Department of Mathematical Sciences University of Nevada, Las Vegas Las Vegas, NV

Size: px
Start display at page:

Download "Department of Mathematical Sciences University of Nevada, Las Vegas Las Vegas, NV"

Transcription

1 ON P -DEGREE OF GRAPHS EBRAHIM SALEHI Department of Mathematical Sciences University of Nevada, Las Vegas Las Vegas, NV ebrahim.salehi@unlv.edu Abstract. It is known that there is not any non-trivial graph with vertices of distinct degrees, and any non-trivial graph must have at least two vertices of the same degree. In this article, we will consider the concept of P -degree of vertices and will introduce a class of connected graphs with exactly two vertices of the same P -degree. Also, the graphs with distinct P -degree vertices will be constructed and it will be proven that for any n 6 there is at least one graph of order n, with distinct P -degree vertices. Keywords: P -degree, regular, irregular, and pairlone graphs AMS Subject Classification: 05C5.. Introduction Unless otherwise stated all graphs considered are connected, finite, simple, undirected, and of order n. It is known that there is not a graph with vertices of distinct degrees, and any non-trivial graph must have at least two vertices of the same degree. Behzad-Chartrand [] and Nebesky [7] have studied the graphs containing exactly two vertices of the same degree. Also, Kac-Nesterova have investigated the graphs with exactly three vertices of the same degree. In this article, just for the sake of brevity, a graph G is said to be pairlone if there are precisely two vertices with the same degree. In Figure, three examples of pairlone graphs of different orders are illustrated, and each vertex is labeled by its degree. Even though the existence of pairlone graphs has been shown in [, 7], for the sake of completeness and for later use, we give the proof of the following theorem. Theorem.. For any n there is a unique pairlone graph of order n. Furthermore, the degree sequence is through n with n/ appearing twice. JCMCC 6 (007),

2 6 5 Figure. Three examples of pairlone graphs. Proof. We proceed by induction on n, case of n = is obvious. Now let G be the unique connected pairlone graph of order n, that has degree sequence through n with n/ appearing twice. That is, V (G) = u, u,, u n } and i for i n/ deg G u i = i for i > n/ We use G to construct a graph H by adding a vertex u, uu k V (H) = V (G) u}, and edges [n/] < k n, as illustrated in Figure. With this construction, deg H u i = i ( i n), and deg H u = n n/ =. v v G: H: u v v v v Figure. Construction of H from G, when n = 6. Therefore, H is a connected graph of order n +, which has degree sequence through n with repeated twice. The uniqueness of such graph follows from the fact that in any connected pairlone graph of order n + removal of one of the vertices of order will result in the unique connected pairlone graph of order n. In what follows P L n stands for the unique connected pairlone graph of order n. Let, v,, v n be the vertices of P L n labeled so that deg deg v deg v n. Observation.. The chromatic number of P L n, the unique connected pairlone graph of order n, is n n. 6

3 Proof. We observe that () deg v i = i for i n/ ; i for i > n/, and the edges of G consist of all v n i v j with i = 0,,, n/, and i + j n i. Adjacency of the vertices of the same degree n/ depends on the parity of n. When n is even, they are adjacent and if n is odd they are not. We also observe that the vertices, v,, v are not adjacent, while the vertices v n, v n,, v are pairwise adjacent. Consequently, the subgraph of P L n induced by p = n n vertices v n, v (n ),, v is isomorphic to the complete graph K p. Therefore, χ(p L n ) p. On the other hand, in any coloring c : V (P L n ) IN of P L n, since, v,, v are not adjacent, they can be assigned the same color; Specifically, n n c(v i ) = for i ; n + i for i n, which implies that χ(p L n ) p. Therefore, χ(p L n ) = p. For the pairlone graphs P L 5 and P L 7, this coloring is illustrated in Figure. Figure. χ(p L 5 ) = and χ(p L 7 ) =.. P -pairlone graphs The notion of degree of a vertex in a graph has been generalized in [] by introducing F -degree in the following way: For a given graph F, the F -degree of a vertex v in G, denoted by F -deg(v), is the number of subgraphs of G isomorphic to F that contain v. A concept related to the F -degree of a vertex was first introduced by Kocay [6], when reconstructing degree sequence on graphs. A graph G is said to be F -regular if the F -degrees of all the vertices of G are the same and it is called F -irregular if the F -degrees of the vertices of G are distinct. We observe that the ordinary degree of a vertex v is the P -degree (F = P ) of v, and when we consider P -degrees there is not any irregular graph. In this section, we will focus on the P -degree of a graph and will show that, as opposed to ordinary degree, for n 6 there is at least one graph of order n which is 7

4 P -irregular. Also, the existence of P -pairlone graphs that are not (ordinary degree) pairlone will be proven. Definition.. Given a graph G, the P -degree of a vertex v in G, denoted by P -deg(v), is the number of subgraphs of G isomorphic to P that contain v. The graph G is said to be P -regular if the P -degrees of all the vertices are the same, and G is said to be P -irregular if the P -degrees of its vertices are distinct. To illustrate the definition of P -degree, consider the graph in Figure. 5 v Figure. P deg(v) = 5. Vertices of G are labeled by their P -degrees; For example, there are 5 subgraphs of G isomorphic to P that contain the vertex v. Therefore, P deg(v) = 5. As we will see later.5, there are infinitely many P -degree irregular graphs. P -degrees of vertices are identified. 6 Figure 5 illustrate one of them for which the 9 8 Figure 5. P -degree irregular graph of order 6. We note that a vertex can occur either as the central vertex or as an end-vertex of P. Now let v V (G) and let N(v) be the set of all vertices of G adjacent to v. Then v is the central vertex of ( deg v ) subgraphs of G isomorphic to P and is an end-vertex of (deg u ) such subgraphs. Therefore () P deg v = ( deg v For regular graphs we have the following theorem []: 8 ) + u N(v) u N(v) (deg u ).

5 Theorem.. A graph G is P -regular of degree k if and only if G is regular of degree r, where k = ( r ) Figure 6. Three P -degree pairlone graphs. Theorem.. For any n, the graph P L n is P -degree pairlone. Proof. Let P L n be the unique connected pairlone graph of order n. Using () and (), we notice that () P degv i = i(n ) for i n/ ; (i )(n ) + n/ + i for i > n/. Thus vertices of P L n have distinct P -degrees, except for exactly one pair having each vertex the same ordinary degree n/. Theorem.. For any n 5 there is at least one P -pairlone graph of order n, that is not (ordinary degree) pairlone. Proof. Let G = P L n be the unique connected pairlone graph of order n. We construct H from P L n by adding a vertex v 0 to V (G) and the edge v 0 to E(G), as illustrated in Figure 7, for n =, 5, 6. Then, as a result of this modification, H will have another subgraph with vertices v 0,, and v n, isomorphic to P (with as its central vertex, and v 0, v n as its end-vertices). Thus P deg v 0 =, and () P deg H v i = P deg G v i for i, n; + P deg G v i for i =, n. Also, P deg H = n < P deg H v = (n ). Therefore, H is a P -pairlone graph of order n +. But H is not (ordinary degree) pairlone, because deg H = deg H v =, and H has two pairs of vertices of the same degree. 9

6 v 0 v 0 v 0 v v v v 7 v v v v v v Figure 7. P -degree pairlone graphs that are not pairlone. Theorem.5. For any n 6 there is at least one P -irregular graph of order n. Proof. Let P L n be the unique connected pairlone graph of order n. This time we construct H from P L n by adding vertex v 0 to V (G) and joining v 0 to the vertex v µ+, where µ = [n/]. (See Figure 8, for n = 5, 6, 7.) Now, note that v 0 is only adjacent to v µ+, that has degree µ = [n/], therefore P deg v 0 = µ. Also, this modification will not effect the P -degrees of vertices, v,, v µ, because they are not adjacent to v µ+. Moreover, if v i, (i 0) is adjacent to v µ+, its P -degree will be increased by one (for the new subgraph v i, v µ+, v 0, which is isomorphic to P ). Finally, P deg H v µ = P deg G v µ + + ( )n, because, the parity of n will determine whether the two vertices v µ and v µ+ are adjacent or not. In summary, n/ for i = 0 i(n ) for 0 < i < n/ P deg H v i = n/ (n ) + +( )n for i = n/ n/ (n ) + n/ for i = n/ + + (i )(n ) + n/ i otherwise. Clearly, P -degrees of v 0,,, v µ+ are different, as are P -degrees of v µ+,, v n. It only remains to show that or n/ (n ) + n/ < + P deg G v µ+. P deg H v µ+ < P deg H v µ+, By (), this is equivalent to n/ (n ) + n/ < ( n/ + )(n ), or n/ < n, which is correct, since n 6. Next, we consider when n 5. For n =, there are only two connected graphs of order three, namely P and K. These two graphs are neither P -pairlone nor P -irregular; in fact, both are P -regular. For n =, the unique connected pairlone graph of order four is the only P -pairlone 50

7 v 0 v 0 v 0 v v v v 7 v v v v v v Figure 8. Three P -irregular graphs. graph, and there is no P -irregular graph of order four. Also, it can easily be verified that there is no P -irregular graph of order five. References [] Y. Alavi, G. Chartrand, F.R.K. Chung, Paul Erdös, R.L. Graham, O.R. Rellermann, Highly Irregular Graphs, Journal of Graph Theory # (987), 5-9. [] M. Behzad and G. Chartrand, No Graph is Perfect, American Mathematical Monthly 7 (967), [] G. Chartrand, Paul Erdös, and O.R. Oellermann, How to Define an Irregular Graph, College Mathematics Journal 9 # (988), 6-. [] G. Chartrand, K. Holbert, O. Oellermann, and H. Swart, F -Degrees in Graphs, Ars Combinatoria (987), -8. [5] A.O Kac and T.A. Nesterova, Graphs with Exactly Three Vertices of the Same Degree, Casopis pro pestovani matematiky 0 (978), [6] W.L. Kocay, On Reconstructing Degree Sequence, Utilitas Mathematica 7 (980), 5-6. [7] L. Nebesky, On Connected Graphs Containing Exactly Two Points of the Same Degree, Casopis pro pestovani matematiky 98 (97), [8] J. Sedlacek, Perfect and Quasiperfect Graphs, Casopis pro pestovani matematiky 00 (975), 5-. 5

Some bounds on chromatic number of NI graphs

Some bounds on chromatic number of NI graphs International Journal of Mathematics and Soft Computing Vol.2, No.2. (2012), 79 83. ISSN 2249 3328 Some bounds on chromatic number of NI graphs Selvam Avadayappan Department of Mathematics, V.H.N.S.N.College,

More information

Product Cordial Sets of Trees

Product Cordial Sets of Trees Product Cordial Sets of Trees Ebrahim Salehi, Seth Churchman, Tahj Hill, Jim Jordan Department of Mathematical Sciences University of Nevada, Las Vegas Las Vegas, NV 8954-42 ebrahim.salehi@unlv.edu Abstract

More information

Monophonic Chromatic Parameter in a Connected Graph

Monophonic Chromatic Parameter in a Connected Graph International Journal of Mathematical Analysis Vol. 11, 2017, no. 19, 911-920 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijma.2017.78114 Monophonic Chromatic Parameter in a Connected Graph M.

More information

A note on isolate domination

A note on isolate domination Electronic Journal of Graph Theory and Applications 4 (1) (016), 94 100 A note on isolate domination I. Sahul Hamid a, S. Balamurugan b, A. Navaneethakrishnan c a Department of Mathematics, The Madura

More information

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge.

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge. 1 Graph Basics What is a graph? Graph: a graph G consists of a set of vertices, denoted V (G), a set of edges, denoted E(G), and a relation called incidence so that each edge is incident with either one

More information

CHAPTER 2. Graphs. 1. Introduction to Graphs and Graph Isomorphism

CHAPTER 2. Graphs. 1. Introduction to Graphs and Graph Isomorphism CHAPTER 2 Graphs 1. Introduction to Graphs and Graph Isomorphism 1.1. The Graph Menagerie. Definition 1.1.1. A simple graph G = (V, E) consists of a set V of vertices and a set E of edges, represented

More information

Complete Cototal Domination

Complete Cototal Domination Chapter 5 Complete Cototal Domination Number of a Graph Published in Journal of Scientific Research Vol. () (2011), 547-555 (Bangladesh). 64 ABSTRACT Let G = (V,E) be a graph. A dominating set D V is said

More information

VIZING S THEOREM AND EDGE-CHROMATIC GRAPH THEORY. Contents

VIZING S THEOREM AND EDGE-CHROMATIC GRAPH THEORY. Contents VIZING S THEOREM AND EDGE-CHROMATIC GRAPH THEORY ROBERT GREEN Abstract. This paper is an expository piece on edge-chromatic graph theory. The central theorem in this subject is that of Vizing. We shall

More information

GRAPHS WITH 1-FACTORS

GRAPHS WITH 1-FACTORS proceedings of the american mathematical society Volume 42, Number 1, January 1974 GRAPHS WITH 1-FACTORS DAVID P. SUMNER Abstract. In this paper it is shown that if G is a connected graph of order 2n (n>

More information

Discrete Applied Mathematics. A revision and extension of results on 4-regular, 4-connected, claw-free graphs

Discrete Applied Mathematics. A revision and extension of results on 4-regular, 4-connected, claw-free graphs Discrete Applied Mathematics 159 (2011) 1225 1230 Contents lists available at ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam A revision and extension of results

More information

Discrete Mathematics. Elixir Dis. Math. 92 (2016)

Discrete Mathematics. Elixir Dis. Math. 92 (2016) 38758 Available online at www.elixirpublishers.com (Elixir International Journal) Discrete Mathematics Elixir Dis. Math. 92 (2016) 38758-38763 Complement of the Boolean Function Graph B(K p, INC, K q )

More information

A Reduction of Conway s Thrackle Conjecture

A Reduction of Conway s Thrackle Conjecture A Reduction of Conway s Thrackle Conjecture Wei Li, Karen Daniels, and Konstantin Rybnikov Department of Computer Science and Department of Mathematical Sciences University of Massachusetts, Lowell 01854

More information

DOUBLE DOMINATION CRITICAL AND STABLE GRAPHS UPON VERTEX REMOVAL 1

DOUBLE DOMINATION CRITICAL AND STABLE GRAPHS UPON VERTEX REMOVAL 1 Discussiones Mathematicae Graph Theory 32 (2012) 643 657 doi:10.7151/dmgt.1633 DOUBLE DOMINATION CRITICAL AND STABLE GRAPHS UPON VERTEX REMOVAL 1 Soufiane Khelifi Laboratory LMP2M, Bloc of laboratories

More information

Double Vertex Graphs and Complete Double Vertex Graphs. Jobby Jacob, Wayne Goddard and Renu Laskar Clemson University April, 2007

Double Vertex Graphs and Complete Double Vertex Graphs. Jobby Jacob, Wayne Goddard and Renu Laskar Clemson University April, 2007 Double Vertex Graphs and Complete Double Vertex Graphs Jobby Jacob, Wayne Goddard and Renu Laskar Clemson University April, 2007 Abstract Let G = (V, E) be a graph of order n 2. The double vertex graph,

More information

PAIRED-DOMINATION. S. Fitzpatrick. Dalhousie University, Halifax, Canada, B3H 3J5. and B. Hartnell. Saint Mary s University, Halifax, Canada, B3H 3C3

PAIRED-DOMINATION. S. Fitzpatrick. Dalhousie University, Halifax, Canada, B3H 3J5. and B. Hartnell. Saint Mary s University, Halifax, Canada, B3H 3C3 Discussiones Mathematicae Graph Theory 18 (1998 ) 63 72 PAIRED-DOMINATION S. Fitzpatrick Dalhousie University, Halifax, Canada, B3H 3J5 and B. Hartnell Saint Mary s University, Halifax, Canada, B3H 3C3

More information

DEFINITION OF GRAPH GRAPH THEORY GRAPHS ACCORDING TO THEIR VERTICES AND EDGES EXAMPLE GRAPHS ACCORDING TO THEIR VERTICES AND EDGES

DEFINITION OF GRAPH GRAPH THEORY GRAPHS ACCORDING TO THEIR VERTICES AND EDGES EXAMPLE GRAPHS ACCORDING TO THEIR VERTICES AND EDGES DEFINITION OF GRAPH GRAPH THEORY Prepared by Engr. JP Timola Reference: Discrete Math by Kenneth H. Rosen A graph G = (V,E) consists of V, a nonempty set of vertices (or nodes) and E, a set of edges. Each

More information

LOCAL CONNECTIVE CHROMATIC NUMBER OF DIRECT PRODUCT OF PATHS AND CYCLES

LOCAL CONNECTIVE CHROMATIC NUMBER OF DIRECT PRODUCT OF PATHS AND CYCLES BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 303-4874, ISSN (o) 303-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 7(017), 561-57 DOI: 10.751/BIMVI1703561Ç Former BULLETIN OF THE

More information

The Restrained Edge Geodetic Number of a Graph

The Restrained Edge Geodetic Number of a Graph International Journal of Computational and Applied Mathematics. ISSN 0973-1768 Volume 11, Number 1 (2016), pp. 9 19 Research India Publications http://www.ripublication.com/ijcam.htm The Restrained Edge

More information

arxiv: v1 [cs.dm] 22 Jul 2012

arxiv: v1 [cs.dm] 22 Jul 2012 The total irregularity of a graph July 4, 0 Hosam Abdo, Darko Dimitrov arxiv:07.567v [cs.dm] Jul 0 Institut für Informatik, Freie Universität Berlin, Takustraße 9, D 495 Berlin, Germany E-mail: [abdo,darko]@mi.fu-berlin.de

More information

Basics of Graph Theory

Basics of Graph Theory Basics of Graph Theory 1 Basic notions A simple graph G = (V, E) consists of V, a nonempty set of vertices, and E, a set of unordered pairs of distinct elements of V called edges. Simple graphs have their

More information

Math 170- Graph Theory Notes

Math 170- Graph Theory Notes 1 Math 170- Graph Theory Notes Michael Levet December 3, 2018 Notation: Let n be a positive integer. Denote [n] to be the set {1, 2,..., n}. So for example, [3] = {1, 2, 3}. To quote Bud Brown, Graph theory

More information

EDGE MAXIMAL GRAPHS CONTAINING NO SPECIFIC WHEELS. Jordan Journal of Mathematics and Statistics (JJMS) 8(2), 2015, pp I.

EDGE MAXIMAL GRAPHS CONTAINING NO SPECIFIC WHEELS. Jordan Journal of Mathematics and Statistics (JJMS) 8(2), 2015, pp I. EDGE MAXIMAL GRAPHS CONTAINING NO SPECIFIC WHEELS M.S.A. BATAINEH (1), M.M.M. JARADAT (2) AND A.M.M. JARADAT (3) A. Let k 4 be a positive integer. Let G(n; W k ) denote the class of graphs on n vertices

More information

Two Characterizations of Hypercubes

Two Characterizations of Hypercubes Two Characterizations of Hypercubes Juhani Nieminen, Matti Peltola and Pasi Ruotsalainen Department of Mathematics, University of Oulu University of Oulu, Faculty of Technology, Mathematics Division, P.O.

More information

Ramsey numbers in rainbow triangle free colorings

Ramsey numbers in rainbow triangle free colorings AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 46 (2010), Pages 269 284 Ramsey numbers in rainbow triangle free colorings Ralph J. Faudree Department of Mathematical Sciences University of Memphis Memphis,

More information

Characterizations of graph classes by forbidden configurations

Characterizations of graph classes by forbidden configurations Characterizations of graph classes by forbidden configurations Zdeněk Dvořák September 14, 2015 We consider graph classes that can be described by excluding some fixed configurations. Let us give some

More information

arxiv: v1 [math.co] 4 Apr 2011

arxiv: v1 [math.co] 4 Apr 2011 arxiv:1104.0510v1 [math.co] 4 Apr 2011 Minimal non-extensible precolorings and implicit-relations José Antonio Martín H. Abstract. In this paper I study a variant of the general vertex coloring problem

More information

HOMEWORK 4 SOLUTIONS. Solution: The Petersen graph contains a cycle of odd length as a subgraph. Hence,

HOMEWORK 4 SOLUTIONS. Solution: The Petersen graph contains a cycle of odd length as a subgraph. Hence, HOMEWORK 4 SOLUTIONS (1) Determine the chromatic number of the Petersen graph. Solution: The Petersen graph contains a cycle of odd length as a subgraph. Hence, 3 χ(c 5 ) χ(p ). As the Petersen graph is

More information

COLORING EDGES AND VERTICES OF GRAPHS WITHOUT SHORT OR LONG CYCLES

COLORING EDGES AND VERTICES OF GRAPHS WITHOUT SHORT OR LONG CYCLES Volume 2, Number 1, Pages 61 66 ISSN 1715-0868 COLORING EDGES AND VERTICES OF GRAPHS WITHOUT SHORT OR LONG CYCLES MARCIN KAMIŃSKI AND VADIM LOZIN Abstract. Vertex and edge colorability are two graph problems

More information

RAINBOW CONNECTION AND STRONG RAINBOW CONNECTION NUMBERS OF

RAINBOW CONNECTION AND STRONG RAINBOW CONNECTION NUMBERS OF RAINBOW CONNECTION AND STRONG RAINBOW CONNECTION NUMBERS OF Srava Chrisdes Antoro Fakultas Ilmu Komputer, Universitas Gunadarma srava_chrisdes@staffgunadarmaacid Abstract A rainbow path in an edge coloring

More information

Prime Labeling for Some Cycle Related Graphs

Prime Labeling for Some Cycle Related Graphs Journal of Mathematics Research ISSN: 1916-9795 Prime Labeling for Some Cycle Related Graphs S K Vaidya (Corresponding author) Department of Mathematics, Saurashtra University Rajkot 360 005, Gujarat,

More information

Minimum Number of Palettes in Edge Colorings

Minimum Number of Palettes in Edge Colorings Graphs and Combinatorics (2014) 30:619 626 DOI 10.1007/s00373-013-1298-8 ORIGINAL PAPER Minimum Number of Palettes in Edge Colorings Mirko Horňák Rafał Kalinowski Mariusz Meszka Mariusz Woźniak Received:

More information

K 4 C 5. Figure 4.5: Some well known family of graphs

K 4 C 5. Figure 4.5: Some well known family of graphs 08 CHAPTER. TOPICS IN CLASSICAL GRAPH THEORY K, K K K, K K, K K, K C C C C 6 6 P P P P P. Graph Operations Figure.: Some well known family of graphs A graph Y = (V,E ) is said to be a subgraph of a graph

More information

Infinite locally random graphs

Infinite locally random graphs Infinite locally random graphs Pierre Charbit and Alex D. Scott Abstract Motivated by copying models of the web graph, Bonato and Janssen [3] introduced the following simple construction: given a graph

More information

(5.2) 151 Math Exercises. Graph Terminology and Special Types of Graphs. Malek Zein AL-Abidin

(5.2) 151 Math Exercises. Graph Terminology and Special Types of Graphs. Malek Zein AL-Abidin King Saud University College of Science Department of Mathematics 151 Math Exercises (5.2) Graph Terminology and Special Types of Graphs Malek Zein AL-Abidin ه Basic Terminology First, we give some terminology

More information

Assignment 4 Solutions of graph problems

Assignment 4 Solutions of graph problems Assignment 4 Solutions of graph problems 1. Let us assume that G is not a cycle. Consider the maximal path in the graph. Let the end points of the path be denoted as v 1, v k respectively. If either of

More information

Graphs. Introduction To Graphs: Exercises. Definitions:

Graphs. Introduction To Graphs: Exercises. Definitions: Graphs Eng.Jehad Aldahdooh Introduction To Graphs: Definitions: A graph G = (V, E) consists of V, a nonempty set of vertices (or nodes) and E, a set of edges. Each edge has either one or two vertices associated

More information

Equitable Colouring of Certain Double Vertex Graphs

Equitable Colouring of Certain Double Vertex Graphs Volume 118 No. 23 2018, 147-154 ISSN: 1314-3395 (on-line version) url: http://acadpubl.eu/hub ijpam.eu Equitable Colouring of Certain Double Vertex Graphs Venugopal P 1, Padmapriya N 2, Thilshath A 3 1,2,3

More information

Minimal Universal Bipartite Graphs

Minimal Universal Bipartite Graphs Minimal Universal Bipartite Graphs Vadim V. Lozin, Gábor Rudolf Abstract A graph U is (induced)-universal for a class of graphs X if every member of X is contained in U as an induced subgraph. We study

More information

LOCAL CONNECTIVE CHROMATIC NUMBER OF CARTESIAN PRODUCT OF SOME GRAPHS

LOCAL CONNECTIVE CHROMATIC NUMBER OF CARTESIAN PRODUCT OF SOME GRAPHS LOCAL CONNECTIVE CHROMATIC NUMBER OF CARTESIAN PRODUCT OF SOME GRAPHS ROMANIAN JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 08, VOLUME 8, ISSUE, p-7 CANAN C IFTC I AND PINAR DU NDAR Abstract A local connective

More information

A study on the Primitive Holes of Certain Graphs

A study on the Primitive Holes of Certain Graphs A study on the Primitive Holes of Certain Graphs Johan Kok arxiv:150304526v1 [mathco] 16 Mar 2015 Tshwane Metropolitan Police Department City of Tshwane, Republic of South Africa E-mail: kokkiek2@tshwanegovza

More information

[Ramalingam, 4(12): December 2017] ISSN DOI /zenodo Impact Factor

[Ramalingam, 4(12): December 2017] ISSN DOI /zenodo Impact Factor GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES FORCING VERTEX TRIANGLE FREE DETOUR NUMBER OF A GRAPH S. Sethu Ramalingam * 1, I. Keerthi Asir 2 and S. Athisayanathan 3 *1,2 & 3 Department of Mathematics,

More information

Introduction III. Graphs. Motivations I. Introduction IV

Introduction III. Graphs. Motivations I. Introduction IV Introduction I Graphs Computer Science & Engineering 235: Discrete Mathematics Christopher M. Bourke cbourke@cse.unl.edu Graph theory was introduced in the 18th century by Leonhard Euler via the Königsberg

More information

EVEN SUM CORDIAL LABELING FOR SOME NEW GRAPHS

EVEN SUM CORDIAL LABELING FOR SOME NEW GRAPHS International Journal of Mechanical ngineering and Technology (IJMT) Volume 9, Issue 2, February 2018, pp. 214 220 Article ID: IJMT_09_02_021 Available online at http://www.iaeme.com/ijmt/issues.asp?jtype=ijmt&vtype=9&itype=2

More information

Chromatic Transversal Domatic Number of Graphs

Chromatic Transversal Domatic Number of Graphs International Mathematical Forum, 5, 010, no. 13, 639-648 Chromatic Transversal Domatic Number of Graphs L. Benedict Michael Raj 1, S. K. Ayyaswamy and I. Sahul Hamid 3 1 Department of Mathematics, St.

More information

Ma/CS 6b Class 5: Graph Connectivity

Ma/CS 6b Class 5: Graph Connectivity Ma/CS 6b Class 5: Graph Connectivity By Adam Sheffer Communications Network We are given a set of routers and wish to connect pairs of them to obtain a connected communications network. The network should

More information

On the packing chromatic number of some lattices

On the packing chromatic number of some lattices On the packing chromatic number of some lattices Arthur S. Finbow Department of Mathematics and Computing Science Saint Mary s University Halifax, Canada BH C art.finbow@stmarys.ca Douglas F. Rall Department

More information

The strong chromatic number of a graph

The strong chromatic number of a graph The strong chromatic number of a graph Noga Alon Abstract It is shown that there is an absolute constant c with the following property: For any two graphs G 1 = (V, E 1 ) and G 2 = (V, E 2 ) on the same

More information

DISTINGUISHING NUMBER AND ADJACENCY PROPERTIES

DISTINGUISHING NUMBER AND ADJACENCY PROPERTIES DISTINGUISHING NUMBER AND ADJACENCY PROPERTIES ANTHONY BONATO AND DEJAN DELIĆ Dedicated to the memory of Roland Fraïssé. Abstract. The distinguishing number of countably infinite graphs and relational

More information

An Investigation of the Planarity Condition of Grötzsch s Theorem

An Investigation of the Planarity Condition of Grötzsch s Theorem Le Chen An Investigation of the Planarity Condition of Grötzsch s Theorem The University of Chicago: VIGRE REU 2007 July 16, 2007 Abstract The idea for this paper originated from Professor László Babai

More information

Indexable and Strongly Indexable Graphs

Indexable and Strongly Indexable Graphs Proceedings of the Pakistan Academy of Sciences 49 (2): 139-144 (2012) Copyright Pakistan Academy of Sciences ISSN: 0377-2969 Pakistan Academy of Sciences Original Article Indexable and Strongly Indexable

More information

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points MC 0 GRAPH THEORY 0// Solutions to HW # 0 points + XC points ) [CH] p.,..7. This problem introduces an important class of graphs called the hypercubes or k-cubes, Q, Q, Q, etc. I suggest that before you

More information

NEIGHBOURHOOD SUM CORDIAL LABELING OF GRAPHS

NEIGHBOURHOOD SUM CORDIAL LABELING OF GRAPHS NEIGHBOURHOOD SUM CORDIAL LABELING OF GRAPHS A. Muthaiyan # and G. Bhuvaneswari * Department of Mathematics, Government Arts and Science College, Veppanthattai, Perambalur - 66, Tamil Nadu, India. P.G.

More information

2. CONNECTIVITY Connectivity

2. CONNECTIVITY Connectivity 2. CONNECTIVITY 70 2. Connectivity 2.1. Connectivity. Definition 2.1.1. (1) A path in a graph G = (V, E) is a sequence of vertices v 0, v 1, v 2,..., v n such that {v i 1, v i } is an edge of G for i =

More information

Coloring edges and vertices of graphs without short or long cycles

Coloring edges and vertices of graphs without short or long cycles Coloring edges and vertices of graphs without short or long cycles Marcin Kamiński and Vadim Lozin Abstract Vertex and edge colorability are two graph problems that are NPhard in general. We show that

More information

On the Geodetic Number of Line Graph

On the Geodetic Number of Line Graph Int. J. Contemp. Math. Sciences, Vol. 7, 01, no. 46, 89-95 On the Geodetic Number of Line Graph Venkanagouda M. Goudar Sri Gouthama Research Center [Affiliated to Kuvempu University] Department of Mathematics,

More information

Prime Labeling for Some Planter Related Graphs

Prime Labeling for Some Planter Related Graphs International Journal of Mathematics Research. ISSN 0976-5840 Volume 8, Number 3 (2016), pp. 221-231 International Research Publication House http://www.irphouse.com Prime Labeling for Some Planter Related

More information

DISTINGUISHING NUMBER AND ADJACENCY PROPERTIES

DISTINGUISHING NUMBER AND ADJACENCY PROPERTIES DISTINGUISHING NUMBER AND ADJACENCY PROPERTIES ANTHONY BONATO AND DEJAN DELIĆ Dedicated to the memory of Roland Fraïssé. Abstract. The distinguishing number of countably infinite graphs and relational

More information

Gracefulness of a New Class from Copies of kc 4 P 2n and P 2 * nc 3

Gracefulness of a New Class from Copies of kc 4 P 2n and P 2 * nc 3 International Journal of Fuzzy Mathematics and Systems. ISSN 2248-9940 Volume 2, Number 1 (2012), pp. 75-81 Research India Publications http://www.ripublication.com Gracefulness of a New Class from Copies

More information

Bipolar Intuitionistic Fuzzy Graphs with Applications

Bipolar Intuitionistic Fuzzy Graphs with Applications Bipolar Intuitionistic Fuzzy Graphs with Applications K. Sankar 1, D. Ezhilmaran 2 1 Department of Mathematics, C. Abdul Hakeem College of Engineering & Technology, Melvisharam, Vellore, Tamilnadu, India.

More information

8.2 Paths and Cycles

8.2 Paths and Cycles 8.2 Paths and Cycles Degree a b c d e f Definition The degree of a vertex is the number of edges incident to it. A loop contributes 2 to the degree of the vertex. (G) is the maximum degree of G. δ(g) is

More information

A Vizing-like theorem for union vertex-distinguishing edge coloring

A Vizing-like theorem for union vertex-distinguishing edge coloring A Vizing-like theorem for union vertex-distinguishing edge coloring Nicolas Bousquet, Antoine Dailly, Éric Duchêne, Hamamache Kheddouci, Aline Parreau Abstract We introduce a variant of the vertex-distinguishing

More information

Paths, Circuits, and Connected Graphs

Paths, Circuits, and Connected Graphs Paths, Circuits, and Connected Graphs Paths and Circuits Definition: Let G = (V, E) be an undirected graph, vertices u, v V A path of length n from u to v is a sequence of edges e i = {u i 1, u i} E for

More information

Number Theory and Graph Theory

Number Theory and Graph Theory 1 Number Theory and Graph Theory Chapter 6 Basic concepts and definitions of graph theory By A. Satyanarayana Reddy Department of Mathematics Shiv Nadar University Uttar Pradesh, India E-mail: satya8118@gmail.com

More information

THE RESTRAINED EDGE MONOPHONIC NUMBER OF A GRAPH

THE RESTRAINED EDGE MONOPHONIC NUMBER OF A GRAPH BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 7(1)(2017), 23-30 Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS

More information

On the Rainbow Neighbourhood Number of Set-Graphs

On the Rainbow Neighbourhood Number of Set-Graphs On the Rainbow Neighbourhood Number of Set-Graphs Johan Kok, Sudev Naduvath arxiv:1712.02324v1 [math.gm] 6 Dec 2017 Centre for Studies in Discrete Mathematics Vidya Academy of Science & Technology Thalakkottukara,

More information

G G[S] G[D]

G G[S] G[D] Edge colouring reduced indierence graphs Celina M. H. de Figueiredo y Celia Picinin de Mello z Jo~ao Meidanis z Carmen Ortiz x Abstract The chromatic index problem { nding the minimum number of colours

More information

Graph Reconstruction

Graph Reconstruction Graph Reconstruction Robert D. Borgersen umborger@cc.umanitoba.ca Graduate Seminar: Graph Reconstruction p. 1/2 Abstract The concept of a graph is one of the most basic and readily understood mathematical

More information

γ(ɛ) (a, b) (a, d) (d, a) (a, b) (c, d) (d, d) (e, e) (e, a) (e, e) (a) Draw a picture of G.

γ(ɛ) (a, b) (a, d) (d, a) (a, b) (c, d) (d, d) (e, e) (e, a) (e, e) (a) Draw a picture of G. MAD 3105 Spring 2006 Solutions for Review for Test 2 1. Define a graph G with V (G) = {a, b, c, d, e}, E(G) = {r, s, t, u, v, w, x, y, z} and γ, the function defining the edges, is given by the table ɛ

More information

CPCS Discrete Structures 1

CPCS Discrete Structures 1 Let us switch to a new topic: Graphs CPCS 222 - Discrete Structures 1 Introduction to Graphs Definition: A simple graph G = (V, E) consists of V, a nonempty set of vertices, and E, a set of unordered pairs

More information

Section 8.2 Graph Terminology. Undirected Graphs. Definition: Two vertices u, v in V are adjacent or neighbors if there is an edge e between u and v.

Section 8.2 Graph Terminology. Undirected Graphs. Definition: Two vertices u, v in V are adjacent or neighbors if there is an edge e between u and v. Section 8.2 Graph Terminology Undirected Graphs Definition: Two vertices u, v in V are adjacent or neighbors if there is an edge e between u and v. The edge e connects u and v. The vertices u and v are

More information

Ramsey s Theorem on Graphs

Ramsey s Theorem on Graphs Ramsey s Theorem on Graphs 1 Introduction Exposition by William Gasarch Imagine that you have 6 people at a party. We assume that, for every pair of them, either THEY KNOW EACH OTHER or NEITHER OF THEM

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Graph theory G. Guérard Department of Nouvelles Energies Ecole Supérieur d Ingénieurs Léonard de Vinci Lecture 1 GG A.I. 1/37 Outline 1 Graph theory Undirected and directed graphs

More information

AMO - Advanced Modeling and Optimization, Volume 16, Number 2, 2014 PRODUCT CORDIAL LABELING FOR SOME BISTAR RELATED GRAPHS

AMO - Advanced Modeling and Optimization, Volume 16, Number 2, 2014 PRODUCT CORDIAL LABELING FOR SOME BISTAR RELATED GRAPHS AMO - Advanced Modeling and Optimization, Volume 6, Number, 4 PRODUCT CORDIAL LABELING FOR SOME BISTAR RELATED GRAPHS S K Vaidya Department of Mathematics, Saurashtra University, Rajkot-6 5, GUJARAT (INDIA).

More information

Lecture Notes on Graph Theory

Lecture Notes on Graph Theory Lecture Notes on Graph Theory Vadim Lozin 1 Introductory concepts A graph G = (V, E) consists of two finite sets V and E. The elements of V are called the vertices and the elements of E the edges of G.

More information

Math.3336: Discrete Mathematics. Chapter 10 Graph Theory

Math.3336: Discrete Mathematics. Chapter 10 Graph Theory Math.3336: Discrete Mathematics Chapter 10 Graph Theory Instructor: Dr. Blerina Xhabli Department of Mathematics, University of Houston https://www.math.uh.edu/ blerina Email: blerina@math.uh.edu Fall

More information

An Introduction to Graph Theory

An Introduction to Graph Theory An Introduction to Graph Theory CIS008-2 Logic and Foundations of Mathematics David Goodwin david.goodwin@perisic.com 12:00, Friday 17 th February 2012 Outline 1 Graphs 2 Paths and cycles 3 Graphs and

More information

Edge Colorings of Complete Multipartite Graphs Forbidding Rainbow Cycles

Edge Colorings of Complete Multipartite Graphs Forbidding Rainbow Cycles Theory and Applications of Graphs Volume 4 Issue 2 Article 2 November 2017 Edge Colorings of Complete Multipartite Graphs Forbidding Rainbow Cycles Peter Johnson johnspd@auburn.edu Andrew Owens Auburn

More information

Rainbow Vertex-Connection Number of 3-Connected Graph

Rainbow Vertex-Connection Number of 3-Connected Graph Applied Mathematical Sciences, Vol. 11, 2017, no. 16, 71-77 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2017.612294 Rainbow Vertex-Connection Number of 3-Connected Graph Zhiping Wang, Xiaojing

More information

Applied Mathematical Sciences, Vol. 5, 2011, no. 49, Július Czap

Applied Mathematical Sciences, Vol. 5, 2011, no. 49, Július Czap Applied Mathematical Sciences, Vol. 5, 011, no. 49, 437-44 M i -Edge Colorings of Graphs Július Czap Department of Applied Mathematics and Business Informatics Faculty of Economics, Technical University

More information

Gap vertex-distinguishing edge colorings of graphs

Gap vertex-distinguishing edge colorings of graphs Gap vertex-distinguishing edge colorings of graphs M. A Tahraoui 1 E. Duchêne H. Kheddouci Université de Lyon, Laboratoire GAMA, Université Lyon 1 43 bd du 11 Novembre 1918, F-696 Villeurbanne Cedex, France

More information

PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS

PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS PAUL BALISTER Abstract It has been shown [Balister, 2001] that if n is odd and m 1,, m t are integers with m i 3 and t i=1 m i = E(K n) then K n can be decomposed

More information

The Lower and Upper Forcing Edge-to-vertex Geodetic Numbers of a Graph

The Lower and Upper Forcing Edge-to-vertex Geodetic Numbers of a Graph International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Volume 4, Issue 6, June 2016, PP 23-27 ISSN 2347-307X (Print) & ISSN 2347-3142 (Online) DOI: http://dx.doi.org/10.20431/2347-3142.0406005

More information

A NOTE ON RADIUS AND DIAMETER OF A GRAPH W.R.T. D-DISTANCE

A NOTE ON RADIUS AND DIAMETER OF A GRAPH W.R.T. D-DISTANCE Int. J. Chem. Sci.: 14(3), 2016, 1725-1729 ISSN 0972-768X www.sadgurupublications.com A NOTE ON RAIUS AN IAMETER OF A GRAPH W.R.T. -ISTANCE. REY BABU a * and P. L. N. VARMA b a epartment of Mathematics,

More information

The Edge Fixing Edge-To-Vertex Monophonic Number Of A Graph

The Edge Fixing Edge-To-Vertex Monophonic Number Of A Graph Applied Mathematics E-Notes, 15(2015), 261-275 c ISSN 1607-2510 Available free at mirror sites of http://www.math.nthu.edu.tw/ amen/ The Edge Fixing Edge-To-Vertex Monophonic Number Of A Graph KrishnaPillai

More information

Maximum number of edges in claw-free graphs whose maximum degree and matching number are bounded

Maximum number of edges in claw-free graphs whose maximum degree and matching number are bounded Maximum number of edges in claw-free graphs whose maximum degree and matching number are bounded Cemil Dibek Tınaz Ekim Pinar Heggernes Abstract We determine the maximum number of edges that a claw-free

More information

Domination, Independence and Other Numbers Associated With the Intersection Graph of a Set of Half-planes

Domination, Independence and Other Numbers Associated With the Intersection Graph of a Set of Half-planes Domination, Independence and Other Numbers Associated With the Intersection Graph of a Set of Half-planes Leonor Aquino-Ruivivar Mathematics Department, De La Salle University Leonorruivivar@dlsueduph

More information

and Heinz-Jürgen Voss

and Heinz-Jürgen Voss Discussiones Mathematicae Graph Theory 22 (2002 ) 193 198 ON k-trestles IN POLYHEDRAL GRAPHS Michal Tkáč Department of Mathematics The Faculty of Business Economics in Košice University of Economics in

More information

Open Neighborhood Chromatic Number Of An Antiprism Graph

Open Neighborhood Chromatic Number Of An Antiprism Graph Applied Mathematics E-Notes, 15(2015), 54-62 c ISSN 1607-2510 Available free at mirror sites of http://www.math.nthu.edu.tw/ amen/ Open Neighborhood Chromatic Number Of An Antiprism Graph Narahari Narasimha

More information

Some properties of the line graphs associated to the total graph of a commutative ring

Some properties of the line graphs associated to the total graph of a commutative ring Pure and Applied Mathematics Journal 013; () : 51-55 Published online April, 013 (http://wwwsciencepublishinggroupcom/j/pamj) doi: 1011648/jpamj0130011 Some properties of the line graphs associated to

More information

Fundamental Properties of Graphs

Fundamental Properties of Graphs Chapter three In many real-life situations we need to know how robust a graph that represents a certain network is, how edges or vertices can be removed without completely destroying the overall connectivity,

More information

Star Decompositions of the Complete Split Graph

Star Decompositions of the Complete Split Graph University of Dayton ecommons Honors Theses University Honors Program 4-016 Star Decompositions of the Complete Split Graph Adam C. Volk Follow this and additional works at: https://ecommons.udayton.edu/uhp_theses

More information

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory Tandy Warnow January 20, 2017 Graphs Tandy Warnow Graphs A graph G = (V, E) is an object that contains a vertex set V and an edge set E. We also write V (G) to denote the vertex

More information

Binding Number of Some Special Classes of Trees

Binding Number of Some Special Classes of Trees International J.Math. Combin. Vol.(206), 76-8 Binding Number of Some Special Classes of Trees B.Chaluvaraju, H.S.Boregowda 2 and S.Kumbinarsaiah 3 Department of Mathematics, Bangalore University, Janana

More information

On vertex types of graphs

On vertex types of graphs On vertex types of graphs arxiv:1705.09540v1 [math.co] 26 May 2017 Pu Qiao, Xingzhi Zhan Department of Mathematics, East China Normal University, Shanghai 200241, China Abstract The vertices of a graph

More information

This article was originally published in a journal published by Elsevier, and the attached copy is provided by Elsevier for the author s benefit and for the benefit of the author s institution, for non-commercial

More information

Vertex-antimagic total labelings of graphs

Vertex-antimagic total labelings of graphs Vertex-antimagic total labelings of graphs Martin Bača Department of Applied Mathematics Technical University, 0400 Košice, Slovak Republic e-mail: hollbaca@ccsun.tuke.sk François Bertault Department of

More information

Lecture 19 Thursday, March 29. Examples of isomorphic, and non-isomorphic graphs will be given in class.

Lecture 19 Thursday, March 29. Examples of isomorphic, and non-isomorphic graphs will be given in class. CIS 160 - Spring 2018 (instructor Val Tannen) Lecture 19 Thursday, March 29 GRAPH THEORY Graph isomorphism Definition 19.1 Two graphs G 1 = (V 1, E 1 ) and G 2 = (V 2, E 2 ) are isomorphic, write G 1 G

More information

OMITTABLE POINTS. Geombinatorics 9(1999), 57-62

OMITTABLE POINTS. Geombinatorics 9(1999), 57-62 Geombinatorics 9(1999), 57-62 OMITTABLE POINTS by Branko Grünbaum University of Washington, Box 354350, Seattle, WA 98195-4350 e-mail: grunbaum@math.washington.edu One of the well known questions in elementary

More information

Some Upper Bounds for Signed Star Domination Number of Graphs. S. Akbari, A. Norouzi-Fard, A. Rezaei, R. Rotabi, S. Sabour.

Some Upper Bounds for Signed Star Domination Number of Graphs. S. Akbari, A. Norouzi-Fard, A. Rezaei, R. Rotabi, S. Sabour. Some Upper Bounds for Signed Star Domination Number of Graphs S. Akbari, A. Norouzi-Fard, A. Rezaei, R. Rotabi, S. Sabour Abstract Let G be a graph with the vertex set V (G) and edge set E(G). A function

More information

Decreasing the Diameter of Bounded Degree Graphs

Decreasing the Diameter of Bounded Degree Graphs Decreasing the Diameter of Bounded Degree Graphs Noga Alon András Gyárfás Miklós Ruszinkó February, 00 To the memory of Paul Erdős Abstract Let f d (G) denote the minimum number of edges that have to be

More information