions November 21, 2005 http://www.anc.ed.ac.uk/ amos/lfd/ Neural Networks Hidden to output layer - a linear parameter model But adapt the features of the model.

More information

EE 701 ROBOT VISION. Segmentation

EE 701 ROBOT VISION. Segmentation EE 701 ROBOT VISION Regions and Image Segmentation Histogram-based Segmentation Automatic Thresholding K-means Clustering Spatial Coherence Merging and Splitting Graph Theoretic Segmentation Region Growing

More information

18.02 Final Exam. y = 0

18.02 Final Exam. y = 0 No books, notes or calculators. 5 problems, 50 points. 8.0 Final Exam Useful formula: cos (θ) = ( + cos(θ)) Problem. (0 points) a) (5 pts.) Find the equation in the form Ax + By + z = D of the plane P

More information

How and what do we see? Segmentation and Grouping. Fundamental Problems. Polyhedral objects. Reducing the combinatorics of pose estimation

How and what do we see? Segmentation and Grouping. Fundamental Problems. Polyhedral objects. Reducing the combinatorics of pose estimation Segmentation and Grouping Fundamental Problems ' Focus of attention, or grouping ' What subsets of piels do we consider as possible objects? ' All connected subsets? ' Representation ' How do we model

More information

Clustering. Robert M. Haralick. Computer Science, Graduate Center City University of New York

Clustering. Robert M. Haralick. Computer Science, Graduate Center City University of New York Clustering Robert M. Haralick Computer Science, Graduate Center City University of New York Outline K-means 1 K-means 2 3 4 5 Clustering K-means The purpose of clustering is to determine the similarity

More information

Quadtrees and Meshing

Quadtrees and Meshing Computational Geometry Lecture INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Tamara Mchedlidze Darren Strash 14.12.2015 Motivation: Meshing PC Board Layouts To simulate the heat produced

More information

Greedy Routing with Guaranteed Delivery Using Ricci Flow

Greedy Routing with Guaranteed Delivery Using Ricci Flow Greedy Routing with Guaranteed Delivery Using Ricci Flow Jie Gao Stony Brook University Joint work with Rik Sarkar, Xiaotian Yin, Wei Zeng, Feng Luo, Xianfeng David Gu Greedy Routing Assign coordinatesto

More information

LIGHT: Two-slit Interference

LIGHT: Two-slit Interference LIGHT: Two-slit Interference Objective: To study interference of light waves and verify the wave nature of light. Apparatus: Two red lasers (wavelength, λ = 633 nm); two orange lasers (λ = 612 nm); two

More information

CAMERA POSE ESTIMATION OF RGB-D SENSORS USING PARTICLE FILTERING

CAMERA POSE ESTIMATION OF RGB-D SENSORS USING PARTICLE FILTERING CAMERA POSE ESTIMATION OF RGB-D SENSORS USING PARTICLE FILTERING By Michael Lowney Senior Thesis in Electrical Engineering University of Illinois at Urbana-Champaign Advisor: Professor Minh Do May 2015

More information

Fitting D.A. Forsyth, CS 543

Fitting D.A. Forsyth, CS 543 Fitting D.A. Forsyth, CS 543 Fitting Choose a parametric object/some objects to represent a set of tokens Most interesting case is when criterion is not local can t tell whether a set of points lies on

More information

Corner Detection. GV12/3072 Image Processing.

Corner Detection. GV12/3072 Image Processing. Corner Detection 1 Last Week 2 Outline Corners and point features Moravec operator Image structure tensor Harris corner detector Sub-pixel accuracy SUSAN FAST Example descriptor: SIFT 3 Point Features

More information

EE 584 MACHINE VISION

EE 584 MACHINE VISION EE 584 MACHINE VISION Binary Images Analysis Geometrical & Topological Properties Connectedness Binary Algorithms Morphology Binary Images Binary (two-valued; black/white) images gives better efficiency

More information

Moving Object Segmentation Method Based on Motion Information Classification by X-means and Spatial Region Segmentation

Moving Object Segmentation Method Based on Motion Information Classification by X-means and Spatial Region Segmentation IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.11, November 2013 1 Moving Object Segmentation Method Based on Motion Information Classification by X-means and Spatial

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2013 TTh 17:30-18:45 FDH 204 Lecture 18 130404 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Object Recognition Intro (Chapter 14) Slides from

More information

Image Enhancement in Spatial Domain (Chapter 3)

Image Enhancement in Spatial Domain (Chapter 3) Image Enhancement in Spatial Domain (Chapter 3) Yun Q. Shi shi@njit.edu Fall 11 Mask/Neighborhood Processing ECE643 2 1 Point Processing ECE643 3 Image Negatives S = (L 1) - r (3.2-1) Point processing

More information

University of Florida CISE department Gator Engineering. Clustering Part 4

University of Florida CISE department Gator Engineering. Clustering Part 4 Clustering Part 4 Dr. Sanjay Ranka Professor Computer and Information Science and Engineering University of Florida, Gainesville DBSCAN DBSCAN is a density based clustering algorithm Density = number of

More information

Feature Detectors and Descriptors: Corners, Lines, etc.

Feature Detectors and Descriptors: Corners, Lines, etc. Feature Detectors and Descriptors: Corners, Lines, etc. Edges vs. Corners Edges = maxima in intensity gradient Edges vs. Corners Corners = lots of variation in direction of gradient in a small neighborhood

More information

EE565:Mobile Robotics Lecture 3

EE565:Mobile Robotics Lecture 3 EE565:Mobile Robotics Lecture 3 Welcome Dr. Ahmad Kamal Nasir Today s Objectives Motion Models Velocity based model (Dead-Reckoning) Odometry based model (Wheel Encoders) Sensor Models Beam model of range

More information

Other Linear Filters CS 211A

Other Linear Filters CS 211A Other Linear Filters CS 211A Slides from Cornelia Fermüller and Marc Pollefeys Edge detection Convert a 2D image into a set of curves Extracts salient features of the scene More compact than pixels Origin

More information

Lecture 8: Fitting. Tuesday, Sept 25

Lecture 8: Fitting. Tuesday, Sept 25 Lecture 8: Fitting Tuesday, Sept 25 Announcements, schedule Grad student extensions Due end of term Data sets, suggestions Reminder: Midterm Tuesday 10/9 Problem set 2 out Thursday, due 10/11 Outline Review

More information

Image Processing

Image Processing Image Processing 159.731 Canny Edge Detection Report Syed Irfanullah, Azeezullah 00297844 Danh Anh Huynh 02136047 1 Canny Edge Detection INTRODUCTION Edges Edges characterize boundaries and are therefore

More information

Classification. 1 o Semestre 2007/2008

Classification. 1 o Semestre 2007/2008 Classification Departamento de Engenharia Informática Instituto Superior Técnico 1 o Semestre 2007/2008 Slides baseados nos slides oficiais do livro Mining the Web c Soumen Chakrabarti. Outline 1 2 3 Single-Class

More information

In Homework 1, you determined the inverse dynamics model of the spinbot robot to be

In Homework 1, you determined the inverse dynamics model of the spinbot robot to be Robot Learning Winter Semester 22/3, Homework 2 Prof. Dr. J. Peters, M.Eng. O. Kroemer, M. Sc. H. van Hoof Due date: Wed 6 Jan. 23 Note: Please fill in the solution on this sheet but add sheets for the

More information

Schedule-Driven Coordination for Real-Time Traffic Control

Schedule-Driven Coordination for Real-Time Traffic Control Schedule-Driven Coordination for Real-Time Traffic Control Xiao-Feng Xie, Stephen F. Smith, Gregory J. Barlow The Robotics Institute Carnegie Mellon University International Conference on Automated Planning

More information

A NEW TYPE OF SIZE FUNCTION RESPECTING PREMESHED ENTITIES

A NEW TYPE OF SIZE FUNCTION RESPECTING PREMESHED ENTITIES A NEW TYPE OF SIZE FUNCTION RESPECTING PREMESHED ENTITIES Jin Zhu Fluent, Inc. 1007 Church Street, Evanston, IL, U.S.A. jz@fluent.com ABSTRACT This paper describes the creation of a new type of size function

More information

Lecture 27, April 24, Reading: See class website. Nonparametric regression and kernel smoothing. Structured sparse additive models (GroupSpAM)

Lecture 27, April 24, Reading: See class website. Nonparametric regression and kernel smoothing. Structured sparse additive models (GroupSpAM) School of Computer Science Probabilistic Graphical Models Structured Sparse Additive Models Junming Yin and Eric Xing Lecture 7, April 4, 013 Reading: See class website 1 Outline Nonparametric regression

More information

Clustering. k-mean clustering. Genome 559: Introduction to Statistical and Computational Genomics Elhanan Borenstein

Clustering. k-mean clustering. Genome 559: Introduction to Statistical and Computational Genomics Elhanan Borenstein Clustering k-mean clustering Genome 559: Introduction to Statistical and Computational Genomics Elhanan Borenstein A quick review The clustering problem: homogeneity vs. separation Different representations

More information

CS Introduction to Data Mining Instructor: Abdullah Mueen

CS Introduction to Data Mining Instructor: Abdullah Mueen CS 591.03 Introduction to Data Mining Instructor: Abdullah Mueen LECTURE 8: ADVANCED CLUSTERING (FUZZY AND CO -CLUSTERING) Review: Basic Cluster Analysis Methods (Chap. 10) Cluster Analysis: Basic Concepts

More information

Clustering Part 4 DBSCAN

Clustering Part 4 DBSCAN Clustering Part 4 Dr. Sanjay Ranka Professor Computer and Information Science and Engineering University of Florida, Gainesville DBSCAN DBSCAN is a density based clustering algorithm Density = number of

More information

SCALING A DISTRIBUTED SPATIAL CACHE OVERLAY. Alexander Gessler Simon Hanna Ashley Marie Smith

SCALING A DISTRIBUTED SPATIAL CACHE OVERLAY. Alexander Gessler Simon Hanna Ashley Marie Smith SCALING A DISTRIBUTED SPATIAL CACHE OVERLAY Alexander Gessler Simon Hanna Ashley Marie Smith MOTIVATION Location-based services utilize time and geographic behavior of user geotagging photos recommendations

More information

DESIGNER S NOTEBOOK Proximity Detection and Link Budget By Tom Dunn July 2011

DESIGNER S NOTEBOOK Proximity Detection and Link Budget By Tom Dunn July 2011 INTELLIGENT OPTO SENSOR Number 38 DESIGNER S NOTEBOOK Proximity Detection and Link Budget By Tom Dunn July 2011 Overview TAOS proximity sensors operate by flashing an infrared (IR) light towards a surface

More information

Probabilistic Tracking and Model-based Segmentation of 3D Tubular Structures

Probabilistic Tracking and Model-based Segmentation of 3D Tubular Structures Probabilistic Tracking and Model-based Segmentation of 3D Tubular Structures Stefan Wörz, William J. Godinez, Karl Rohr University of Heidelberg, BIOQUANT, IPMB, and DKFZ Heidelberg, Dept. Bioinformatics

More information

Clustering. Mihaela van der Schaar. January 27, Department of Engineering Science University of Oxford

Clustering. Mihaela van der Schaar. January 27, Department of Engineering Science University of Oxford Department of Engineering Science University of Oxford January 27, 2017 Many datasets consist of multiple heterogeneous subsets. Cluster analysis: Given an unlabelled data, want algorithms that automatically

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics Probabilistic Motion and Sensor Models Some slides adopted from: Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Kai Arras and Probabilistic Robotics Book SA-1 Sensors for Mobile

More information

CHAPTER 11 NONPARAMETRIC PIXEL APPEARANCE PROBABILITY MODEL USING GRID QUANTIZATION FOR LOCAL IMAGE INFORMATION REPRESENTATION

CHAPTER 11 NONPARAMETRIC PIXEL APPEARANCE PROBABILITY MODEL USING GRID QUANTIZATION FOR LOCAL IMAGE INFORMATION REPRESENTATION CHAPTER 11 NONPARAMETRIC PIXEL APPEARANCE PROBABILITY MODEL USING GRID QUANTIZATION FOR LOCAL IMAGE INFORMATION REPRESENTATION Mingzhou Song Department of Computer Science, New Mexico State University

More information

Charged Particle Reconstruction in HIC Detectors

Charged Particle Reconstruction in HIC Detectors Charged Particle Reconstruction in HIC Detectors Ralf-Arno Tripolt, Qiyan Li [http://de.wikipedia.org/wiki/marienburg_(mosel)] H-QM Lecture Week on Introduction to Heavy Ion Physics Kloster Marienburg/Mosel,

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics Bayes Filter Implementations Discrete filters, Particle filters Piecewise Constant Representation of belief 2 Discrete Bayes Filter Algorithm 1. Algorithm Discrete_Bayes_filter(

More information

Last week. Multi-Frame Structure from Motion: Multi-View Stereo. Unknown camera viewpoints

Last week. Multi-Frame Structure from Motion: Multi-View Stereo. Unknown camera viewpoints Last week Multi-Frame Structure from Motion: Multi-View Stereo Unknown camera viewpoints Last week PCA Today Recognition Today Recognition Recognition problems What is it? Object detection Who is it? Recognizing

More information

Monte Carlo Localization using Dynamically Expanding Occupancy Grids. Karan M. Gupta

Monte Carlo Localization using Dynamically Expanding Occupancy Grids. Karan M. Gupta 1 Monte Carlo Localization using Dynamically Expanding Occupancy Grids Karan M. Gupta Agenda Introduction Occupancy Grids Sonar Sensor Model Dynamically Expanding Occupancy Grids Monte Carlo Localization

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics Discrete Filters and Particle Filters Models Some slides adopted from: Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Kai Arras and Probabilistic Robotics Book SA-1 Probabilistic

More information