MCNP CLASS SERIES (SAMPLE MCNP INPUT) Jongsoon Kim

Size: px
Start display at page:

Download "MCNP CLASS SERIES (SAMPLE MCNP INPUT) Jongsoon Kim"

Transcription

1 MCNP CLASS SERIES (SAMPLE MCNP INPUT) Jongsoon Kim

2 Basic constants in MCNP Lengths in cm Energies in MeV Times in shakes (10-8 sec) Atomic densities in units of atoms/barn*-cm Mass densities in g/cm 3 * 1 barn = cm 2

3 Simple sample problem

4 MCNP INP file One Line Problem Title Card Cell cards.. Surface cards.. Data cards.. All inputs lines: up to 80 columns Alphabetic characters: upper, lower, or mixed case Anything that follow $: a comment Comment lines Start C somewhere in columns 1-5 At least one blank A total of 80 columns long Blanks filling the first five columns : a continuation of the data from the last name card

5 Surface cards (Surface equations) Mnemonic Equation Card Entries PX x-d = 0 D PY y-d = 0 D PZ z-d = 0 D S ( x x ) + ( y y ) + ( z z ) R = x1 y1z1r

6 Surface cards in a sample problem C beginning of surface for cube 1 PZ -5 2 PZ 5 3 PY -5 4 PY 5 5 PX -5 6 PX 5 C End of cube surfaces 7 S $ Oxygen sphere 8 S $ Iron sphere

7 Cell cards IMP:N=1 1=> Cell number 1=> Cell material number, Material is described on a material card (Mn) => Cell material density Positive => Atom density in units of atoms/cm 3 Negative => Mass density in g/cm 3-7 => Specification of the geometry of the cell Combination with the Boolean intersection and union operators

8 Cell cards in a sample problem C Cell cards for sample problem :2:-3:4:-5:6 C End of cell cards

9 Data cards Mode Cell and surface Source specification Tally specification Material specification Problem cutoff MCNP card name MODE IMP:N SDEF Fn, En Mn NPS

10 Data cards (1. MODE card) Mode N N P P E P E N P E Neutron transport only (default) Neutron and neutron-induced photon transport Photon transport only Electron transport only Photon and electron transport Neutron, neutron-induced photon and electron transport * If the MODE card is omitted, mode N is assumed.

11 Data cards (2. Cell and surface parameters) IMP:N card Cell importance parameters For terminating the particle's history if the importance is zero. Fro geometry splitting if a particle moves to higher importance cell For Russian roulette if a particle moves to lower importance cell *IMP: N

12 Data cards (3.1 Source specification cards) POS = x y z Default is CEL = starting cell number ERG = starting energy Default is 14 MeV WGT = starting weight Default is 1 TME = time Default is 0 PAR = source particle type 1 for N, N P, N P E 2 for P, P E 3 for E

13 Data cards (3.2 Source specification cards) SDEF POS= CEL=1 ERG=14 WGT=1 TME=0 PAR=1 => Neutron particles will start at the center of the oxygen sphere (0, -4, -2.5), in cell 1, with an energy of 14 MeV, and with weight 1 at time 0 * SDEF POS=

14 Data cards (4.1 Tally specification cards) F1:P F1:E Surface current F2:P F2:E Surface flux F4:P F4:E Track length estimate of cell flux F5:P Flux at a point (point detector) F6:P Track length estimate of energy deposition F8:P F8:E Energy distribution of pulsed created in a detector

15 Data cards (4.2 Tally specification cards) Tally (Fn) cards F2:N 8 $ Flux across surface 8 F4:N 2 $ Track length in cell 2 Tally Energy (En) card E E2 1 12I 14

16 Data cards (5.1 Material specification cards) Mm ZAID 1 fraction 1 ZAID 2 fraction 2... m is the material number on the cell card Nuclide Identification Number (ZAID) : To identify the element or nuclide desired (ZZZAAA). ZZZ : Atomic number of the elements of nuclide AAA* : Mass number of the nuclide * For naturally occurring elements, AAA=000.

17 Data cards (5.2 Material specification cards) Nuclide fraction For H 2 0 M M For Air, Dry (near sea level)* M & Fraction > 0, atomic fraction Fraction < 0, weight fraction * From ESTAR (

18 Data cards (5.3 Material specification cards) The material cards for the sample problem M $ Oxygen 16 M $ Natural iron M $ Carbon

19 Data cards (6. Problem cutoffs) To terminate execution of MCNP NPS n History cutoff cards n is the number of histories to transport MCNP will terminate after NPS histories

20 Sample problem summary Sample Problem Input Deck C cell cards for sample problem :2:-3:4:-5:6 C Surface cards for sample problem 1 PZ -5 2 PZ 5 3 PY -5 4 PY 5 5 PX -5 6 PX 5 7 S $ Oxygen sphere 8 S $ Iron sphere C Data cards for sample problem IMP:N 1110 SDEF POS= F2:N 8 $ Flux across surface 8 F4:N 2 $ Track length in cell 2 E0 1 12I 14 M $ Oxygen 16 M $ Natural iron M $ Carbon NPS

21 Parallel Virtual Machine (PVM) Communication protocols to use MCNP5 with parallel capabilities Developed at Oak Ridge National Laboratory PVM must be started before MCNP can be executed $pvm pvm> quit Console: exit handler called pvmd still running $

22 How to run MCNP (I) MCNP uses several files for input and output File names cannot be longer than 8 characters File INP must be present as a local file MCNP will create OUTP and RUNTPE Default File Name in MCNP INP OUTP RUNTPE* Description Problem input specification Output for printing Binary start-restart data for expanded output printing, continue run, tally printing * After MCNP execution, RUNTPE has to be deleted.

23 How to run MCNP (II) MCNP execution line has the following form: 1 CPU mcnp5.pvm i=sim01 o=sim01o > sim01.out & 4 CPU mcnp5.pvm i=sim01 o=sim01o > sim01.out tasks 3x1 & sim01: MCNP input file sim01o: MCNP output file sim01.out: MCNP running status file > : What is printed on a monitor put into the following file. & : Background running

24 After MCNP execution Before sim01 After sim01.out, sim01o, runtpe

25 RUNTPE file It looks like junk! Just delete it.

26 Tally plot using RUNTPE

27 sim01.out (MCNP running status file) I like this line.

28 sim01o (MCNP output file)

29 Tallies F2 tally (1/cm 2 ) F4 tally (1/cm 2 )

30 Estimation of Monte Carlo errors(i) MCNP tallies are normalized to be per starting particle Printed output accompanied by relative error Estimated relative error defined to be one estimated standard deviation of the mean Sx The Central Limit Theorem states that as N approaches infinity 68% chance in 95% chance in x ( 1± R) x ( 1± 2R)

31 Estimation of Monte Carlo errors (II) Guidelines for Interpreting the Relative Error R Range of R Quality of the Tally 0.5 to 1.0 Not meaningful 0.2 to 0.5 Factor of a few 0.1 to 0.2 Questionable < 0.10 Generally reliable < 0.05 Generally reliable for point detectors Ref.: MCNP manual Relative error

32 Estimation of Monte Carlo errors (III) For a well-behave tally, R will be proportional to 1/ N where N is number of histories. To halve R, we must increase the total number of histories fourfold.

33 Practice 1. Running with a higher NPS Increase NPS from 1e5 to 1e6 at sim01 Open sim01 using pico Replace at NPS line with 1e6 Save as sim02 Exit from pico Running sim02 using parallel computing capability: $mcnp5.pvm i=sim02 o=sim02o > sim02.out tasks 3x1 &

34 Practice 1. 4 CPUs are running

35 Practice 2. At the sample problem, replace carbon with air in the cube box and compare results. (Density of air = g/cm 3 ) Atomic weight composition of air

The Monte Carlo simulation of a Package formed by the combination of three scintillators: Brillance380, Brillance350, and Prelude420.

The Monte Carlo simulation of a Package formed by the combination of three scintillators: Brillance380, Brillance350, and Prelude420. EURONS I3 506065 JRA9 RHIB Report made during stay IEM-CSIC Madrid december 2006 MINISTERIO DE ASUNTOS EXTERIORES Y DE COOPERACIÓN AECI VICESECRETARÍA GENERAL The Monte Carlo simulation of a Package formed

More information

Outline. Monte Carlo Radiation Transport Modeling Overview (MCNP5/6) Monte Carlo technique: Example. Monte Carlo technique: Introduction

Outline. Monte Carlo Radiation Transport Modeling Overview (MCNP5/6) Monte Carlo technique: Example. Monte Carlo technique: Introduction Monte Carlo Radiation Transport Modeling Overview () Lecture 7 Special Topics: Device Modeling Outline Principles of Monte Carlo modeling Radiation transport modeling with Utilizing Visual Editor (VisEd)

More information

Population Control Variance Reduction in MCNP

Population Control Variance Reduction in MCNP Population Control Variance Reduction in MCNP One of the oldest, but simplest and often effective, variance reduction techniques in MCNP is to control the population of MCNP particles passing through a

More information

Monte Carlo Method for Medical & Health Physics

Monte Carlo Method for Medical & Health Physics Med Phys 774 Monte Carlo Method for Medical & Health Physics Chapter 5. MCNP Monte Carlo Code 1 MCNP stands for: A general-purpose M C N-P code Particles that can be transported??? See the references:

More information

CHAPTER 10: TALLYING IN MCNP

CHAPTER 10: TALLYING IN MCNP _or_.e_sa_m_h_us_se_in 6:..:...7 ---"M.=o:.c.;;nte.:-C-"-=arlo Particle Transport with MCNP CHAPTER 10: TALLYING IN MCNP Tallying is the process of scoring the parameters of interest, Le. providing the

More information

AN MCNP PRIMER. J. K. Shultis. and. R. E. Faw. Dept. of Mechanical and Nuclear Engineering Kansas State University Manhattan, KS 66506

AN MCNP PRIMER. J. K. Shultis. and. R. E. Faw. Dept. of Mechanical and Nuclear Engineering Kansas State University Manhattan, KS 66506 AN MCNP PRIMER by J. K. Shultis (jks@ksu.edu) and R. E. Faw (fawre@triad.rr.com) Dept. of Mechanical and Nuclear Engineering Kansas State University Manhattan, KS 66506 (c) Copyright 2004 2011 All Rights

More information

Graphical User Interface for Simplified Neutron Transport Calculations

Graphical User Interface for Simplified Neutron Transport Calculations Graphical User Interface for Simplified Neutron Transport Calculations Phase 1 Final Report Instrument No: DE-SC0002321 July 20, 2009, through April 19, 2010 Recipient: Randolph Schwarz, Visual Editor

More information

Modeling the ORTEC EX-100 Detector using MCNP

Modeling the ORTEC EX-100 Detector using MCNP Modeling the ORTEC EX-100 Detector using MCNP MCNP is a general-purpose Monte Carlo radiation transport code for modeling the interaction of radiation with materials based on composition and density. MCNP

More information

Click to edit Master title style

Click to edit Master title style Fun stuff with the built-in response matrix solver 7th International Serpent UGM, Gainesville, FL, Nov. 6 9, 2017 Jaakko Leppänen VTT Technical Research Center of Finland Click to edit Master title Outline

More information

Particle track plotting in Visual MCNP6 Randy Schwarz 1,*

Particle track plotting in Visual MCNP6 Randy Schwarz 1,* Particle track plotting in Visual MCNP6 Randy Schwarz 1,* 1 Visual Editor Consultants, PO Box 1308, Richland, WA 99352, USA Abstract. A visual interface for MCNP6 has been created to allow the plotting

More information

Neutronics Analysis of TRIGA Mark II Research Reactor. R. Khan, S. Karimzadeh, H. Böck Vienna University of Technology Atominstitute

Neutronics Analysis of TRIGA Mark II Research Reactor. R. Khan, S. Karimzadeh, H. Böck Vienna University of Technology Atominstitute Neutronics Analysis of TRIGA Mark II Research Reactor R. Khan, S. Karimzadeh, H. Böck Vienna University of Technology Atominstitute 23-03-2010 TRIGA Mark II reactor MCNP radiation transport code MCNP model

More information

Comparison of Shutdown Dose Rate Results using MCNP6 Activation Capability and MCR2S

Comparison of Shutdown Dose Rate Results using MCNP6 Activation Capability and MCR2S APPLIED RADIATION PHYSICS GROUP TECHNICAL NOTE ARP-097 July 2014 Comparison of Shutdown Dose Rate Results using MCNP6 Activation Capability and MCR2S A. Turner 1, Z. Ghani 1, J. Shimwell 2 1: CCFE, Culham

More information

Development of a Radiation Shielding Monte Carlo Code: RShieldMC

Development of a Radiation Shielding Monte Carlo Code: RShieldMC Development of a Radiation Shielding Monte Carlo Code: RShieldMC Shenshen GAO 1,2, Zhen WU 1,3, Xin WANG 1,2, Rui QIU 1,2, Chunyan LI 1,3, Wei LU 1,2, Junli LI 1,2*, 1.Department of Physics Engineering,

More information

Initialize data. read input file. particle in system? START. find the collided. photon. neutron. nuclide and its in bank? in bank? interaction.

Initialize data. read input file. particle in system? START. find the collided. photon. neutron. nuclide and its in bank? in bank? interaction. Application of EDF uclear Data for Testing a Monte-Carlo eutron and Photon Transport Code P. Siangsanan, W.Dharmavanij and S. Chongkum Physics Division, Office of Atomic Eneegy for Peace (OAEP), Ministry

More information

Automated ADVANTG Variance Reduction in a Proton Driven System. Kenneth A. Van Riper1 and Robert L. Metzger2

Automated ADVANTG Variance Reduction in a Proton Driven System. Kenneth A. Van Riper1 and Robert L. Metzger2 Automated ADVANTG Variance Reduction in a Proton Driven System Kenneth A. Van Riper1 and Robert L. Metzger2 1 White Rock Science, P. O. Box 4729, White Rock, NM 87547, kvr@rt66.com Radiation Safety Engineering,

More information

Modeling Radiation Transport Using MCNP6 and Abaqus/CAE Chelsea A. D Angelo, Steven S. McCready, Karen C. Kelley Los Alamos National Laboratory

Modeling Radiation Transport Using MCNP6 and Abaqus/CAE Chelsea A. D Angelo, Steven S. McCready, Karen C. Kelley Los Alamos National Laboratory Modeling Radiation Transport Using MCNP6 and Abaqus/CAE Chelsea A. D Angelo, Steven S. McCready, Karen C. Kelley Los Alamos National Laboratory Abstract: Los Alamos National Laboratory (LANL) has released

More information

EGS5 Monte Carlo Code: Installation

EGS5 Monte Carlo Code: Installation EGS5 Monte Carlo Code: Installation What do you need to install? EGS5 Cygwin CGView gvim (or any editor) EGS5 Monte Carlo Code: Installation Installing CYGWIN Installing EGS5 Running an EGS5 TEST Any trouble

More information

A Method for Estimating Criticality Lower Limit Multiplication Factor. Yoshitaka NAITO NAIS Co., Ltd.

A Method for Estimating Criticality Lower Limit Multiplication Factor. Yoshitaka NAITO NAIS Co., Ltd. A Method for Estimating Criticality Lower Limit Multiplication Factor Yoshitaka NAITO NAIS Co., Ltd. Progress Grade up of computer performance Sub-criticality becomes to be decided using computed results

More information

Graphical User Interface for High Energy Multi-Particle Transport

Graphical User Interface for High Energy Multi-Particle Transport Graphical User Interface for High Energy Multi-Particle Transport Phase I Final Report PREPARED BY: P.O. Box 1308 Richland, WA 99352-1308 PHONE: (509) 539-8621 FAX: (509) 946-2001 Email: randyschwarz@mcnpvised.com

More information

Development of a Variance Reduction Scheme in the Serpent 2 Monte Carlo Code Jaakko Leppänen, Tuomas Viitanen, Olli Hyvönen

Development of a Variance Reduction Scheme in the Serpent 2 Monte Carlo Code Jaakko Leppänen, Tuomas Viitanen, Olli Hyvönen Development of a Variance Reduction Scheme in the Serpent 2 Monte Carlo Code Jaakko Leppänen, Tuomas Viitanen, Olli Hyvönen VTT Technical Research Centre of Finland, Ltd., P.O Box 1000, FI-02044 VTT, Finland

More information

Evaluation of RayXpert for shielding design of medical facilities

Evaluation of RayXpert for shielding design of medical facilities Evaluation of Raypert for shielding design of medical facilities Sylvie Derreumaux 1,*, Sophie Vecchiola 1, Thomas Geoffray 2, and Cécile Etard 1 1 Institut for radiation protection and nuclear safety,

More information

Large Plastic Scintillation Detectors for the Nuclear Materials Identification System

Large Plastic Scintillation Detectors for the Nuclear Materials Identification System Large Plastic Scintillation Detectors for the Nuclear Materials Identification System J.S. Neal, J.T. Mihalczo, M. T. Hiatt, J. D. Edwards Oak Ridge National Laboratory P. O. Box 2008, Oak Ridge, Tennessee

More information

Mesh Human Phantoms with MCNP

Mesh Human Phantoms with MCNP LAUR-12-01659 Mesh Human Phantoms with MCNP Casey Anderson (casey_a@lanl.gov) Karen Kelley, Tim Goorley Los Alamos National Laboratory U N C L A S S I F I E D Slide 1 Summary Monte Carlo for Radiation

More information

CHAPTER 2 INTRODUCTION TO MONTE CARLO SIMULATION

CHAPTER 2 INTRODUCTION TO MONTE CARLO SIMULATION 30 CHAPTER 2 INTRODUCTION TO MONTE CARLO SIMULATION 2.1 INTRODUCTION Monte Carlo simulation of radiation transport is indisputably the most accurate means of predicting dose distributions and other quantities

More information

Graphical User Interface for High Energy Multi-Particle Transport

Graphical User Interface for High Energy Multi-Particle Transport Graphical User Interface for High Energy Multi-Particle Transport Final Report November 30 th 2008 PREPARED BY: P.O. Box 1308 Richland, WA 99352-1308 PHONE: (509) 539-8621 FAX: (509) 946-2001 Email: randyschwarz@mcnpvised.com

More information

OPTIMIZATION OF MONTE CARLO TRANSPORT SIMULATIONS IN STOCHASTIC MEDIA

OPTIMIZATION OF MONTE CARLO TRANSPORT SIMULATIONS IN STOCHASTIC MEDIA PHYSOR 2012 Advances in Reactor Physics Linking Research, Industry, and Education Knoxville, Tennessee, USA, April 15-20, 2012, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2010) OPTIMIZATION

More information

Limitations in the PHOTON Monte Carlo gamma transport code

Limitations in the PHOTON Monte Carlo gamma transport code Nuclear Instruments and Methods in Physics Research A 480 (2002) 729 733 Limitations in the PHOTON Monte Carlo gamma transport code I. Orion a, L. Wielopolski b, * a St. Luke s/roosevelt Hospital, Columbia

More information

Click to edit Master title style

Click to edit Master title style New features in Serpent 2 for fusion neutronics 5th International Serpent UGM, Knoxville, TN, Oct. 13-16, 2015 Jaakko Leppänen VTT Technical Research Center of Finland Click to edit Master title Outline

More information

Electron Dose Kernels (EDK) for Secondary Particle Transport in Deterministic Simulations

Electron Dose Kernels (EDK) for Secondary Particle Transport in Deterministic Simulations Electron Dose Kernels (EDK) for Secondary Particle Transport in Deterministic Simulations A. Al-Basheer, G. Sjoden, M. Ghita Computational Medical Physics Team Nuclear & Radiological Engineering University

More information

CHAPTER 11: UNCERTAINTY ANALYSIS IN MCNP

CHAPTER 11: UNCERTAINTY ANALYSIS IN MCNP =..;'r"-.:e=sain=::...:.:h=us""se,=in"--- ----'-'78~..:..:.Mo=n=te::...:::::Ca=r=10::...o..::.Par.ticle Transport with MCNP CHAPTER 11: UNCERTAINTY ANALYSIS IN MCNP t is important to keep in mind that

More information

Monte Carlo simulation of photon and electron transport

Monte Carlo simulation of photon and electron transport First Barcelona Techno Week Course on semiconductor detectors ICCUB, 11-15th July 2016 Monte Carlo simulation of photon and electron transport Francesc Salvat Monte Carlo 1 Simulations performed with the

More information

ELECTRON DOSE KERNELS TO ACCOUNT FOR SECONDARY PARTICLE TRANSPORT IN DETERMINISTIC SIMULATIONS

ELECTRON DOSE KERNELS TO ACCOUNT FOR SECONDARY PARTICLE TRANSPORT IN DETERMINISTIC SIMULATIONS Computational Medical Physics Working Group Workshop II, Sep 30 Oct 3, 2007 University of Florida (UF), Gainesville, Florida USA on CD-ROM, American Nuclear Society, LaGrange Park, IL (2007) ELECTRON DOSE

More information

Application of MCNP Code in Shielding Design for Radioactive Sources

Application of MCNP Code in Shielding Design for Radioactive Sources Application of MCNP Code in Shielding Design for Radioactive Sources Ibrahim A. Alrammah Abstract This paper presents three tasks: Task 1 explores: the detected number of as a function of polythene moderator

More information

Visual MCNP Editor Lore

Visual MCNP Editor Lore Visual MCNP Editor Lore 1. The Visual MCNP Editor can not run my input file. 2. I do not use the Visual Editor it dies all the time. 3. Vised died and I lost my input file. 4. Vised messes up my input

More information

ABSTRACT. W. T. Urban', L. A. Crotzerl, K. B. Spinney', L. S. Waters', D. K. Parsons', R. J. Cacciapouti2, and R. E. Alcouffel. 1.

ABSTRACT. W. T. Urban', L. A. Crotzerl, K. B. Spinney', L. S. Waters', D. K. Parsons', R. J. Cacciapouti2, and R. E. Alcouffel. 1. COMPARISON OF' THREE-DIMENSIONAL NEUTRON FLUX CALCULATIONS FOR MAINE YANKEE W. T. Urban', L. A. Crotzerl, K. B. Spinney', L. S. Waters', D. K. Parsons', R. J. Cacciapouti2, and R. E. Alcouffel ABSTRACT

More information

Michael Speiser, Ph.D.

Michael Speiser, Ph.D. IMPROVED CT-BASED VOXEL PHANTOM GENERATION FOR MCNP MONTE CARLO Michael Speiser, Ph.D. Department of Radiation Oncology UT Southwestern Medical Center Dallas, TX September 1 st, 2012 CMPWG Workshop Medical

More information

Breaking Through the Barriers to GPU Accelerated Monte Carlo Particle Transport

Breaking Through the Barriers to GPU Accelerated Monte Carlo Particle Transport Breaking Through the Barriers to GPU Accelerated Monte Carlo Particle Transport GTC 2018 Jeremy Sweezy Scientist Monte Carlo Methods, Codes and Applications Group 3/28/2018 Operated by Los Alamos National

More information

Monte Carlo Method on Parallel Computing. Jongsoon Kim

Monte Carlo Method on Parallel Computing. Jongsoon Kim Monte Carlo Method on Parallel Computing Jongsoon Kim Introduction Monte Carlo methods Utilize random numbers to perform a statistical simulation of a physical problem Extremely time-consuming Inherently

More information

State of the art of Monte Carlo technics for reliable activated waste evaluations

State of the art of Monte Carlo technics for reliable activated waste evaluations State of the art of Monte Carlo technics for reliable activated waste evaluations Matthieu CULIOLI a*, Nicolas CHAPOUTIER a, Samuel BARBIER a, Sylvain JANSKI b a AREVA NP, 10-12 rue Juliette Récamier,

More information

Shielding factors for traditional safety glasses

Shielding factors for traditional safety glasses Shielding factors for traditional safety glasses Malcolm McEwen, Hong Shen and Ernesto Mainegra-Hing Ionizing Radiation Standards, National Research Council Canada Alan DuSautoy, Radiation and Health Sciences

More information

Production of neutrons in laminated barriers of radiotherapy rooms: comparison between the analytical methodology and Monte Carlo simulations

Production of neutrons in laminated barriers of radiotherapy rooms: comparison between the analytical methodology and Monte Carlo simulations JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 15, NUMBER 6, 2014 Production of neutrons in laminated barriers of radiotherapy rooms: comparison between the analytical methodology and Monte Carlo

More information

OPTIMIZATION OF MONTE CARLO TRANSPORT SIMULATIONS IN STOCHASTIC MEDIA

OPTIMIZATION OF MONTE CARLO TRANSPORT SIMULATIONS IN STOCHASTIC MEDIA PHYSOR 2012 Advances in Reactor Physics Linking Research, Industry, and Education Knoxville, Tennessee, USA, April 15-20, 2012, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2012) OPTIMIZATION

More information

Daedeok-daero, Yuseong-gu, Daejeon , Republic of Korea b Argonne National Laboratory (ANL)

Daedeok-daero, Yuseong-gu, Daejeon , Republic of Korea b Argonne National Laboratory (ANL) MC 2-3/TWODANT/DIF3D Analysis for the ZPPR-15 10 B(n, α) Reaction Rate Measurement Min Jae Lee a*, Donny Hartanto a, Sang Ji Kim a, and Changho Lee b a Korea Atomic Energy Research Institute (KAERI) 989-111

More information

Basics of treatment planning II

Basics of treatment planning II Basics of treatment planning II Sastry Vedam PhD DABR Introduction to Medical Physics III: Therapy Spring 2015 Monte Carlo Methods 1 Monte Carlo! Most accurate at predicting dose distributions! Based on

More information

PSG2 / Serpent a Monte Carlo Reactor Physics Burnup Calculation Code. Jaakko Leppänen

PSG2 / Serpent a Monte Carlo Reactor Physics Burnup Calculation Code. Jaakko Leppänen PSG2 / Serpent a Monte Carlo Reactor Physics Burnup Calculation Code Jaakko Leppänen Outline Background History The Serpent code: Neutron tracking Physics and interaction data Burnup calculation Output

More information

Evaluation of PBMR control rod worth using full three-dimensional deterministic transport methods

Evaluation of PBMR control rod worth using full three-dimensional deterministic transport methods Available online at www.sciencedirect.com annals of NUCLEAR ENERGY Annals of Nuclear Energy 35 (28) 5 55 www.elsevier.com/locate/anucene Evaluation of PBMR control rod worth using full three-dimensional

More information

Improved Detector Response Characterization Method in ISOCS and LabSOCS

Improved Detector Response Characterization Method in ISOCS and LabSOCS P Improved Detector Response Characterization Method in ISOCS and LabSOCS *1 1 1 1 1 R. VenkataramanP P, F. BronsonP P, V. AtrashkevichP P, M. FieldP P, and B.M. YoungP P. 1 PCanberra Industries, 800 Research

More information

Av. Professor Lineu Prestes São Paulo, SP ABSTRACT

Av. Professor Lineu Prestes São Paulo, SP ABSTRACT 2011 International Nuclear Atlantic Conference - INAC 2011 Belo Horizonte,MG, Brazil, October 24-28, 2011 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-04-5 COMPARISON BETWEEN THE

More information

Investigation of Scattered Radiation Dose at the Door of a Radiotherapy Vault When the Maze Intersects the Primary Beam

Investigation of Scattered Radiation Dose at the Door of a Radiotherapy Vault When the Maze Intersects the Primary Beam Journal of Modern Physics, 015, 6, 141-149 Published Online February 015 in SciRes. http://www.scirp.org/journal/jmp http://dx.doi.org/10.436/jmp.015.6019 Investigation of Scattered Radiation Dose at the

More information

D.1 Radon Model Emanation Analysis

D.1 Radon Model Emanation Analysis D.1 Radon Model Emanation Analysis This appendix presents the radon emanation analyses performed in support of the EE/CA for the Ross-Adams Mine Site. The radon emanation analyses were used to determine

More information

Absorbed fractions in a voxel-based phantom calculated with the MCNP-4B code

Absorbed fractions in a voxel-based phantom calculated with the MCNP-4B code Absorbed fractions in a voxel-based phantom calculated with the MCNP-4B code Hélio Yoriyaz and Adimir dos Santos a) Instituto de Pesquisas Energéticas e Nucleares IPEN-CNEN/SP, São Paulo, Brazil Michael

More information

Adaptation of the Nagra Activation Analysis Methodology to Serpent

Adaptation of the Nagra Activation Analysis Methodology to Serpent Adaptation of the Nagra Activation Analysis Methodology to Serpent Valentyn Bykov May 31, 2018, Serpent UGM 2018 Nuclear Power in Switzerland Reactor Type Net First MWe power Beznau 1 PWR 365 1969 Beznau

More information

A FLEXIBLE COUPLING SCHEME FOR MONTE CARLO AND THERMAL-HYDRAULICS CODES

A FLEXIBLE COUPLING SCHEME FOR MONTE CARLO AND THERMAL-HYDRAULICS CODES International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2011) Rio de Janeiro, RJ, Brazil, May 8-12, 2011, on CD-ROM, Latin American Section (LAS)

More information

SHIELDING DEPTH DETERMINATION OF COBALT PHOTON SHOWER THROUGH LEAD, ALUMINUM AND AIR USING MONTE CARLO SIMULATION

SHIELDING DEPTH DETERMINATION OF COBALT PHOTON SHOWER THROUGH LEAD, ALUMINUM AND AIR USING MONTE CARLO SIMULATION Research Article SHIELDING DEPTH DETERMINATION OF COBALT PHOTON SHOWER THROUGH LEAD, ALUMINUM AND AIR USING MONTE CARLO SIMULATION 1 Ngadda, Y. H., 2 Ewa, I. O. B. and 3 Chagok, N. M. D. 1 Physics Department,

More information

Cosmic Ray Shower Profile Track Finding for Telescope Array Fluorescence Detectors

Cosmic Ray Shower Profile Track Finding for Telescope Array Fluorescence Detectors Cosmic Ray Shower Profile Track Finding for Telescope Array Fluorescence Detectors High Energy Astrophysics Institute and Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah,

More information

DIGITALIZATION OF A MAMMOGRAPHIC PHANTOM VIEW THROUGH A MONTE CARLO SIMULATION

DIGITALIZATION OF A MAMMOGRAPHIC PHANTOM VIEW THROUGH A MONTE CARLO SIMULATION DIGITALIZATION OF A MAMMOGRAPHIC PHANTOM VIEW THROUGH A MONTE CARLO SIMULATION M. Ramos 1, S. Ferrer 1, J.I. Villaescusa 2, G. Verdú 1, J.M. Campayo 3 1 Departamento de Ingeniería Química y Nuclear. Universidad

More information

COUPLED MULTI-GROUP NEUTRON PHOTON TRANSPORT FOR THE SIMULATION OF HIGH-RESOLUTION GAMMA-RAY SPECTROSCOPY APPLICATIONS

COUPLED MULTI-GROUP NEUTRON PHOTON TRANSPORT FOR THE SIMULATION OF HIGH-RESOLUTION GAMMA-RAY SPECTROSCOPY APPLICATIONS COUPLED MULTI-GROUP NEUTRON PHOTON TRANSPORT FOR THE SIMULATION OF HIGH-RESOLUTION GAMMA-RAY SPECTROSCOPY APPLICATIONS A Dissertation Presented to The Academic Faculty By Kimberly Ann Burns In Partial

More information

High Performance Parallel Monte Carlo Transport Computations for ITER Fusion Neutronics Applications

High Performance Parallel Monte Carlo Transport Computations for ITER Fusion Neutronics Applications Progress in NUCLEAR SCIENCE and TECHNOLOGY, Vol. 2, pp.294-300 (2011) ARTICLE High Performance Parallel Monte Carlo Transport Computations for ITER Fusion Neutronics Applications Arkady SERIKOV *, Ulrich

More information

Attenuation Coefficients for Layered Ceiling and Floor Shields in PET/CT Clinics

Attenuation Coefficients for Layered Ceiling and Floor Shields in PET/CT Clinics Attenuation Coefficients for Layered Ceiling and Floor Shields in PET/CT Clinics Robert L. Metzger and Kenneth A. Van Riper Radiation Safety Engineering, Inc 3245 North Washington Street, Chandler, AZ

More information

EVALUATION OF ISO :1996 AND THE SHADOW SHIELD TECHNIQUE FOR THE MEASUREMENT OF SCATTERED RADIATION A THESIS

EVALUATION OF ISO :1996 AND THE SHADOW SHIELD TECHNIQUE FOR THE MEASUREMENT OF SCATTERED RADIATION A THESIS EVALUATION OF ISO 4037-1:1996 AND THE SHADOW SHIELD TECHNIQUE FOR THE MEASUREMENT OF SCATTERED RADIATION A THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in

More information

dcorsika update Dmitry Chirkin University of California at Berkeley, USA

dcorsika update Dmitry Chirkin University of California at Berkeley, USA dcorsika update Dmitry Chirkin chirkin@physics.berkeley.edu University of California at Berkeley, USA Abstract Release 6.6 of CORSIKA contains an important update that has improved the curved atmosphere

More information

MCNP4C3-BASED SIMULATION OF A MEDICAL LINEAR ACCELERATOR

MCNP4C3-BASED SIMULATION OF A MEDICAL LINEAR ACCELERATOR Computational Medical Physics Working Group Workshop II, Sep 3 Oct 3, 7 University of Florida (UF), Gainesville, Florida USA on CD-ROM, American Nuclear Society, LaGrange Park, IL (7) MCNP4C3-BASED SIMULATION

More information

MCNP Variance Reduction technique application for the Development of the Citrusdal Irradiation Facility

MCNP Variance Reduction technique application for the Development of the Citrusdal Irradiation Facility IYNC 2008 Interlaken, Switzerland, 20-26 September 2008 Paper No. 376 MCNP Variance Reduction technique application for the Development of the Citrusdal Irradiation Facility R Makgae Pebble Bed Modular

More information

MATHEMATICS CONCEPTS TAUGHT IN THE SCIENCE EXPLORER, FOCUS ON EARTH SCIENCE TEXTBOOK

MATHEMATICS CONCEPTS TAUGHT IN THE SCIENCE EXPLORER, FOCUS ON EARTH SCIENCE TEXTBOOK California, Mathematics Concepts Found in Science Explorer, Focus on Earth Science Textbook (Grade 6) 1 11 Describe the layers of the Earth 2 p. 59-61 Draw a circle with a specified radius or diameter

More information

SPE MS Development and Field Testing of a Novel Technology for Evaluating Gravel Packs and Fracture Packs

SPE MS Development and Field Testing of a Novel Technology for Evaluating Gravel Packs and Fracture Packs SPE-187365-MS Development and Field Testing of a Novel Technology for Evaluating Gravel Packs and Fracture Packs Jeremy Zhang and Harry D. Smith Jr. CARBO Ceramics, Inc. Outline Slide 2 1. Principles of

More information

ISOCS Characterization of Sodium Iodide Detectors for Gamma-Ray Spectrometry

ISOCS Characterization of Sodium Iodide Detectors for Gamma-Ray Spectrometry ISOCS Characterization of Sodium Iodide Detectors for Gamma-Ray Spectrometry Sasha A. Philips, Frazier Bronson, Ram Venkataraman, Brian M. Young Abstract--Activity measurements require knowledge of the

More information

A PRACTICAL LOOK AT MONTE CARLO VARIANCE REDUCTION METHODS IN RADIATION SHIELDING

A PRACTICAL LOOK AT MONTE CARLO VARIANCE REDUCTION METHODS IN RADIATION SHIELDING A PRACTICAL LOOK AT MONTE CARLO VARIANCE REDUCTION METHODS IN RADIATION SHIELDING RICHARD H. OLSHER Health Physics Measurements Group, Los Alamos National Laboratory MS J573, P.O. Box 1663, Los Alamos,

More information

1 st International Serpent User Group Meeting in Dresden, Germany, September 15 16, 2011

1 st International Serpent User Group Meeting in Dresden, Germany, September 15 16, 2011 1 st International Serpent User Group Meeting in Dresden, Germany, September 15 16, 2011 Discussion notes The first international Serpent user group meeting was held at the Helmholtz Zentrum Dresden Rossendorf

More information

I. INTRODUCTION. Figure 1. Radiation room model at Dongnai General Hospital

I. INTRODUCTION. Figure 1. Radiation room model at Dongnai General Hospital International Journal of Computational Engineering Research Vol, 04 Issue, 4 Simulation of Photon and Electron dose distributions 5 code for the treatment area using the linear electron accelerator (LINAC)

More information

Muon imaging for innovative tomography of large volume and heterogeneous cemented waste packages

Muon imaging for innovative tomography of large volume and heterogeneous cemented waste packages Muon imaging for innovative tomography of large volume and heterogeneous cemented waste packages This project has received funding from the Euratom research and training programme 2014-2018 under grant

More information

Investigations into Alternative Radiation Transport Codes for ITER Neutronics Analysis

Investigations into Alternative Radiation Transport Codes for ITER Neutronics Analysis CCFE-PR(17)10 Andrew Turner Investigations into Alternative Radiation Transport Codes for ITER Neutronics Analysis Enquiries about copyright and reproduction should in the first instance be addressed to

More information

IMPROVING COMPUTATIONAL EFFICIENCY OF MONTE-CARLO SIMULATIONS WITH VARIANCE REDUCTION

IMPROVING COMPUTATIONAL EFFICIENCY OF MONTE-CARLO SIMULATIONS WITH VARIANCE REDUCTION International Conference on Mathematics and Computational Methods Applied to Nuclear Science & Engineering (M&C 2013), Sun Valley, Idaho, USA, May 5-9, 2013, on CD-ROM, American Nuclear Society, LaGrange

More information

π ± Charge Exchange Cross Section on Liquid Argon

π ± Charge Exchange Cross Section on Liquid Argon π ± Charge Exchange Cross Section on Liquid Argon Kevin Nelson REU Program, College of William and Mary Mike Kordosky College of William and Mary, Physics Dept. August 5, 2016 Abstract The observation

More information

Deliverable D10.2. WP10 JRA04 INDESYS Innovative solutions for nuclear physics detectors

Deliverable D10.2. WP10 JRA04 INDESYS Innovative solutions for nuclear physics detectors MS116 Characterization of light production, propagation and collection for both organic and inorganic scintillators D10.2 R&D on new and existing scintillation materials: Report on the light production,

More information

Evaluation of RAPID for a UNF cask benchmark problem

Evaluation of RAPID for a UNF cask benchmark problem Evaluation of RAPID for a UNF cask benchmark problem Valerio Mascolino 1,a, Alireza Haghighat 1,b, and Nathan J. Roskoff 1,c 1 Nuclear Science & Engineering Lab (NSEL), Virginia Tech, 900 N Glebe Rd.,

More information

Spring 2010 Research Report Judson Benton Locke. High-Statistics Geant4 Simulations

Spring 2010 Research Report Judson Benton Locke. High-Statistics Geant4 Simulations Florida Institute of Technology High Energy Physics Research Group Advisors: Marcus Hohlmann, Ph.D. Kondo Gnanvo, Ph.D. Note: During September 2010, it was found that the simulation data presented here

More information

Parallel computation performances of Serpent and Serpent 2 on KTH Parallel Dator Centrum

Parallel computation performances of Serpent and Serpent 2 on KTH Parallel Dator Centrum KTH ROYAL INSTITUTE OF TECHNOLOGY, SH2704, 9 MAY 2018 1 Parallel computation performances of Serpent and Serpent 2 on KTH Parallel Dator Centrum Belle Andrea, Pourcelot Gregoire Abstract The aim of this

More information

MCNScript. Open-source shell program for running Monte Carlo simulations with MCNelectron. v User s Manual.

MCNScript. Open-source shell program for running Monte Carlo simulations with MCNelectron. v User s Manual. MCNScript Open-source shell program for running Monte Carlo simulations with MCNelectron v1.0.5 User s Manual by Andrius Poškus (Vilnius University, Department of Solid State Electronics) 2017-03-10 Copyright

More information

Comparison of Predictions by MCNP and EGSnrc of Radiation Dose

Comparison of Predictions by MCNP and EGSnrc of Radiation Dose Comparison of Predictions by MCNP and EGSnrc of Radiation Dose Computational Medical Physics Working Group Workshop II, Sep 30 Oct 3, 2007 at UF imparted to various Material Targets by Beams and small

More information

Beginner s Introduction to TC 3.0. February 6, 2013

Beginner s Introduction to TC 3.0. February 6, 2013 Beginner s Introduction to TC 3.0 February 6, 2013 1 Figure 1: The default view when starting TC 3.0. 1 Beginner s Introduction to TC 3.0 The default view when starting the program should be as shown in

More information

Monte Carlo Simulation of Radiation Transport. for Benchmarking

Monte Carlo Simulation of Radiation Transport. for Benchmarking Monte Carlo Simulation of Radiation Transport for Benchmarking Intel's ipsc/2, ipsc/860, and Touchstone Delta Machine by Thomas J. Klemas Submitted to the Department of Electrical Engineering and Computer

More information

SYSTEM LINEARITY LAB MANUAL: 2 Modifications for P551 Fall 2013 Medical Physics Laboratory

SYSTEM LINEARITY LAB MANUAL: 2 Modifications for P551 Fall 2013 Medical Physics Laboratory SYSTEM LINEARITY LAB MANUAL: 2 Modifications for P551 Fall 2013 Medical Physics Laboratory Introduction In this lab exercise, you will investigate the linearity of the DeskCAT scanner by making measurements

More information

Suitability Study of MCNP Monte Carlo Program for Use in Medical Physics

Suitability Study of MCNP Monte Carlo Program for Use in Medical Physics Nuclear Energy in Central Europe '98 Terme Catez, September 7 to 10, 1998 SI0100092 Suitability Study of MCNP Monte Carlo Program for Use in Medical Physics R. Jeraj Reactor Physics Division, Jozef Stefan

More information

Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.

Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. DXRaySMCS First User Friendly Interface Developed for Prediction of Diagnostic Radiology X-Ray Spectra Produced by Monte Carlo (MCNP-4C) Simulation in Iran M.T. Bahreyni Toosi a*, H. Moradi b, H. Zare

More information

CS 563 Advanced Topics in Computer Graphics Irradiance Caching and Particle Tracing. by Stephen Kazmierczak

CS 563 Advanced Topics in Computer Graphics Irradiance Caching and Particle Tracing. by Stephen Kazmierczak CS 563 Advanced Topics in Computer Graphics Irradiance Caching and Particle Tracing by Stephen Kazmierczak Introduction Unbiased light transport algorithms can sometimes take a large number of rays to

More information

Three Dimensional Dosimetry Analyses In Radionuclide Therapy Using IDL And MCNP-based Software Tools

Three Dimensional Dosimetry Analyses In Radionuclide Therapy Using IDL And MCNP-based Software Tools Three Dimensional Dosimetry Analyses In Radionuclide Therapy Using IDL And MCNP-based Software Tools M. G. Stabin 1, H. Yoriyaz 2, R. Li 1, A. B. Brill 1 1 Vanderbilt University, Nashville, TN, USA 2 Instituto

More information

Reducing CPU Consumption of Geant4 Simulation in ATLAS

Reducing CPU Consumption of Geant4 Simulation in ATLAS Reducing CPU Consumption of Geant4 Simulation in ATLAS John Chapman (University of Cambridge) on behalf of the ATLAS Simulation Group Joint WLCG & HSF Workshop 2018 Napoli, Italy - 28th March 2018 Current

More information

EXPERIMENT #5 Physical Properties and Measurement: Density

EXPERIMENT #5 Physical Properties and Measurement: Density OBJECTIVES: EXPERIMENT #5 Physical Properties and Measurement: Density Determine the density of a liquid, a regular solid, and/or an irregular solid Determine the volume of the regular solid by calculation

More information

Script Script Generator. write display Classes. Parser. read. interface VUI. Generic Code Interface (OO HOWFAR, AUSGAB) EGS5

Script Script Generator. write display Classes. Parser. read. interface VUI. Generic Code Interface (OO HOWFAR, AUSGAB) EGS5 Proceedings of the Second International Workshop on EGS, 8.-12. August 2000, Tsukuba, Japan KEK Proceedings 200-20, pp.23-30 Status of the Object-oriented EGS Interface Project A. M. Yacout, W. L. Dunn,

More information

VISIPLAN 3D ALARA planning tool Version 3.0

VISIPLAN 3D ALARA planning tool Version 3.0 VISIPLAN 3.0 User's Guide 1 VISIPLAN 3D ALARA planning tool Version 3.0 A 3D-ALARA planning tool for routine work and interventions in an environment with risk of external exposure. User's Guide NS/Fve/IDPBW/00-775

More information

AN ABSTRACT OF THE THESIS OF. Errol D.I. Newman for the degree of Master of Science in Radiation Health

AN ABSTRACT OF THE THESIS OF. Errol D.I. Newman for the degree of Master of Science in Radiation Health AN ABSTRACT OF THE THESIS OF Errol D.I. Newman for the degree of Master of Science in Radiation Health Physics presented on _June 7, 2007_ Title: A Comparison of Measured and Simulated Exposure Rates Near

More information

Indrin Chetty Henry Ford Hospital Detroit, MI. AAPM Annual Meeting Houston 7:30-8:25 Mon 08/07/28 1/30

Indrin Chetty Henry Ford Hospital Detroit, MI.   AAPM Annual Meeting Houston 7:30-8:25 Mon 08/07/28 1/30 Review of TG105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning D. W. O. Rogers, Carleton Laboratory for Radiotherapy Physics,

More information

Gamma ray transport simulations using SGaRD code

Gamma ray transport simulations using SGaRD code EPJ Nuclear Sci. Technol. 3, 9 (2017) P. Humbert and B. Méchitoua, published by EDP Sciences, 2017 DOI: 10.1051/epjn/2017006 Nuclear Sciences & Technologies Available online at: http://www.epj-n.org REGULAR

More information

CALCULATION OF THE ACTIVITY INVENTORY FOR THE TRIGA REACTOR AT THE MEDICAL UNIVERSITY OF HANNOVER (MHH) IN PREPARATION FOR DISMANTLING THE FACILITY

CALCULATION OF THE ACTIVITY INVENTORY FOR THE TRIGA REACTOR AT THE MEDICAL UNIVERSITY OF HANNOVER (MHH) IN PREPARATION FOR DISMANTLING THE FACILITY CALCULATION OF THE ACTIVITY INVENTORY FOR THE TRIGA REACTOR AT THE MEDICAL UNIVERSITY OF HANNOVER (MHH) IN PREPARATION FOR DISMANTLING THE FACILITY Gabriele Hampel, Friedemann Scheller, Medical University

More information

THE VIEWING TRANSFORMATION

THE VIEWING TRANSFORMATION ECS 178 Course Notes THE VIEWING TRANSFORMATION Kenneth I. Joy Institute for Data Analysis and Visualization Department of Computer Science University of California, Davis Overview One of the most important

More information

MCNP Monte Carlo & Advanced Reactor Simulations. Forrest Brown. NEAMS Reactor Simulation Workshop ANL, 19 May Title: Author(s): Intended for:

MCNP Monte Carlo & Advanced Reactor Simulations. Forrest Brown. NEAMS Reactor Simulation Workshop ANL, 19 May Title: Author(s): Intended for: LA-UR- 09-03055 Approved for public release; distribution is unlimited. Title: MCNP Monte Carlo & Advanced Reactor Simulations Author(s): Forrest Brown Intended for: NEAMS Reactor Simulation Workshop ANL,

More information

Summary Of Topics covered in Year 7. Topic All pupils should Most pupils should Some pupils should Learn formal methods for

Summary Of Topics covered in Year 7. Topic All pupils should Most pupils should Some pupils should Learn formal methods for Summary Of Topics covered in Year 7 Topic All pupils should Most pupils should Some pupils should Learn formal methods for Have a understanding of computing multiplication Use the order of basic number

More information

Crockerne Church of England Primary Non-Negotiables. Mathematics

Crockerne Church of England Primary Non-Negotiables. Mathematics Key Skills To be able to solve problems using a range of strategies. To reason mathematically, following a line of enquiry. Mathematical language and targets Mathematics Number (Number and Place value)

More information

DISCLAIMER. and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER. and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. > 4 t Los Alamos National Laboratory IS operated by the University of California for the United States Department of Energy under contract W-745-ENG-36 RECElV ED TITLE: AUTHOR@): SUBMITTED TO: STATUS OF

More information

Monte Carlo methods in proton beam radiation therapy. Harald Paganetti

Monte Carlo methods in proton beam radiation therapy. Harald Paganetti Monte Carlo methods in proton beam radiation therapy Harald Paganetti Introduction: Proton Physics Electromagnetic energy loss of protons Distal distribution Dose [%] 120 100 80 60 40 p e p Ionization

More information