Updated impact parameter resolutions of the ATLAS Inner Detector

Size: px
Start display at page:

Download "Updated impact parameter resolutions of the ATLAS Inner Detector"

Transcription

1 Updated impact parameter resolutions of the ATLAS Inner Detector ATLAS Internal Note Inner Detector ATL-INDET /10/2000 Szymon Gadomski, CERN 1 Abstract The layout of the ATLAS pixel system has changed twice since the physics TDR was published. This note presents updated impact parameter resolutions calculated using a simple program that models geometry, detector resolutions and multiple scattering. The results can be used for physics simulations using parameterised tracker resolutions. 1 Inner Detector layouts As the detailed engineering work on the Inner Detector is progressing, the layout is being constantly modified. Most of the changes introduced since the physics TDR [1] imply relatively small shifts in positions of the SCT and TRT wheels. Changes like that have practically no impact on the vertex resolutions. Only the changes of the pixel system, particularly those affecting the B-layer, can have a significant effect. The pixel layout was changed twice since the TDR. In June of 1999 the Prague layout was introduced [2]. Compared to the TDR layout, the changes were: new layout of the forward disks: now 5 disks, closer to the barrel in Z, pixel size increased from µm 2 to µm 2 except in the B-layer. In May of this year a change of the beam pipe of ATLAS has been adopted [3]. The pipe in its innermost part has changed in the following way: Physics TDR: 50 mm outer diameter, 1 mm thick Be wall after May 2000: inner diameter 58 mm, double wall mmofbewith4mmvacuum gap for bake out, outer diameter 69.2 mm The change of the beam pipe is being justified by the need to heat it for out-gassing while the B-layer will already be in place. An increase of the outer radius of the beam pipe has made it necessary to increase the radius of the B-layer. The new layout, which is called here the Dubna layout, is the current ATLAS baseline. Compared to the Prague layout the following changes have been made [5, 6]: 1 on leave of absence from the INP Cracow 1

2 an increase of the average radius of the sensors in B-layer from 4.30 cm to 5.05 cm, an increase of material in pixel layers from 5.3% to 6.2% of X/X 0 (counting 3 pixel layers at η =0), cm shifts of the SCT disk positions. An updated layout is being introduced into the full GEANT3 model of the ATLAS detector [7]. While this work is progressing, it was necessary to have an estimate of the impact of changes that could be available on a shorter time scale. In addition to the Prague and Dubna layouts introduced above, a third case named Dubna 400 was studied. This case is identical to the Dubna layout except for the size of pixels in the B-layer, which is made identical to that in the rest of the pixel system µm 2. The Dubna 400 layout is an academic study of what would happen if the B-layer was made of the same modules as the rest of the pixel system. 2 Calculation method The resolutions were calculated using a toy Monte-Carlo program developed in 1992 and used several times since to study the ID layouts. The model is characterised by the following features: tracking layers are represented as perfect disks and cylinders, invariance in φ is assumed, geometry, resolutions and material are defined in a custom-format file, a track is extrapolated from layer to layer as if in vacuum, uniform 2T magnetic field is assumed, space points on a track are smeared with given resolutions, multiple scattering is simulated using a thin layer approximation[8], only one track is treated at a time, no need of pattern recognition, a helix is fitted to the collection of points, the measured track parameters are returned. Figure 1 shows the simplified layout of the Inner Detector as implemented in the simulation. The continuous tracking of the TRT is approximated using four discreet layers. It should be noted that the interaction of particles with detector material is limited to multiple scattering. There is no Bremsstrahlung and no nuclear interactions. This approximation is known to reproduce the Gaussian parts of all resolutions. Each resolution is calculated as RMS of the measured track parameters using many tracks. This method is inefficient compared to using the error returned by the fitter, but 2

3 Figure 1: The simplified layout of the Inner Detector used to calculate the impact parameter resolutions. Symmetry in φ is assumed. The TRT is approximated using four discreet layers. 3

4 it allows to treat cases close to edges of cylinders and disks. Due to multiple scattering, and to the spread of primary vertices, two tracks with identical p T and η can pass through different combinations of detector layers and have different errors returned by the track fitter. A parameterised resolution, on the other hand, needs to be represented by a single number for a given p T and η. The RMS of the fitted track parameters is a choice of that number. Special care was applied to the track point resolutions in the pixel system. The point resolutions both in Rφ and in Z are dependent on the track-sensor angle and therefore on track rapidity. The results of full GEANT simulation of the pixel sensors [4] were used to parameterise the track point resolutions of the pixel system separately in the B-layer, the other two barrel layers and in disks. The code is based on an even earlier simulation program developed by Allan Poppleton. Several cross-checks with full simulation were done during the lifetime of the code. In the framework of this study the results of the fast simulation were also compared with full simulation results where available (see the end of section 3). 3 Results The resolutions as a function of p T, for tracks at η = 0 are shown in Fig.2. Top plot shows the resolutions in the transverse impact parameter d 0. An increase of multiple scattering from Prague layout to the Dubna layout is visible. The Dubna 400 layout is identical to the Dubna layout when considered in the XY plane, the resolutions are equal as expected. The bottom plot of Fig.2 shows the resolutions in the Z of the closest approach of the fitted helix to the beam line. Again an increase of the multiple scattering term is visible when comparing Prague and Dubna layouts. The curve for the Dubna 400 layout presents the deterioration that would be due to longer pixels, visible both at low and at high p T. It should be noted that the vertical scale on the plot does not start at zero, making the relative deterioration seem more significant. It is conventional, if not always very accurate, to parameterise the impact parameter resolutions over the entire (η, p T ) space using two constants. The parameterisations that can be obtained from Fig.2 are: 88 σ(d 0 )=12 p T sinθ µm (1) 160 σ(z 0 )=95 p T sin3 θ µm (2) where p T is in GeV/c. The formulas are for the Dubna layout, the current ATLAS baseline. The dependence of the resolutions on η is shown in Fig.3 for all the three layouts and for two very different track momenta. 4

5 Figure 2: Impact parameter resolutions calculated for the Prague, Dubna and Dubna 400 layouts. The resolutions in the transverse impact parameters d 0 (top)andinthe Z of the closest approach of the track to beam line Z 0 are shown as a function of p T at η =0. 5

6 Figure 3: Impact parameter resolutions calculated for the Prague, Dubna and Dubna 400 layouts. The resolutions in the transverse impact parameters d 0 andinthe Z of the closest approach of the track to beam line Z 0 are shown as a function of η for track p T of 1 and 200 GeV/c. 6

7 The curves are also available as parameterisations that can be used in ATLFast, ATL- Fast++ or other fast simulation programs. The files are called /afs/cern.ch/user/g/- gadomski/public/impres00/results/*.vtxres, where * is Prague, Dubna or Dubna400. The resolutions are given in mm for each point on the grid of (p T,η)points that is used by ATLFast++ (p =0.5, 1.0, 1.5, 2, 3, 4, 5, 10, 20, 40, 100, 200, 500, 1000 GeV, η = 0.0, 0.1, , 2.5). If you would like to use the points for physics simulations, please feel welcome and do not hesitate to ask questions or report problems to szymon.gadomski@cern.ch. Some cross-checks with full simulations are already available. For the Prague layout the full simulation results are available in [2] for low and high momentum tracks. The track momenta and the layout of the plots in Fig. 3 were made identical to those in [2] to facilitate comparisons. For the Dubna layout some full simulation results, limited to high p T tracks, are available in [7]. In almost all cases the resolutions compare with an accuracy that is better than the size of a point in the plots. 4 Conclusions In order to keep up with the changes of the Inner Detector layout, particularly with those affecting the beam pipe and the pixel system, a set of impact parameter resolutions was produced using a fast simulation program. The resolutions where checked against the full GEANT3 model implemented in DICE where the results of the latter were available. The Prague layout has impact parameter resolutions close to those from the Physics TDR, because the B-layer did not get changed. The Dubna layout (current baseline) has worse resolutions, as can be expected from an increase of B-layer radius. An increase of material in the pixel layers as well as in the beam pipe also contributes to the deterioration. The Dubna 400 layout would represent further deterioration of the resolution in the RZ plane. The three resolutions defined on a grid of points in (p T,η) are accessible and can be used for physics and detector performance simulations using fast simulation, at least until a parameterisation derived from the full GEANT model becomes available. References [1] ATLAS Collaboration, ATLAS Detector and Physics Performance Technical Design Report, CERN/LHCC/99-14, 25 May [2] Dario Barberis, ATLAS Inner Detector Developments, presentation at the BEAUTY 99 conference, 24 June [3] Presentations from a review of beam pipe held at CERN in May 2000 are available under EDMS. 7

8 [4] Alexandre Rozanow, Summary of 300 versus 400 µm pixels studies available, presentation at the pixel software meeting in Praha, 2 June 99. [5] Dario Barberis, private communication. [6] Geoff Tappern, technical drawings of the Inner Detector layout. [7] Alexandre Rozanow, Preparation of the Dubna layout, presentation at the pixel software meeting at CERN, 12 June [8] Particle Data Group, Review of Particle Physics, e.g. The European Physical Journal C, Volume 3,

New results from LDCPrime optimization studies

New results from LDCPrime optimization studies New results from LDCPrime optimization studies with the Vienna Fast Simulation Tool ( LiC Detector Toy ) The Vienna Fast Simulation Tool LDT Simple, but flexible and powerful tool Version 2.0 available

More information

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on CMS information server CMS CR -2008/100 The Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland 02 December 2008 (v2, 03 December 2008)

More information

Simulation Study for EUDET Pixel Beam Telescope using ILC Software

Simulation Study for EUDET Pixel Beam Telescope using ILC Software Simulation Study for EUDET Pixel Beam Telescope using ILC Software Linear Collider Workshop, Hamburg, May/June 2007 Tatsiana Klimkovich DESY Tatsiana Klimkovich, Linear Collider Workshop, May/June 2007

More information

Simulating the RF Shield for the VELO Upgrade

Simulating the RF Shield for the VELO Upgrade LHCb-PUB-- March 7, Simulating the RF Shield for the VELO Upgrade T. Head, T. Ketel, D. Vieira. Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil European Organization for Nuclear Research

More information

Simulation study for the EUDET pixel beam telescope

Simulation study for the EUDET pixel beam telescope EUDET Simulation study for the EUDET pixel beam telescope using ILC software T. Klimkovich January, 7 Abstract A pixel beam telescope which is currently under development within the EUDET collaboration

More information

CMS Conference Report

CMS Conference Report Available on CMS information server CMS CR 2005/021 CMS Conference Report 29 Septemebr 2005 Track and Vertex Reconstruction with the CMS Detector at LHC S. Cucciarelli CERN, Geneva, Switzerland Abstract

More information

Optimisation Studies for the CLIC Vertex-Detector Geometry

Optimisation Studies for the CLIC Vertex-Detector Geometry CLICdp-Note04-002 4 July 204 Optimisation Studies for the CLIC Vertex-Detector Geometry Niloufar Alipour Tehrani, Philipp Roloff CERN, Switzerland, ETH Zürich, Switzerland Abstract An improved CLIC detector

More information

Performance of FPCCD vertex detector. T. Nagamine Tohoku University Feb 6, 2007 ACFA 9, IHEP,Beijin

Performance of FPCCD vertex detector. T. Nagamine Tohoku University Feb 6, 2007 ACFA 9, IHEP,Beijin Performance of FPCCD vertex detector T. Nagamine Tohoku University Feb 6, 27 ACFA 9, IHEP,Beijin Outline FPCCD and Vertex Detector Structure Impact Parameter Resolution Pair Background in Vertex Detector

More information

Alignment of the ATLAS Inner Detector tracking system

Alignment of the ATLAS Inner Detector tracking system Alignment of the ATLAS Inner Detector tracking system Instituto de Física Corpuscular (IFIC), Centro Mixto UVEG-CSIC, Apdo.22085, ES-46071 Valencia, E-mail: Regina.Moles@ific.uv.es The ATLAS experiment

More information

ATLAS Tracking Detector Upgrade studies using the Fast Simulation Engine

ATLAS Tracking Detector Upgrade studies using the Fast Simulation Engine Journal of Physics: Conference Series PAPER OPEN ACCESS ATLAS Tracking Detector Upgrade studies using the Fast Simulation Engine To cite this article: Noemi Calace et al 2015 J. Phys.: Conf. Ser. 664 072005

More information

EUDET Telescope Geometry and Resolution Studies

EUDET Telescope Geometry and Resolution Studies EUDET EUDET Telescope Geometry and Resolution Studies A.F.Żarnecki, P.Nieżurawski February 2, 2007 Abstract Construction of EUDET pixel telescope will significantly improve the test beam infrastructure

More information

arxiv:hep-ph/ v1 11 Mar 2002

arxiv:hep-ph/ v1 11 Mar 2002 High Level Tracker Triggers for CMS Danek Kotliński a Andrey Starodumov b,1 a Paul Scherrer Institut, CH-5232 Villigen, Switzerland arxiv:hep-ph/0203101v1 11 Mar 2002 b INFN Sezione di Pisa, Via Livornese

More information

The LiC Detector Toy program

The LiC Detector Toy program The LiC Detector Toy program M Regler, W Mitaroff, M Valentan, R Frühwirth and R Höfler Austrian Academy of Sciences, Institute of High Energy Physics, A-1050 Vienna, Austria, EU E-mail: regler@hephy.oeaw.ac.at

More information

Electron and Photon Reconstruction and Identification with the ATLAS Detector

Electron and Photon Reconstruction and Identification with the ATLAS Detector Electron and Photon Reconstruction and Identification with the ATLAS Detector IPRD10 S12 Calorimetry 7th-10th June 2010 Siena, Italy Marine Kuna (CPPM/IN2P3 Univ. de la Méditerranée) on behalf of the ATLAS

More information

THE ATLAS INNER DETECTOR OPERATION, DATA QUALITY AND TRACKING PERFORMANCE.

THE ATLAS INNER DETECTOR OPERATION, DATA QUALITY AND TRACKING PERFORMANCE. Proceedings of the PIC 2012, Štrbské Pleso, Slovakia THE ATLAS INNER DETECTOR OPERATION, DATA QUALITY AND TRACKING PERFORMANCE. E.STANECKA, ON BEHALF OF THE ATLAS COLLABORATION Institute of Nuclear Physics

More information

Track reconstruction for the Mu3e experiment based on a novel Multiple Scattering fit Alexandr Kozlinskiy (Mainz, KPH) for the Mu3e collaboration

Track reconstruction for the Mu3e experiment based on a novel Multiple Scattering fit Alexandr Kozlinskiy (Mainz, KPH) for the Mu3e collaboration Track reconstruction for the Mu3e experiment based on a novel Multiple Scattering fit Alexandr Kozlinskiy (Mainz, KPH) for the Mu3e collaboration CTD/WIT 2017 @ LAL-Orsay Mu3e Experiment Mu3e Experiment:

More information

Adding timing to the VELO

Adding timing to the VELO Summer student project report: Adding timing to the VELO supervisor: Mark Williams Biljana Mitreska Cern Summer Student Internship from June 12 to August 4, 2017 Acknowledgements I would like to thank

More information

ATLAS ITk Layout Design and Optimisation

ATLAS ITk Layout Design and Optimisation ATLAS ITk Layout Design and Optimisation Noemi Calace noemi.calace@cern.ch On behalf of the ATLAS Collaboration 3rd ECFA High Luminosity LHC Experiments Workshop 3-6 October 2016 Aix-Les-Bains Overview

More information

Endcap Modules for the ATLAS SemiConductor Tracker

Endcap Modules for the ATLAS SemiConductor Tracker Endcap Modules for the ATLAS SemiConductor Tracker RD3, Firenze, September 29 th, 23 Richard Nisius (MPI Munich) nisius@mppmu.mpg.de (For the ATLAS-SCT Collaboration) The plan of this presentation Introduction

More information

PoS(Baldin ISHEPP XXII)134

PoS(Baldin ISHEPP XXII)134 Implementation of the cellular automaton method for track reconstruction in the inner tracking system of MPD at NICA, G.A. Ososkov and A.I. Zinchenko Joint Institute of Nuclear Research, 141980 Dubna,

More information

Performance of the ATLAS Inner Detector at the LHC

Performance of the ATLAS Inner Detector at the LHC Performance of the ALAS Inner Detector at the LHC hijs Cornelissen for the ALAS Collaboration Bergische Universität Wuppertal, Gaußstraße 2, 4297 Wuppertal, Germany E-mail: thijs.cornelissen@cern.ch Abstract.

More information

Performance of the GlueX Detector Systems

Performance of the GlueX Detector Systems Performance of the GlueX Detector Systems GlueX-doc-2775 Gluex Collaboration August 215 Abstract This document summarizes the status of calibration and performance of the GlueX detector as of summer 215.

More information

Modelling of non-gaussian tails of multiple Coulomb scattering in track fitting with a Gaussian-sum filter

Modelling of non-gaussian tails of multiple Coulomb scattering in track fitting with a Gaussian-sum filter Modelling of non-gaussian tails of multiple Coulomb scattering in track fitting with a Gaussian-sum filter A. Strandlie and J. Wroldsen Gjøvik University College, Norway Outline Introduction A Gaussian-sum

More information

Determination of the aperture of the LHCb VELO RF foil

Determination of the aperture of the LHCb VELO RF foil LHCb-PUB-214-12 April 1, 214 Determination of the aperture of the LHCb VELO RF foil M. Ferro-Luzzi 1, T. Latham 2, C. Wallace 2. 1 CERN, Geneva, Switzerland 2 University of Warwick, United Kingdom LHCb-PUB-214-12

More information

Muon Reconstruction and Identification in CMS

Muon Reconstruction and Identification in CMS Muon Reconstruction and Identification in CMS Marcin Konecki Institute of Experimental Physics, University of Warsaw, Poland E-mail: marcin.konecki@gmail.com An event reconstruction at LHC is a challenging

More information

A New Segment Building Algorithm for the Cathode Strip Chambers in the CMS Experiment

A New Segment Building Algorithm for the Cathode Strip Chambers in the CMS Experiment EPJ Web of Conferences 108, 02023 (2016) DOI: 10.1051/ epjconf/ 201610802023 C Owned by the authors, published by EDP Sciences, 2016 A New Segment Building Algorithm for the Cathode Strip Chambers in the

More information

1. INTRODUCTION 2. MUON RECONSTRUCTION IN ATLAS. A. Formica DAPNIA/SEDI, CEA/Saclay, Gif-sur-Yvette CEDEX, France

1. INTRODUCTION 2. MUON RECONSTRUCTION IN ATLAS. A. Formica DAPNIA/SEDI, CEA/Saclay, Gif-sur-Yvette CEDEX, France &+(3/D-ROOD&DOLIRUQLD0DUFK 1 Design, implementation and deployment of the Saclay muon reconstruction algorithms (Muonbox/y) in the Athena software framework of the ATLAS experiment A. Formica DAPNIA/SEDI,

More information

PoS(ACAT)049. Alignment of the ATLAS Inner Detector. Roland Haertel Max-Planck-Institut für Physik, Munich, Germany

PoS(ACAT)049. Alignment of the ATLAS Inner Detector. Roland Haertel Max-Planck-Institut für Physik, Munich, Germany Max-Planck-Institut für Physik, Munich, Germany E-mail: haertel@mppmu.mpg.de The ATLAS experiment at the LHC is currently under construction at CERN and will start operation in summer 2008. The Inner Detector

More information

3D-Triplet Tracking for LHC and Future High Rate Experiments

3D-Triplet Tracking for LHC and Future High Rate Experiments 3D-Triplet Tracking for LHC and Future High Rate Experiments André Schöning Physikalisches Institut, Universität Heidelberg Workshop on Intelligent Trackers WIT 2014 University of Pennsylvania May 14-16,

More information

Alignment of the CMS silicon tracker using Millepede II

Alignment of the CMS silicon tracker using Millepede II Journal of Physics: Conference Series Alignment of the CMS silicon tracker using Millepede II To cite this article: Peter Schleper et al 2008 J. Phys.: Conf. Ser. 119 032040 Related content - CMS silicon

More information

Track reconstruction of real cosmic muon events with CMS tracker detector

Track reconstruction of real cosmic muon events with CMS tracker detector Track reconstruction of real cosmic muon events with CMS tracker detector Piergiulio Lenzi a, Chiara Genta a, Boris Mangano b a Università degli Studi di Firenze and Istituto Nazionale di Fisica Nucleare

More information

PXD Simulation and Optimisation Studies

PXD Simulation and Optimisation Studies PXD Simulation and Optimisation Studies Z. Drásal, A. Moll, K. Prothmann with special thanks to: C. Kiesling, A. Raspereza, Prague people Charles University Prague MPI Munich ILC Software Framework Summary

More information

Fast pattern recognition with the ATLAS L1Track trigger for the HL-LHC

Fast pattern recognition with the ATLAS L1Track trigger for the HL-LHC Fast pattern recognition with the ATLAS L1Track trigger for the HL-LHC On behalf of the ATLAS Collaboration Uppsala Universitet E-mail: mikael.martensson@cern.ch ATL-DAQ-PROC-2016-034 09/01/2017 A fast

More information

8.882 LHC Physics. Track Reconstruction and Fitting. [Lecture 8, March 2, 2009] Experimental Methods and Measurements

8.882 LHC Physics. Track Reconstruction and Fitting. [Lecture 8, March 2, 2009] Experimental Methods and Measurements 8.882 LHC Physics Experimental Methods and Measurements Track Reconstruction and Fitting [Lecture 8, March 2, 2009] Organizational Issues Due days for the documented analyses project 1 is due March 12

More information

Tracker Software MECO/Mu2e Experience

Tracker Software MECO/Mu2e Experience Tracker Software MECO/Mu2e Experience Yury Kolomensky UC Berkeley/LBNL January 24, 2008 History Mu2e: benefit from years of detailed studies for MECO Also inherited the code base, which I will briefly

More information

Charged Particle Reconstruction in HIC Detectors

Charged Particle Reconstruction in HIC Detectors Charged Particle Reconstruction in HIC Detectors Ralf-Arno Tripolt, Qiyan Li [http://de.wikipedia.org/wiki/marienburg_(mosel)] H-QM Lecture Week on Introduction to Heavy Ion Physics Kloster Marienburg/Mosel,

More information

Alignment of the ATLAS Inner Detector

Alignment of the ATLAS Inner Detector Alignment of the ATLAS Inner Detector Heather M. Gray [1,2] on behalf of the ATLAS ID Alignment Group [1] California Institute of Technology [2] Columbia University The ATLAS Experiment tile calorimeter

More information

EicRoot for tracking R&D studies

EicRoot for tracking R&D studies EicRoot for tracking R&D studies Alexander Kiselev EIC Software Meeting Jefferson Lab September,24 2015 Contents of the talk Tracking code implementation in EicRoot Few particular applications: Basic forward

More information

SiD VXD Conceptual Design Su Dong SLAC

SiD VXD Conceptual Design Su Dong SLAC SiD VXD Conceptual Design Su Dong SLAC Aug/23/05 Su Dong Snowmass 05 VTX WG: SiD VXD conceptual Design 1 Common Design Features Like other detector concepts, SiD VXD design is open to all sensor technology

More information

PrimEx Trigger Simultation Study D. Lawrence Mar. 2002

PrimEx Trigger Simultation Study D. Lawrence Mar. 2002 PRIMEX NOTE 6 PrimEx Trigger Simultation Study D. Lawrence Mar. 2002 Introduction This documents describes a Monte Carlo simulation study for the PrimEx o experiment. The study focused on determining trigger

More information

Tracking and Vertexing in 3D B-field

Tracking and Vertexing in 3D B-field Tracking and Vertexing in 3D B-field Norman Graf (SLAC) HPS Collaboration Meeting, JLab October 26, 2015 Track Extrapolation At the heart of both track and vertex fitting in the presence of a non-uniform

More information

Inside-out tracking at CDF

Inside-out tracking at CDF Nuclear Instruments and Methods in Physics Research A 538 (25) 249 254 www.elsevier.com/locate/nima Inside-out tracking at CDF Christopher Hays a,, Yimei Huang a, Ashutosh V. Kotwal a, Heather K. Gerberich

More information

PoS(IHEP-LHC-2011)002

PoS(IHEP-LHC-2011)002 and b-tagging performance in ATLAS Università degli Studi di Milano and INFN Milano E-mail: andrea.favareto@mi.infn.it The ATLAS Inner Detector is designed to provide precision tracking information at

More information

Alignment of the CMS Silicon Tracker

Alignment of the CMS Silicon Tracker Alignment of the CMS Silicon Tracker Tapio Lampén 1 on behalf of the CMS collaboration 1 Helsinki Institute of Physics, Helsinki, Finland Tapio.Lampen @ cern.ch 16.5.2013 ACAT2013 Beijing, China page 1

More information

The CLICdp Optimization Process

The CLICdp Optimization Process ILDOptWS, Feb, 2016 A. Sailer: The CLICdp Optimization Process 1/17 The CLICdp Optimization Process André Sailer (CERN-EP-LCD) On Behalf of the CLICdp Collaboration ILD Software and Optimisation Workshop

More information

Design of the new ATLAS Inner Tracker (ITk) for the High Luminosity LHC

Design of the new ATLAS Inner Tracker (ITk) for the High Luminosity LHC Design of the new ATLAS Inner Tracker (ITk) for the High Luminosity LHC Jike Wang (DESY) for the ATLAS Collaboration May/2017, TIPP 2017 LHC Machine Schedule In year 2015, ATLAS and CMS went into Run2

More information

Fast simulation in ATLAS

Fast simulation in ATLAS Fast simulation in ATLAS A. Salzburger, CERN for the ATLAS collaboration 1 Simulation load & requirements typical MC campaign in ATLAS 2011 - O( 9) events

More information

The Compact Muon Solenoid Experiment. CMS Note. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

The Compact Muon Solenoid Experiment. CMS Note. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on CMS information server CMS NOTE 998/ The Compact Muon Solenoid Experiment CMS Note Mailing address: CMS CERN, CH- GENEVA 3, Switzerland 8 July 998 A simplified Track Assembler I/O for the

More information

Introduction. Bill Cooper LDC Meeting May 25,

Introduction. Bill Cooper LDC Meeting May 25, The Vertex Detector in the SiD Concept Bill Cooper Fermilab (Layer 1) (Layer 5) VXD Introduction SiD is a closely integrated detector. Designs of the outer tracker and the vertex detector have been developed

More information

A LVL2 Zero Suppression Algorithm for TRT Data

A LVL2 Zero Suppression Algorithm for TRT Data A LVL2 Zero Suppression Algorithm for TRT Data R. Scholte,R.Slopsema,B.vanEijk, N. Ellis, J. Vermeulen May 5, 22 Abstract In the ATLAS experiment B-physics studies will be conducted at low and intermediate

More information

V. Karimäki, T. Lampén, F.-P. Schilling, The HIP algorithm for Track Based Alignment and its Application to the CMS Pixel Detector, CMS Note

V. Karimäki, T. Lampén, F.-P. Schilling, The HIP algorithm for Track Based Alignment and its Application to the CMS Pixel Detector, CMS Note VI V. Karimäki, T. Lampén, F.-P. Schilling, The HIP algorithm for Track Based Alignment and its Application to the CMS Pixel Detector, CMS Note 26/18, CERN, Geneva, Switzerland, 1pp., Copyright (26) by

More information

PROSPECTS FOR COLLIDER VERTEX DETECTORS*

PROSPECTS FOR COLLIDER VERTEX DETECTORS* SLAC-PUB-4317 April 1987 (El PROSPECTS FOR COLLIDER VERTEX DETECTORS* David M. Ritson Department of Physics and Stanford Linear Accelerator Center Stanford University, Stanford, California 94305 1. Introduction

More information

Spring 2010 Research Report Judson Benton Locke. High-Statistics Geant4 Simulations

Spring 2010 Research Report Judson Benton Locke. High-Statistics Geant4 Simulations Florida Institute of Technology High Energy Physics Research Group Advisors: Marcus Hohlmann, Ph.D. Kondo Gnanvo, Ph.D. Note: During September 2010, it was found that the simulation data presented here

More information

The Phase-2 ATLAS ITk Pixel Upgrade

The Phase-2 ATLAS ITk Pixel Upgrade The Phase-2 ATLAS ITk Pixel Upgrade T. Flick (University of Wuppertal) - on behalf of the ATLAS collaboration 14th Topical Seminar on Innovative Particle and Radiation Detectors () 03.-06. October 2016

More information

SLAC PUB 8389 Mar 2000 TRACKING IN FULL MONTE CARLO DETECTOR SIMULATIONS OF 500 GeV e + e COLLISIONS a M.T. RONAN Lawrence Berkeley National Laborator

SLAC PUB 8389 Mar 2000 TRACKING IN FULL MONTE CARLO DETECTOR SIMULATIONS OF 500 GeV e + e COLLISIONS a M.T. RONAN Lawrence Berkeley National Laborator SLAC PUB 8389 Mar 2000 TRACKING IN FULL MONTE CARLO DETECTOR SIMULATIONS OF 500 GeV e + e COLLISIONS a M.T. RONAN Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA and Stanford

More information

Track Reconstruction

Track Reconstruction 4 Track Reconstruction 4 Track Reconstruction The NA57 experimental setup has been designed to measure strange particles. In order to translate the information extracted from the detectors to the characteristics

More information

Performance Testing and Tuning of Kalman Track-Fitting for CLEO III

Performance Testing and Tuning of Kalman Track-Fitting for CLEO III Performance Testing and Tuning of Kalman Track-Fitting for CLEO III Daniela Silva Department of Mathematics, Wayne State University, Detroit, MI, 48202 Abstract CLEO III will use a Kalman track fitter.

More information

SoLID GEM Detectors in US

SoLID GEM Detectors in US SoLID GEM Detectors in US Kondo Gnanvo University of Virginia SoLID Collaboration Meeting @ JLab, 08/26/2016 Outline Design Optimization U-V strips readout design Large GEMs for PRad in Hall B Requirements

More information

A STUDY OF GEODETIC GRIDS FOR THE CONTINUOUS, QUASI REAL TIME ALIGNMENT OF THE ATLAS SEMICONDUCTOR TRACKER

A STUDY OF GEODETIC GRIDS FOR THE CONTINUOUS, QUASI REAL TIME ALIGNMENT OF THE ATLAS SEMICONDUCTOR TRACKER A STUDY OF GEODETIC GRIDS FOR THE CONTINUOUS, QUASI REAL TIME ALIGNMENT OF THE ATLAS SEMICONDUCTOR TRACKER S. M. Gibson, P. A. Coe, A. Mitra, D. F. Howell, R. B. Nickerson ATLAS Group, Particle Physics,

More information

PoS(TIPP2014)204. Tracking at High Level Trigger in CMS. Mia TOSI Universitá degli Studi di Padova e INFN (IT)

PoS(TIPP2014)204. Tracking at High Level Trigger in CMS. Mia TOSI Universitá degli Studi di Padova e INFN (IT) Universitá degli Studi di Padova e INFN (IT) E-mail: mia.tosi@gmail.com The trigger systems of the LHC detectors play a crucial role in determining the physics capabilities of the experiments. A reduction

More information

Silvia Miglioranzi University College of London / Argonne National Laboratories. June 20, Abstract

Silvia Miglioranzi University College of London / Argonne National Laboratories. June 20, Abstract Tagging secondary vertices produced by beauty decay and studies about the possibilities to detect charm in the forward region at the ZEUS experiment at HERA Silvia Miglioranzi University College of London

More information

Gridpix: TPC development on the right track. The development and characterisation of a TPC with a CMOS pixel chip read out Fransen, M.

Gridpix: TPC development on the right track. The development and characterisation of a TPC with a CMOS pixel chip read out Fransen, M. UvA-DARE (Digital Academic Repository) Gridpix: TPC development on the right track. The development and characterisation of a TPC with a CMOS pixel chip read out Fransen, M. Link to publication Citation

More information

arxiv: v1 [hep-ex] 7 Jul 2011

arxiv: v1 [hep-ex] 7 Jul 2011 LHCb BEAM-GAS IMAGING RESULTS P. Hopchev, LAPP, IN2P3-CNRS, Chemin de Bellevue, BP110, F-74941, Annecy-le-Vieux For the LHCb Collaboration arxiv:1107.1492v1 [hep-ex] 7 Jul 2011 Abstract The high resolution

More information

Tracking and flavour tagging selection in the ATLAS High Level Trigger

Tracking and flavour tagging selection in the ATLAS High Level Trigger Tracking and flavour tagging selection in the ATLAS High Level Trigger University of Pisa and INFN E-mail: milene.calvetti@cern.ch In high-energy physics experiments, track based selection in the online

More information

PoS(Vertex 2007)030. Alignment strategy for the ATLAS tracker. Tobias Golling. Lawrence Berkeley National Laboratory (LBNL)

PoS(Vertex 2007)030. Alignment strategy for the ATLAS tracker. Tobias Golling. Lawrence Berkeley National Laboratory (LBNL) Alignment strategy for the ATLAS tracker Lawrence Berkeley National Laboratory (LBNL) E-mail: TFGolling@lbl.gov The ATLAS experiment is a multi-purpose particle detector that will study high-energy particle

More information

05/09/07 CHEP2007 Stefano Spataro. Simulation and Event Reconstruction inside the PandaRoot Framework. Stefano Spataro. for the collaboration

05/09/07 CHEP2007 Stefano Spataro. Simulation and Event Reconstruction inside the PandaRoot Framework. Stefano Spataro. for the collaboration for the collaboration Overview Introduction on Panda Structure of the framework Event generation Detector implementation Reconstruction The Panda experiment AntiProton Annihilations at Darmstadt Multi

More information

Stefania Beolè (Università di Torino e INFN) for the ALICE Collaboration. TIPP Chicago, June 9-14

Stefania Beolè (Università di Torino e INFN) for the ALICE Collaboration. TIPP Chicago, June 9-14 ALICE SDD ITS performance with pp and Pb-Pb beams Stefania Beolè (Università di Torino e INFN) for the ALICE Collaboration - Chicago, June 9-14 Inner Tracking System (I) Six layers of silicon detectors

More information

arxiv:hep-ex/ v1 24 Jun 1994

arxiv:hep-ex/ v1 24 Jun 1994 MULTIPLE SCATTERING ERROR PROPAGATION IN PARTICLE TRACK RECONSTRUCTION M. Penţia, G. Iorgovan INSTITUTE OF ATOMIC PHYSICS RO-76900 P.O.Box MG-6, Bucharest, ROMANIA e-mail: pentia@roifa.bitnet arxiv:hep-ex/9406006v1

More information

arxiv: v1 [physics.ins-det] 18 Jan 2011

arxiv: v1 [physics.ins-det] 18 Jan 2011 arxiv:111.3491v1 [physics.ins-det] 18 Jan 11 Alice Alignment, Tracking and Physics Performance Results University of Padova and INFN E-mail: rossia@pd.infn.it for the ALICE Collaboration The ALICE detector

More information

The CMS alignment challenge

The CMS alignment challenge The CMS alignment challenge M. Weber a for the CMS Collaboration a I. Physikalisches Institut B, RWTH Aachen, Germany Abstract The CMS tracking detectors are of unprecedented complexity: 66 million pixel

More information

Physics CMS Muon High Level Trigger: Level 3 reconstruction algorithm development and optimization

Physics CMS Muon High Level Trigger: Level 3 reconstruction algorithm development and optimization Scientifica Acta 2, No. 2, 74 79 (28) Physics CMS Muon High Level Trigger: Level 3 reconstruction algorithm development and optimization Alessandro Grelli Dipartimento di Fisica Nucleare e Teorica, Università

More information

The ATLAS Conditions Database Model for the Muon Spectrometer

The ATLAS Conditions Database Model for the Muon Spectrometer The ATLAS Conditions Database Model for the Muon Spectrometer Monica Verducci 1 INFN Sezione di Roma P.le Aldo Moro 5,00185 Rome, Italy E-mail: monica.verducci@cern.ch on behalf of the ATLAS Muon Collaboration

More information

Event reconstruction in STAR

Event reconstruction in STAR Chapter 4 Event reconstruction in STAR 4.1 Data aquisition and trigger The STAR data aquisition system (DAQ) [54] receives the input from multiple detectors at different readout rates. The typical recorded

More information

Full Silicon Tracking Studies for CEPC

Full Silicon Tracking Studies for CEPC Full Silicon Tracking Studies for CEPC Weiming Yao (IHEP/LBNL) for Silicon Tracking Study Group CEPC-SppC Study Group Meeting, September 2-26, Beihang University http://cepc.ihep.ac.cn/ cepc/cepc twiki/index.php/pure

More information

Performance of the MRPC based Time Of Flight detector of ALICE at LHC

Performance of the MRPC based Time Of Flight detector of ALICE at LHC Performance of the MRPC based Time Of Flight detector of ALICE at LHC (for the ALICE Collaboration) Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Rome, Italy Dipartimento di Fisica

More information

TORCH: A large-area detector for precision time-of-flight measurements at LHCb

TORCH: A large-area detector for precision time-of-flight measurements at LHCb TORCH: A large-area detector for precision time-of-flight measurements at LHCb Neville Harnew University of Oxford ON BEHALF OF THE LHCb RICH/TORCH COLLABORATION Outline The LHCb upgrade TORCH concept

More information

Physics and Detector Simulations. Norman Graf (SLAC) 2nd ECFA/DESY Workshop September 24, 2000

Physics and Detector Simulations. Norman Graf (SLAC) 2nd ECFA/DESY Workshop September 24, 2000 Physics and Detector Simulations Norman Graf (SLAC) 2nd ECFA/DESY Workshop September 24, 2000 Simulation studies for a future Linear Collider We believe that the physics case for the LC has been made.

More information

LHC-B. 60 silicon vertex detector elements. (strips not to scale) [cm] [cm] = 1265 strips

LHC-B. 60 silicon vertex detector elements. (strips not to scale) [cm] [cm] = 1265 strips LHCb 97-020, TRAC November 25 1997 Comparison of analogue and binary read-out in the silicon strips vertex detector of LHCb. P. Koppenburg 1 Institut de Physique Nucleaire, Universite de Lausanne Abstract

More information

MIP Reconstruction Techniques and Minimum Spanning Tree Clustering

MIP Reconstruction Techniques and Minimum Spanning Tree Clustering SLAC-PUB-11359 July 25 MIP Reconstruction Techniques and Minimum Spanning Tree Clustering Wolfgang F. Mader The University of Iowa, 23 Van Allen Hall, 52242 Iowa City, IA The development of a tracking

More information

TPC Detector Response Simulation and Track Reconstruction

TPC Detector Response Simulation and Track Reconstruction TPC Detector Response Simulation and Track Reconstruction Physics goals at the Linear Collider drive the detector performance goals: charged particle track reconstruction resolution: δ(1/p)= ~ 4 x 10-5

More information

Cut per region. Marc Verderi GEANT4 collaboration meeting 01/10/2002

Cut per region. Marc Verderi GEANT4 collaboration meeting 01/10/2002 Cut per region Marc Verderi GEANT4 collaboration meeting 01/10/2002 Introduction Cut here = «production threshold»; Not tracking cut; GEANT4 originally designed to allow a unique cut in range; Unique cut

More information

PoS(High-pT physics09)036

PoS(High-pT physics09)036 Triggering on Jets and D 0 in HLT at ALICE 1 University of Bergen Allegaten 55, 5007 Bergen, Norway E-mail: st05886@alf.uib.no The High Level Trigger (HLT) of the ALICE experiment is designed to perform

More information

Simulation of the LiCAS Survey System for the ILC

Simulation of the LiCAS Survey System for the ILC JAI-2006-018 Simulation of the LiCAS Survey System for the ILC G. Grzelak Warsaw University, Warsaw, Poland A. Reichold, J. Dale, M. Dawson, J. Green, Y. Han, M. Jones, G. Moss, B. Ottewell, C. Uribe-Estrada,

More information

ATLAS Dr. C. Lacasta, Dr. C. Marinas

ATLAS Dr. C. Lacasta, Dr. C. Marinas ATLAS Dr. C. Lacasta, Dr. C. Marinas cmarinas@uni-bonn.de 1 http://www.atlas.ch/multimedia/# Why? In particle physics, the processes occur on a scale that is either too brief or too small to be observed

More information

Artifact Mitigation in High Energy CT via Monte Carlo Simulation

Artifact Mitigation in High Energy CT via Monte Carlo Simulation PIERS ONLINE, VOL. 7, NO. 8, 11 791 Artifact Mitigation in High Energy CT via Monte Carlo Simulation Xuemin Jin and Robert Y. Levine Spectral Sciences, Inc., USA Abstract The high energy (< 15 MeV) incident

More information

Track reconstruction with the CMS tracking detector

Track reconstruction with the CMS tracking detector Track reconstruction with the CMS tracking detector B. Mangano (University of California, San Diego) & O.Gutsche (Fermi National Accelerator Laboratory) Overview The challenges The detector Track reconstruction

More information

Experiment 8 Wave Optics

Experiment 8 Wave Optics Physics 263 Experiment 8 Wave Optics In this laboratory, we will perform two experiments on wave optics. 1 Double Slit Interference In two-slit interference, light falls on an opaque screen with two closely

More information

FastSim tutorial for beginners

FastSim tutorial for beginners FastSim tutorial for beginners Matteo Rama Laboratori Nazionali di Frascati 1st SuperB Collaboration meeting London, September 2011 Part I FastSim overview M. Rama - 1st SuperB Collaboration Meeting QMUL

More information

Ray Optics I. Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex

Ray Optics I. Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex Phys 531 Lecture 8 20 September 2005 Ray Optics I Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex Today shift gears, start applying

More information

Alignment and physics performance of the Belle II vertex detector

Alignment and physics performance of the Belle II vertex detector Alignment and physics performance of the Belle II vertex detector and T. Bilka et al. on behalf of the Belle II collaboration Charles University E-mail: jakub.kandra@karlov.mff.cuni.cz, bilka@ipnp.troja.mff.cuni.cz

More information

Tracking and Vertexing performance in CMS

Tracking and Vertexing performance in CMS Vertex 2012, 16-21 September, Jeju, Korea Tracking and Vertexing performance in CMS Antonio Tropiano (Università and INFN, Firenze) on behalf of the CMS collaboration Outline Tracker description Track

More information

Alignment of the ATLAS inner detector tracking system

Alignment of the ATLAS inner detector tracking system Journal of Instrumentation OPEN ACCESS Alignment of the ATLAS inner detector tracking system To cite this article: Heather M Gray Related content - The ATLAS trigger: high-level trigger commissioning and

More information

Simulation of Beam-Beam Background at CLIC. André Sailer (CERN-PH-LCD, HU Berlin) LCWS2010: BDS+MDI Joint Session 29 March, 2010, Beijing

Simulation of Beam-Beam Background at CLIC. André Sailer (CERN-PH-LCD, HU Berlin) LCWS2010: BDS+MDI Joint Session 29 March, 2010, Beijing Simulation of Beam-Beam Background at CLIC André Sailer (CERN-PH-LCD, HU Berlin) LCWS2010: BDS+MDI Joint Session 29 March, 2010, Beijing 1 Content Beam-Beam Simulation with GuineaPig CLIC_ILD Detector

More information

Forward Time-of-Flight Geometry for CLAS12

Forward Time-of-Flight Geometry for CLAS12 Forward Time-of-Flight Geometry for CLAS12 D.S. Carman, Jefferson Laboratory ftof geom.tex April 13, 2016 Abstract This document details the nominal geometry for the CLAS12 Forward Time-of- Flight System

More information

Upgraded Swimmer for Computationally Efficient Particle Tracking for Jefferson Lab s CLAS12 Spectrometer

Upgraded Swimmer for Computationally Efficient Particle Tracking for Jefferson Lab s CLAS12 Spectrometer Upgraded Swimmer for Computationally Efficient Particle Tracking for Jefferson Lab s CLAS12 Spectrometer Lydia Lorenti Advisor: David Heddle April 29, 2018 Abstract The CLAS12 spectrometer at Jefferson

More information

ATLAS NOTE ATLAS-CONF July 20, Commissioning of the ATLAS high-performance b-tagging algorithms in the 7 TeV collision data

ATLAS NOTE ATLAS-CONF July 20, Commissioning of the ATLAS high-performance b-tagging algorithms in the 7 TeV collision data ALAS NOE ALAS-CONF-2-2 July 2, 2 Commissioning of the ALAS high-performance b-tagging algorithms in the ev collision data he ALAS collaboration ALAS-CONF-2-2 2 July 2 Abstract he ability to identify jets

More information

Charged Particle Tracking at Cornell: Gas Detectors and Event Reconstruction

Charged Particle Tracking at Cornell: Gas Detectors and Event Reconstruction Charged Particle Tracking at Cornell: Gas Detectors and Event Reconstruction Dan Peterson, Cornell University The Cornell group has constructed, operated and maintained the charged particle tracking detectors

More information

Robustness Studies of the CMS Tracker for the LHC Upgrade Phase I

Robustness Studies of the CMS Tracker for the LHC Upgrade Phase I Robustness Studies of the CMS Tracker for the LHC Upgrade Phase I Juan Carlos Cuevas Advisor: Héctor Méndez, Ph.D University of Puerto Rico Mayagϋez May 2, 2013 1 OUTLINE Objectives Motivation CMS pixel

More information

Deeply Virtual Compton Scattering at Jefferson Lab

Deeply Virtual Compton Scattering at Jefferson Lab Deeply Virtual Compton Scattering at Jefferson Lab June 16-17, 2016 Frederic Georges (PhD student) PhD Supervisor: Carlos Muñoz Camacho Institut de Physique Nucléaire d Orsay CNRS-IN2P3 Université Paris-Sud,

More information

Mechanical integration studies for the CLIC vertex and inner tracking detectors

Mechanical integration studies for the CLIC vertex and inner tracking detectors CLICdp-Note-2015-002 22 January 2015 Mechanical integration studies for the CLIC vertex and inner tracking detectors M.A. Villarejo Bermudez, F. Duarte Ramos, H. Gerwig IFIC Valencia, Spain, CERN, Switzerland

More information