Hysteresis in River Discharge Rating Curves. Histerésis en las curvas de gasto en ríos (caudal/calado) Madrid, March 25, 2013

Size: px
Start display at page:

Download "Hysteresis in River Discharge Rating Curves. Histerésis en las curvas de gasto en ríos (caudal/calado) Madrid, March 25, 2013"

Transcription

1 Hysteresis in River Discharge Rating Curves Histerésis en las curvas de gasto en ríos (caudal/calado) Madrid, March 25, 2013 Marian Muste and Kyutae Lee IIHR Hydroscience & Engineering The University of Iowa, U.S.A.

2 Conventional Discharge Rating Curves Rating Curves (RC): Practical solutions to continuously provide stream discharge Option 1: stage discharge (most often) One rating curve Requires continuous stage measurement (pressure sensors, radar, ultrasonic, etc) Option 2: index velocity (emerging with the advent of acoustic and image based instruments) One to three rating curves (Kennedy, 1984) Requires continuous stage & velocity measurements Option 3: slope area (rarely used for continuous, mostly for RC extrapolation) No rating curves (synthetic) Requires cross section and free surface slope measurements

3 Option 1: Stage discharge Rating Curves 1. Direct discharge measurements over a wide range of flows 2. Build the RC 3. Convert measured stages in discharges using RC h Step 1 Step 2 Underlying assumption: Steady Flow Step 3 USGS Coralville, Iowa, 7 years of records RC derived measurements (125,865) direct measurements (237)

4 Option 2: Index velocity Rating Curves 1. Direct measurements for V index, Q, h, and A 2. Build stage area RC 3. Build velocity index RC 4. Compute instantaneous discharges as Q = V*A Step 2: Stage-Area Rating (h A) Step 1 WMO (2011) Step 3: Index Velocity Rating (V index V) Vmean V(index) Step 4: Q = V*A

5 Option 3: Slope area Rating Curves 1. Survey cross section 2. Survey free surface slope (HGL) 3. Compute instantaneous discharges using Manning eqn. Step 2 Step 1 Step SI units

6 What is hysteresis? Dependence of a system not only of the present state but also of its past (Wikipedia) Example: Loading and unloading a rubber band

7 Hysteresis in discharge RCs Conventional assumption for Options 1, 2, and 3: STEADY FLOW STATIC RCs (one to one relationship) Calibration measurements can be randomly acquired over the flow range However, storm runoff conveyed to streams propagates as UNSTEADY TRANSITORY FLOWS HYSTERESIS in RC (dynamic, looped curve) Calibration measurements need to be sampled commensurate with the event time scale Accelerated flow (phase I) Decelerated flow (Phase II) Steady (normal) Focus: Stage discharge (h Q) RCs Adapted from Graf & Qu (2004)

8 Sample Hysteresis in Stage Discharge RC Measurements with appropriate protocols enable to capture hysteresis Δh= 10% Δh= 26% H(m) ΔQ=18% Stage (ft) ΔQ=27% Q(m 3 /s) Source: Budi Gunawan, Discharge (cfs) Small streams: Blackwater (UK); Gunawan (2010) Medium streams: Chattahoochee (USA); Faye and Cherry (1980) Δh= 13% ΔQ=41% Δh= 14 % Large rivers: Mississippi River (USA); Fread (1973) Large rivers: Yantze (China); Herschy (2009)

9 Hysteresis sensitivity factors Most important factors in welldeveloped hysteresis: Gage setting Event intensity and duration Stage (ft) Discharge Q (ft 3 /t) C3 (Tp=24hr,Tb=24hr) C6 (Tp=24hr,Tb=12hr) C7 (Tp=24hr,Tb=72hr) Depth (ft) C3 (Tp=24hr,Tb=24hr) C6 (Tp=24hr,Tb=12hr) C7 (Tp=24hr,Tb=72hr) 701 Bed Slope = Bed Slope = Bed Slope = Discharge (cfs) Time (hr) Discharge Q (ft 3 /t) Discharge Q (ft 3 /t) C3 (peak = 10000) C8 (peak = 20000) Depth (ft) C3 (peak = 10000) C8 (peak = 20000) Need for diagnostic protocols (currently under development) Time (hr) Dischrage Q (ft 3 /t)

10 How to capture hysteresis? A) Direct discharge measurements (using event based, high temporal frequency sampling protocols) EXPENSIVE, NO PROTOCOLS, INCREASINGLY TESTED B) Analytical investigation using simplified approaches (1D) INEXPENSIVE, MANY PROTOCOLS, SCARSELY VALIDATED C) Numerical modeling using physically based modeling (2D, 3D) EXPENSIVE, MANY MOELS, SCARSELY VALIDATED

11 How to capture hysteresis? A) Direct discharge measurements (using event based, high temporal frequency sampling protocols) B) Analytical investigation using simplified approaches C) Numerical modeling using physically based modeling

12 Hysteresis: Direct measurements Our attempts to capture hysteresis ( ) Measurement Site: Clear Creek, Oxford, IA (USGS )

13 How to capture hysteresis? A) Direct discharge measurements B) Analytical investigation using simplified approaches (1D corrections formulae) C) Numerical modeling using physically based modeling

14 Hysteresis correction methods Abundant choices, few validations or recommendations for implementation Method Data required Flood Routing Jones Q o, B, S o,( y/ t), ( Q o / z) Kinematic approximation 2 Henderson Q o, S o,( y/ t), ( y/ x) Parabolic approximation 3 Di Silvio Q b, Q p, A, S o, F r, R, T r, T f, A p, R p, A m, ( C/ A) 4 Fread S o, A, B,,( B/ y), ( z/ t), ( U/ t), Q p, Q b, T r, h p, h b, A m, Triangular approximation Parabolic approximation Q n normal flow kinematic wave: term a diffusion wave: terms a and b full dynamic wave: terms a, b, and c 5 Marchi Q s, B, S o, A,,( B/ y), ( A/ t) Kinematic approximation 6 Faye & Cherry K, A, y (t± t), y t, R, U t, ( Q o / z), S o, U (t± t), n Kinematic approximation 7 Fenton Q s, A, K, U, S o, Q o, B, ( Q o / z), ( y/ t), ( 2 y/ t 2 ), ( 3 y/ t 3 ) Kinematic approximation Our option: Fread (1975) full dynamic wave stage measurements at one station 8 Perumal Q s, B, S o, ( Q o / z), ( y/ t), F r, P, ( R/ y), ( A/ y), ( 2 y/ t 2 ) Approximate convection diffusion 9 Boyer Plots of Q m vs. z, z/ t Kinematic approximation 10 Lewis Qm, z/ t, Plots of Q m vs. z, J Kinematic approximation 11 Wiggins Plots of R vs. V m,, n, Classification of bed surface, z/ t, Q m 12 Peterson- Overleir z/ t, BFGS algorithm and its parameters No convective and local acceleration term Kinematic approximation

15 Fread s formula Fread (1973 & 1975) 1. Inputs: Hydraulic depth, width, bed slope, Manning s roughness, rate of changes of depth (dh/dt), initial discharge (randomly selected), time step for output 1. Output: looped rating curve

16 Fread s formula Modified Fread method for small stream channels (iterative solution) Energy slope, S f Wave celerity coefficient, K Implementation case studies Case 1 Case 2 Case 3 One event, Clear Creek, USGS Oxford, Iowa (USA) One event, Ebro River (Spain) Multiple events, Clear Creek, USGS Oxford, Iowa (USA)

17 Fread s formula implementation case 1: one event USGS , Oxford Iowa (processed data) Evaluation of Saint-Vernant equation Steady-state Fread (1975) Points Discharge (cfs) Stage-discharge rating curve comparisons Apr Apr Apr Apr Apr-2012 Time Series Evaluation of the uncertainty in Prediction of Q Stage (ft) Modified Fread RC USGS Steady RC Discharge (cfs) Relative uncertainty in prediction of Q (%) Apr Apr Apr Apr Apr Apr-2012 Time Modified Fread vs. USGS steady RC 4% to 10.5%

18 Fread s formula implementation case 2: one event Asco station, Ebro River, Spain (Ferrer, Moreno, Sanchez, 2013) Discharge (cms) Evaluation of Saint-Vernant equation Steady-state Modified Fread ADCP Artificial flood event for vegetation removal (June 2012) Not all the needed data available Jun Jun Jun Jun Jun-2012 Time Series Stage-discharge rating curve comparisons 4 Stage (m) Steady RC Modified Fread ADCP Discharge (cms)

19 Fread s formula implementation case 3: event series USGS , Oxford Iowa (provisional data similar with the info available during floods) Event 1 Event 2 Event 3 Series of rainfalls on frozen ground (good cases for hysteresis) (February March, 2013)

20 Fread s formula implementation case 3: event series Event 3: most violent rainfall (March 10, 2013) ft (2,340cfs at 11:30am, Mar 10) ft (1,330cfsat 5:15pm, Mar10) ft (667cfs at 10:00am, Mar 11) ft (66cfs at 10:00am, Mar 12)

21 Fread s formula implementation case 3: event series USGS , Oxford Iowa (provisional data) Stage (ft) Event 3: most violent rainfall of the series (March 10, 2013) Discharge (cfs) USGS Hydrograph Modified Fread Points Overbank flow 0 09-Mar Mar Mar Mar Mar-2013 Time Series USGS Steady RC Modified Fread Points Discharge (cfs)

22 Fread s formula implementation case 3: event series Event 1 Event 2 Event 3 USGS , Oxford Iowa (provisional data) Stage-discharge rating curve comparisons ΔH=706.5ft±0.5ft (5%) ΔQ=800cfs±100cfs (12.5%) 706 Uncertainty bounds due to unsteady flows Stage (ft) Event1 on Feb 7-9, 2013 Event1 on Feb 7-9, Event2 on Feb 10-12, 2013 Event2 USGS on Steady Feb 10-12, RC 2013 Event3 on Mar 9-12, 2013 USGS Steady RC USGS Steady RC Discharge (cfs)

23 How to capture hysteresis? A) Direct discharge measurements B) Analytical investigation using simplified approaches C) Numerical modeling using physically based modeling (2D, 3D)

24 Hysteresis: numerical simulations Clear Creek watershed including USGS Clear Creek, Oxford, Iowa HEC HMS model HEC RAS model Watershed description Size: approximately 103 mi 2 Land use: farm land combined urban areas (Oxford, Tiffin, Coralville, and Iowa City) Length of modeled reach: 24.1km (HEC RAS) and 4.3km (HEC HMS)

25 Hysteresis: numerical simulations HEC HMS model setup Validations for alternative HEC HMS simulations a) peak weighted RMS error function HEC HMS model setup 6 sub basins, 3 sub reaches, 4 junctions HEC HMS model components Basin model, meteorologic model, control specifications, and time series data b) percent error volume

26 Hysteresis: numerical simulations HEC RAS model setup River system Boundary conditions S1: Discharge hydrographs S4: Normal depth (friction slope: ) Monitoring locations S2: USGS Oxford Clear Creek S3: USGS Coralville Clear Creek Geometry setup Reach length: 24.1km Cross sections: 192 (approx 130m interval) Bridges: 10 Roughness coefficient: (in bank), LCD (floodplain) Obstructions (buildings) included

27 Hysteresis: numerical simulations HEC RAS results Scenario 2: typical event December 04, 2011, Q peak_s2 = 3.2m 3 Flow (m3/s) b) River: Clear_Cr Reach: Clear_Cr RS: Dec Dec Dec2011 Date Input hydrograph at S1 Legend Flow Scenario 1: large event (June 02, 2008) Q peak_s1 = 68m 3 Flow (m3/s) a) River: Clear_Cr Reach: Clear_Cr RS: Legend 60 Flow Jun Jun2008 Date Input hydrograph at S1 Stage (m) Stage (m) Plan: 15 River: Clear_Cr Reach: Clear_Cr RS: Legend RC Flow(m3/s) Max thickness: about 1cm at S2 Plan: 15 River: Clear_Cr Reach: Clear_Cr RS: Legend Flow(m3/s) Max thickness: about 4cm at S3 RC Stage (m) Stage (m) Plan: 1 River: Clear_Cr Reach: Clear_Cr RS: Legend RC Flow(m3/s) Max thickness: about 10cm at S2 Plan: 1 River: Clear_Cr Reach: Clear_Cr RS: Legend Flow(m3/s) Max thickness: about 15cm at S3 RC

28 Hysteresis: numerical simulations HEC RAS: Sensitivity analysis Peak discharge timing Summary of the results Input hydrograph at S1 Simulated RCs at S1 S1 (m) % wrt depth changes S2 (m) % wrt depth changes 2008 Large event % % 2011 Typical event % % Peak discharge % % (low to high) % % Duration % % (high to low) % % Peak timing % % (slow to fast) % % Event duration and peak discharge timing most important parameters (max error: 12%) Simulated RCs at S2

29 Hysteresis practical implications For high, unsteady flows RC uncertainties are considerable increased. The top contributing uncertainties are: measurement uncertainty extrapolation of the rating change in cross section (overbank flow) neglecting the hysteresis effect Hysteresis induced uncertainty is generally small Important for stream reaches on mild slopes, under channel control, and major storm events (during floods when RC accuracy is most important) Selected hysteresis induced uncertainty estimates: 2ft difference from RC in Chatttahooche and Ohio Rivers (Petersen Overleyer, 2006) 5 ft difference from RC in Mississippi River (Fread, 1975) These differences are typically lower then the steady RC reading (occur on the rising limb) important for flood intervention

30 How can be hysteresis used in practical applications? Uncertainty estimator for steady RCs during storms (based on previous data records ) Predictor for actual discharge during storms using steady RC as basis (based on an initial steady RC data) Stage Stage

31 How can be hysteresis used in practical applications? Measurements and models embedded in an integrated system for uncertainty assessment and/or forecasting h Q RC Slope area RC Tentative research

32 How can be hysteresis used in practical applications? Floods Better planning during floods by predicting more accurate flood stages and their timing!

33 Questions?

CHAPTER 7 FLOOD HYDRAULICS & HYDROLOGIC VIVEK VERMA

CHAPTER 7 FLOOD HYDRAULICS & HYDROLOGIC VIVEK VERMA CHAPTER 7 FLOOD HYDRAULICS & HYDROLOGIC VIVEK VERMA CONTENTS 1. Flow Classification 2. Chezy s and Manning Equation 3. Specific Energy 4. Surface Water Profiles 5. Hydraulic Jump 6. HEC-RAS 7. HEC-HMS

More information

Linear Routing: Floodrouting. HEC-RAS Introduction. Brays Bayou. Uniform Open Channel Flow. v = 1 n R2/3. S S.I. units

Linear Routing: Floodrouting. HEC-RAS Introduction. Brays Bayou. Uniform Open Channel Flow. v = 1 n R2/3. S S.I. units Linear Routing: Floodrouting HEC-RAS Introduction Shirley Clark Penn State Harrisburg Robert Pitt University of Alabama April 26, 2004 Two (2) types of floodrouting of a hydrograph Linear Muskingum Reservoir

More information

2-D Hydraulic Modeling Theory & Practice

2-D Hydraulic Modeling Theory & Practice 2-D Hydraulic Modeling Theory & Practice Author: Maged A. Aboelata, PhD, PE, CFM Presenter: Heather Zhao, PE, CFM October 2017 Presentation Outline * 1-D vs. 2-D modeling * Theory of 2-D simulation * Commonly

More information

Verification and Validation of HEC-RAS 5.1

Verification and Validation of HEC-RAS 5.1 Verification and Validation of HEC-RAS 5.1 Gary Brunner 1, P.E., D. WRE, M.ASCE Dr. Alex Sanchez 1 Dr. Tom Molls 2 Dr. David Parr 3 1. USACE Hydrologic Engineering Center, Davis, CA 2. David Ford Consulting

More information

HEC-RAS. A Tutorial (Model Development of a Small Flume)

HEC-RAS. A Tutorial (Model Development of a Small Flume) HEC-RAS A Tutorial (Model Development of a Small Flume) HEC-RAS Hydraulic Engineering Center:River Analysis System 1-D step backwater model Utilizes energy equation to compute water surface elevation for

More information

Flood Routing for Continuous Simulation Models

Flood Routing for Continuous Simulation Models Improving Life through Science and Technology Flood Routing for Continuous Simulation Models J. Williams, W. Merkel, J. Arnold, J. Jeong 11 International SWAT Conference, Toledo, Spain, June 15-17, 11

More information

Introducion to Hydrologic Engineering Centers River Analysis System (HEC- RAS) Neena Isaac Scientist D CWPRS, Pune -24

Introducion to Hydrologic Engineering Centers River Analysis System (HEC- RAS) Neena Isaac Scientist D CWPRS, Pune -24 Introducion to Hydrologic Engineering Centers River Analysis System (HEC- RAS) Neena Isaac Scientist D CWPRS, Pune -24 One dimensional river models (1-D models) Assumptions Flow is one dimensional Streamline

More information

Day 1. HEC-RAS 1-D Training. Rob Keller and Mark Forest. Break (9:45 am to 10:00 am) Lunch (12:00 pm to 1:00 pm)

Day 1. HEC-RAS 1-D Training. Rob Keller and Mark Forest. Break (9:45 am to 10:00 am) Lunch (12:00 pm to 1:00 pm) Day 1 HEC-RAS 1-D Training Rob Keller and Mark Forest Introductions and Course Objectives (8:00 am to 8:15 am) Introductions: Class and Content Module 1 Open Channel Hydraulics (8:15 am to 9:45 am) Lecture

More information

Hydraulic Modeling with HEC RAS. Susan Cundiff, PE December 4, 2017

Hydraulic Modeling with HEC RAS. Susan Cundiff, PE December 4, 2017 Hydraulic Modeling with HEC RAS Susan Cundiff, PE December 4, 2017 Overview Introduction to HEC RAS Computational Procedures Building a Model Example Projects Introduction to HEC RAS U.S. Army Corps of

More information

Efficiency and Accuracy of Importing HEC RAS Datafiles into PCSWMM and SWMM5

Efficiency and Accuracy of Importing HEC RAS Datafiles into PCSWMM and SWMM5 5 Efficiency and Accuracy of Importing HEC RAS Datafiles into PCSWMM and SWMM5 Karen Finney, Rob James, William James and Tiehong Xiao An advantage of USEPA s SWMM5 is its capability to dynamically model

More information

Cross Sections, Profiles, and Rating Curves. Viewing Results From The River System Schematic. Viewing Data Contained in an HEC-DSS File

Cross Sections, Profiles, and Rating Curves. Viewing Results From The River System Schematic. Viewing Data Contained in an HEC-DSS File C H A P T E R 9 Viewing Results After the model has finished the steady or unsteady flow computations the user can begin to view the output. Output is available in a graphical and tabular format. The current

More information

Module 9. Lecture 3: Major hydrologic models-hspf, HEC and MIKE

Module 9. Lecture 3: Major hydrologic models-hspf, HEC and MIKE Lecture 3: Major hydrologic models-hspf, HEC and MIKE Major Hydrologic Models HSPF (SWM) HEC MIKE Hydrological Simulation Program-Fortran (HSPF) Commercial successor of the Stanford Watershed Model (SWM-IV)

More information

Prof. B.S. Thandaveswara. The computation of a flood wave resulting from a dam break basically involves two

Prof. B.S. Thandaveswara. The computation of a flood wave resulting from a dam break basically involves two 41.4 Routing The computation of a flood wave resulting from a dam break basically involves two problems, which may be considered jointly or seperately: 1. Determination of the outflow hydrograph from the

More information

Advanced 1D/2D Modeling Using HEC-RAS

Advanced 1D/2D Modeling Using HEC-RAS Advanced 1D/2D Modeling Using HEC-RAS Davis, California Objectives This is an advanced course in applying computer program HEC-RAS. The course provides participants with the knowledge to effectively use

More information

ENV3104 Hydraulics II 2017 Assignment 1. Gradually Varied Flow Profiles and Numerical Solution of the Kinematic Equations:

ENV3104 Hydraulics II 2017 Assignment 1. Gradually Varied Flow Profiles and Numerical Solution of the Kinematic Equations: ENV3104 Hydraulics II 2017 Assignment 1 Assignment 1 Gradually Varied Flow Profiles and Numerical Solution of the Kinematic Equations: Examiner: Jahangir Alam Due Date: 27 Apr 2017 Weighting: 1% Objectives

More information

2D Large Scale Automated Engineering for FEMA Floodplain Development in South Dakota. Eli Gruber, PE Brooke Conner, PE

2D Large Scale Automated Engineering for FEMA Floodplain Development in South Dakota. Eli Gruber, PE Brooke Conner, PE 2D Large Scale Automated Engineering for FEMA Floodplain Development in South Dakota Eli Gruber, PE Brooke Conner, PE Project Acknowledgments FEMA Region 8 Staff: Brooke Conner, PE Casey Zuzak, GISP Ryan

More information

Application of 2-D Modelling for Muda River Using CCHE2D

Application of 2-D Modelling for Muda River Using CCHE2D Application of 2-D Modelling for Muda River Using CCHE2D ZORKEFLEE ABU HASAN, Lecturer, River Engineering and Urban Drainage Research Centre (REDAC), Universiti Sains Malaysia, Engineering Campus, Seri

More information

PRACTICAL UNIT 1 exercise task

PRACTICAL UNIT 1 exercise task Practical Unit 1 1 1 PRACTICAL UNIT 1 exercise task Developing a hydraulic model with HEC RAS using schematic river geometry data In the course of practical unit 1 we prepare the input for the execution

More information

Comparing HEC-RAS v5.0 2-D Results with Verification Datasets

Comparing HEC-RAS v5.0 2-D Results with Verification Datasets Comparing HEC-RAS v5.0 2-D Results with Verification Datasets Tom Molls 1, Gary Brunner 2, & Alejandro Sanchez 2 1. David Ford Consulting Engineers, Inc., Sacramento, CA 2. USACE Hydrologic Engineering

More information

Storm Drain Modeling HY-12 Rational Design

Storm Drain Modeling HY-12 Rational Design v. 10.1 WMS 10.1 Tutorial Learn how to design storm drain inlets, pipes, and other components of a storm drain system using FHWA's HY-12 storm drain analysis software and the WMS interface Objectives Define

More information

Steady Flow Water Surface Profile Computation Using HEC-RAS

Steady Flow Water Surface Profile Computation Using HEC-RAS Steady Flow Water Surface Profile Computation Using HEC-RAS Objectives The objective of the course is to enable the participants to perform water surface profile computations using computer program HEC-RAS

More information

Hydrologic Modeling using HEC-HMS

Hydrologic Modeling using HEC-HMS Hydrologic Modeling using HEC-HMS CE 412/512 Spring 2017 Introduction The intent of this exercise is to introduce you to the structure and some of the functions of the HEC-Hydrologic Modeling System (HEC-HMS),

More information

INTRODUCTION TO HEC-RAS

INTRODUCTION TO HEC-RAS INTRODUCTION TO HEC-RAS HEC- RAS stands for Hydrologic Engineering Center s River Analysis System By U.S. Army Corps of Engineers One dimensional analysis of : 1. Steady flow 2. Unsteady flow 3. Sediment

More information

Hydraulics and Floodplain Modeling Modeling with the Hydraulic Toolbox

Hydraulics and Floodplain Modeling Modeling with the Hydraulic Toolbox v. 9.1 WMS 9.1 Tutorial Hydraulics and Floodplain Modeling Modeling with the Hydraulic Toolbox Learn how to design inlet grates, detention basins, channels, and riprap using the FHWA Hydraulic Toolbox

More information

HECRAS 2D: Are you ready for the revolution in the world of hydraulic modeling?

HECRAS 2D: Are you ready for the revolution in the world of hydraulic modeling? HECRAS 2D: Are you ready for the revolution in the world of hydraulic modeling? Rishab Mahajan, Emily Campbell and Matt Bardol March 8, 2017 Outline Reasons for hydraulic modeling 1D Modeling 2D Modeling-

More information

A Robust Numerical Algorithm for Efficient Overland-Flow Routing

A Robust Numerical Algorithm for Efficient Overland-Flow Routing th International Conference on Hydroscience & Engineering November -1,, Tainan, Taiwan. A Robust Numerical Algorithm for Efficient Overland-Flow Routing Pin-Chun Huang, Kwan Tun Le Department of River

More information

2014 AWRA Annual Water Resources Conference November 5, 2014 Tysons Corner, VA

2014 AWRA Annual Water Resources Conference November 5, 2014 Tysons Corner, VA 2014 AWRA Annual Water Resources Conference November 5, 2014 Tysons Corner, VA HEC-RAS Overview, History, & Future How HEC-RAS Works Model Development Standard FEMA Assumptions Building A Model FEMA Levels

More information

Flood Inundation Mapping using HEC-RAS

Flood Inundation Mapping using HEC-RAS Flood Inundation Mapping using HEC-RAS Goodell, C. 1 ; Warren, C. 2 WEST Consultants, 2601 25 th St SE, Suite 450, Salem, OR 97302. Abstract Flood inundation mapping is an important tool for municipal

More information

MEMORANDUM. Corona Subdivision XP Storm Evaluation. Date: March 5, Curt Bates, City of Petaluma. David S. Smith, P.E., WEST Consultants, Inc.

MEMORANDUM. Corona Subdivision XP Storm Evaluation. Date: March 5, Curt Bates, City of Petaluma. David S. Smith, P.E., WEST Consultants, Inc. MEMORANDUM Project: Corona Subdivision XP Storm Evaluation Subject: Results Summary Date: March 5, 2013 To: Curt Bates, City of Petaluma No. C056132 EXP. 12/31/14 From: David S. Smith, P.E., WEST Consultants,

More information

COMPARISON OF NUMERICAL HYDRAULIC MODELS APPLIED TO THE REMOVAL OF SAVAGE RAPIDS DAM NEAR GRANTS PASS, OREGON

COMPARISON OF NUMERICAL HYDRAULIC MODELS APPLIED TO THE REMOVAL OF SAVAGE RAPIDS DAM NEAR GRANTS PASS, OREGON COMPARISON OF NUMERICAL HYDRAULIC MODELS APPLIED TO THE REMOVAL OF SAVAGE RAPIDS DAM NEAR GRANTS PASS, OREGON Jennifer Bountry, Hydraulic Engineer, Bureau of Reclamation, Denver, CO, jbountry@do.usbr.gov;

More information

The HEC-RAS Model Refresher

The HEC-RAS Model Refresher The HEC-RAS Model Refresher Minmin Shu P.E. Transportation Review Unit Water Resources Division Michigan Department of Environmental Quality 12-6-2018 What Does the HEC-RAS Mean RAS----River Analysis System

More information

2D Model Implementation for Complex Floodplain Studies. Sam Crampton, P.E., CFM Dewberry

2D Model Implementation for Complex Floodplain Studies. Sam Crampton, P.E., CFM Dewberry 2D Model Implementation for Complex Floodplain Studies Sam Crampton, P.E., CFM Dewberry 2D Case Studies Case Study 1 Rain-on-Grid 2D floodplain simulation for unconfined flat topography in coastal plain

More information

Harris County Flood Control District HEC-RAS 2D Modeling Guidelines (Standardizing HEC-RAS 2D Models for Submittal Within Harris County)

Harris County Flood Control District HEC-RAS 2D Modeling Guidelines (Standardizing HEC-RAS 2D Models for Submittal Within Harris County) Harris County Flood Control District HEC-RAS 2D Modeling Guidelines (Standardizing HEC-RAS 2D Models for Submittal Within Harris County) Presented by: April 27, 2017 Matthew Zeve, P.E., CFM Harris County

More information

Prepared for CIVE 401 Hydraulic Engineering By Kennard Lai, Patrick Ndolo Goy & Dr. Pierre Julien Fall 2015

Prepared for CIVE 401 Hydraulic Engineering By Kennard Lai, Patrick Ndolo Goy & Dr. Pierre Julien Fall 2015 Prepared for CIVE 401 Hydraulic Engineering By Kennard Lai, Patrick Ndolo Goy & Dr. Pierre Julien Fall 2015 Contents Introduction General Philosophy Overview of Capabilities Applications Computational

More information

UNDERSTAND HOW TO SET UP AND RUN A HYDRAULIC MODEL IN HEC-RAS CREATE A FLOOD INUNDATION MAP IN ARCGIS.

UNDERSTAND HOW TO SET UP AND RUN A HYDRAULIC MODEL IN HEC-RAS CREATE A FLOOD INUNDATION MAP IN ARCGIS. CE 412/512, Spring 2017 HW9: Introduction to HEC-RAS and Floodplain Mapping Due: end of class, print and hand in. HEC-RAS is a Hydrologic Modeling System that is designed to describe the physical properties

More information

Upper Trinity River Corridor Development Certificate Model Updates. Flood Management Task Force Meeting April 20, 2018

Upper Trinity River Corridor Development Certificate Model Updates. Flood Management Task Force Meeting April 20, 2018 Upper Trinity River Corridor Development Certificate Model Updates Flood Management Task Force Meeting April 20, 2018 Agenda Review of the Phase II Upper Trinity Watershed CDC Model Development Hydrology

More information

Appendix E. HEC-RAS and HEC-Ecosystem Functions Models

Appendix E. HEC-RAS and HEC-Ecosystem Functions Models Appendix E HEC-RAS and HEC-Ecosystem Functions Models 1 Appendix E: Modeled Reaches for the Connecticut River Watershed application of HEC-RAS Separate from the report for the Decision Support System of

More information

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 3, 2012

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 3, 2012 INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 3, 2012 Copyright 2010 All rights reserved Integrated Publishing services Research article ISSN 0976 4399 Efficiency and performances

More information

Automating Hydraulic Analysis v 1.0.

Automating Hydraulic Analysis v 1.0. 2011 Automating Hydraulic Analysis v 1.0. Basic tutorial and introduction Automating Hydraulic Analysis (AHYDRA) is a freeware application that automates some specific features of HEC RAS or other hydraulic

More information

Urban Floodplain modeling- Application of Two-Dimensional Analyses to Refine Results

Urban Floodplain modeling- Application of Two-Dimensional Analyses to Refine Results Urban Floodplain modeling- Application of Two-Dimensional Analyses to Refine Results Prabharanjani Madduri, P.E., CFM Mathini Sreetharan, Ph.D., P.E., CFM Hydraulic modeling of urban areas and issues Modeling

More information

Watershed Modeling HEC-HMS Interface

Watershed Modeling HEC-HMS Interface v. 10.1 WMS 10.1 Tutorial Learn how to set up a basic HEC-HMS model using WMS Objectives Build a basic HEC-HMS model from scratch using a DEM, land use, and soil data. Compute the geometric and hydrologic

More information

Travel Time and Time of Concentration

Travel Time and Time of Concentration Methods in Stormwater Management Using HydroCAD ravel ime and ime of Concentration H05 ravel ime.pdf 1 opics 1. ime of Concentration Definition 2. Segmental Flow 3. Sheet Flow 4. Concentrated Flow 5. Channel

More information

Storm Drain Modeling HY-12 Pump Station

Storm Drain Modeling HY-12 Pump Station v. 10.1 WMS 10.1 Tutorial Storm Drain Modeling HY-12 Pump Station Analysis Setup a simple HY-12 pump station storm drain model in the WMS interface with pump and pipe information Objectives Using the HY-12

More information

A fuzzy dynamic flood routing model for natural channels

A fuzzy dynamic flood routing model for natural channels HYDROLOGICAL PROCESSES Hydrol. Process. (29) Published online in Wiley InterScience (www.interscience.wiley.com) DOI:.2/hyp.73 A fuzzy dynamic flood routing model for natural channels R. Gopakumar and

More information

How to correct and complete discharge data Main text

How to correct and complete discharge data Main text Table of Contents. General 2. Completion from another record at the same station 3. Interpolating discharge gaps of short duration 4. Interpolating gaps during recessions 5. Interpolation using regression

More information

RESCDAM DEVELOPMENT OF RESCUE ACTIONS BASED ON DAM BREAK FLOOD ANALYSI A PREVENTION PROJECT UNDER THE EUROPEAN COMMUNITY ACTION PROGRAMME

RESCDAM DEVELOPMENT OF RESCUE ACTIONS BASED ON DAM BREAK FLOOD ANALYSI A PREVENTION PROJECT UNDER THE EUROPEAN COMMUNITY ACTION PROGRAMME RESCDAM DEVELOPMENT OF RESCUE ACTIONS BASED ON DAM BREAK FLOOD ANALYSI A PREVENTION PROJECT UNDER THE EUROPEAN COMMUNITY ACTION PROGRAMME 1-DIMENSIONAL FLOW SIMULATIONS FOR THE KYRKÖSJÄRVI DAM BREAK HAZARD

More information

FLOODPLAIN MODELING MANUAL. HEC-RAS Procedures for HEC-2 Modelers

FLOODPLAIN MODELING MANUAL. HEC-RAS Procedures for HEC-2 Modelers FLOODPLAIN MODELING MANUAL HEC-RAS Procedures for HEC-2 Modelers Federal Emergency Management Agency Mitigation Directorate 500 C Street, SW Washington, DC 20472 April 2002 Floodplain Modeling Manual HEC-RAS

More information

Appendix E-1. Hydrology Analysis

Appendix E-1. Hydrology Analysis Appendix E-1 Hydrology Analysis July 2016 HYDROLOGY ANALYSIS For Tentative Tract 20049 City of Chino Hills County of San Bernardino Prepared For: 450 Newport Center Drive, Suite 300 Newport Beach, CA 92660

More information

Watershed Analysis with the Hydrologic Engineering Center s River Analysis System (HEC-RAS)

Watershed Analysis with the Hydrologic Engineering Center s River Analysis System (HEC-RAS) Watershed Analysis with the Hydrologic Engineering Center s River Analysis System (HEC-RAS) by Christopher R. Goodell and Gary W. Brunner PURPOSE: The objectives of this document are to provide a general

More information

A Comparative Study of HEC-RAS 2D, TUFLOW, & Mike 21 Model Benchmark Testing

A Comparative Study of HEC-RAS 2D, TUFLOW, & Mike 21 Model Benchmark Testing A Comparative Study of HEC-RAS 2D, TUFLOW, & Mike 21 Model Benchmark Testing June 2016 Presented by: Murari Paudel, PhD, PE, CFM Soledad B Roman, EIT John Prichard, PE, CFM Wood Rodgers Inc. Sacramento,

More information

Cloud-Computing Based Real-Time Flood Simulation (RealFlood Engine)

Cloud-Computing Based Real-Time Flood Simulation (RealFlood Engine) Cloud-Computing Based Real-Time Flood Simulation (RealFlood Engine) Jennifer G Duan, PhD., PE Principal, KKC Engineering (UA Tech Launch) Associate Professor Delbert R. Lewis Distinguished Professor Civil

More information

2D Modeling for Approximate Areas. Monica S. Urisko, P.E. CFM

2D Modeling for Approximate Areas. Monica S. Urisko, P.E. CFM 2D Modeling for Approximate Areas Monica S. Urisko, P.E. CFM Ferrin P. Affleck, P.E. CFM Outline Types of Modeling Available Steady vs Unsteady 1D vs 2D Software available Basics of 2D modeling Inputs

More information

FLOODPLAIN MODELING USING HEC-RAS

FLOODPLAIN MODELING USING HEC-RAS H A E S T A D M E T H O D S FLOODPLAIN MODELING USING HEC-RAS F i r s t E d i t i o n Authors Haestad Methods Gary Dyhouse Jennifer Hatchett Jeremy Benn Managing Editor Colleen Totz Editors David Klotz,

More information

GRADUALLY VARIED FLOW

GRADUALLY VARIED FLOW CVE 341 Water Resources Lecture Notes 5: (Chapter 14) GRADUALLY VARIED FLOW FLOW CLASSIFICATION Uniform (normal) flow: Depth is constant at every section along length of channel Non-uniform (varied) flow:

More information

HEC-RAS Verification and Validation Tests

HEC-RAS Verification and Validation Tests HEC-RAS Verification and Validation Tests April 2018 Approved for Public Release. Distribution Unlimited. RD-52 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 The public reporting burden for

More information

Use of measured and interpolated crosssections

Use of measured and interpolated crosssections Use of measured and interpolated crosssections in hydraulic river modelling Y. Chen/, R. Crowded & R. A. Falconer^ ^ Department of Civil & Environmental Engineering, University ofbradford, Bradford, West

More information

Flood routing modelling with Artificial Neural Networks

Flood routing modelling with Artificial Neural Networks Adv. Geosci., 9, 131 136, 2006 Author(s) 2006. This work is licensed under a Creative Commons License. Advances in Geosciences Flood routing modelling with Artificial Neural Networks R. Peters, G. Schmitz,

More information

Objectives Divide a single watershed into multiple sub-basins, and define routing between sub-basins.

Objectives Divide a single watershed into multiple sub-basins, and define routing between sub-basins. v. 11.0 HEC-HMS WMS 11.0 Tutorial HEC-HMS Learn how to create multiple sub-basins using HEC-HMS Objectives Divide a single watershed into multiple sub-basins, and define routing between sub-basins. Prerequisite

More information

Background to Rock Roughness Equation

Background to Rock Roughness Equation Background to Rock Roughness Equation WATERWAY MANAGEMENT PRACTICES Photo 1 Rock-lined fish ramp Photo 2 Added culvert bed roughness Introduction Formulas such as the Strickler Equation have been commonly

More information

Package rivr. March 15, 2016

Package rivr. March 15, 2016 Type Package Package rivr March 15, 2016 Title Steady and Unsteady Open-Channel Flow Computation Version 1.2 Date 2016-03-11 Author Michael C Koohafkan [aut, cre] Maintainer Michael C Koohafkan

More information

GPU - Next Generation Modeling for Catchment Floodplain Management. ASFPM Conference, Grand Rapids (June 2016) Chris Huxley

GPU - Next Generation Modeling for Catchment Floodplain Management. ASFPM Conference, Grand Rapids (June 2016) Chris Huxley GPU - Next Generation Modeling for Catchment Floodplain Management ASFPM Conference, Grand Rapids (June 2016) Chris Huxley Presentation Overview 1. What is GPU flood modeling? 2. What is possible using

More information

25 Using Numerical Methods, GIS & Remote Sensing 1

25 Using Numerical Methods, GIS & Remote Sensing 1 Module 6 (L22 L26): Use of Modern Techniques es in Watershed Management Applications of Geographical Information System and Remote Sensing in Watershed Management, Role of Decision Support System in Watershed

More information

Chapter 16. Table of Contents

Chapter 16. Table of Contents Table of Contents BANK FAILURE CALCULATIONS IN HEC-6T...16-1 Introduction...16-1 Approach...16-2 Conceptual Model...16-3 Theoretical Development...16-4 Two Foot Test...16-6 Mass Conservation...16-6 Command

More information

Simulation of Turbulent Flow in an Asymmetric Diffuser

Simulation of Turbulent Flow in an Asymmetric Diffuser Simulation of Turbulent Flow in an Asymmetric Diffuser 1. Purpose 58:160 Intermediate Mechanics of Fluids CFD LAB 3 By Tao Xing and Fred Stern IIHR-Hydroscience & Engineering The University of Iowa C.

More information

v Prerequisite Tutorials GSSHA Modeling Basics Stream Flow GSSHA WMS Basics Creating Feature Objects and Mapping their Attributes to the 2D Grid

v Prerequisite Tutorials GSSHA Modeling Basics Stream Flow GSSHA WMS Basics Creating Feature Objects and Mapping their Attributes to the 2D Grid v. 10.1 WMS 10.1 Tutorial GSSHA Modeling Basics Developing a GSSHA Model Using the Hydrologic Modeling Wizard in WMS Learn how to setup a basic GSSHA model using the hydrologic modeling wizard Objectives

More information

Open Channel Flow. Course paper: Water level calculation with HEC-RAS

Open Channel Flow. Course paper: Water level calculation with HEC-RAS Course paper: Water level calculation with HEC-RAS Prof. Dr.-Ing. Tobias Bleninger Graduate Program for Water Resources and Environmental Engineering (PPGERHA) Universidade Federal do Paraná - UFPR Centro

More information

WMS 10.0 Tutorial Hydraulics and Floodplain Modeling HY-8 Modeling Wizard Learn how to model a culvert using HY-8 and WMS

WMS 10.0 Tutorial Hydraulics and Floodplain Modeling HY-8 Modeling Wizard Learn how to model a culvert using HY-8 and WMS v. 10.0 WMS 10.0 Tutorial Hydraulics and Floodplain Modeling HY-8 Modeling Wizard Learn how to model a culvert using HY-8 and WMS Objectives Define a conceptual schematic of the roadway, invert, and downstream

More information

HCFCD Review Process

HCFCD Review Process HCFCD Review Process Impact Analysis Local Review LOMR Delegation Local Review This presentation will include: Why is this step important? Process Review Checklist Common Comments 2 Local Review Why is

More information

Modeling Khowr-e Musa Multi-Branch Estuary Currents due to the Persian Gulf Tides Using NASIR Depth Average Flow Solver

Modeling Khowr-e Musa Multi-Branch Estuary Currents due to the Persian Gulf Tides Using NASIR Depth Average Flow Solver Journal of the Persian Gulf (Marine Science)/Vol.1/No.1/September 2010/6/45-50 Modeling Khowr-e Musa Multi-Branch Estuary Currents due to the Persian Gulf Tides Using NASIR Depth Average Flow Solver Sabbagh-Yazdi,

More information

VOLUME & FLOW RATE CALCULATIONS

VOLUME & FLOW RATE CALCULATIONS A.2 FLOW RATE AND VOLUME CALCULATION EXAMPLE PROJECT NAME Industrial Site Example A-8 NOMENCLATURE A I = Impervious Area (acres) A P = Pervious Area (acres) A U = Contributing Undeveloped Upstream Area

More information

Application Description

Application Description USER S GUIDE FOR SDB GUI (SDB-J) Modifications by Janice Sylvestre Based on NWS Document THE NWS SIMPLIFIED DAM-BREAK FLOOD FORECASTING MODEL 1 By Danny L. Fread, Janice M. Lewis, and Stephen M. Wiele

More information

H y d r o C A D. Owner's Manual

H y d r o C A D. Owner's Manual H y d r o C A D Stormwater Modeling System Version 8 Owner's Manual Copyright 2006 HydroCAD Software Solutions LLC. All rights reserved. HydroCAD is a registered trademark of HydroCAD Software Solutions

More information

CEE3430 Engineering Hydrology

CEE3430 Engineering Hydrology CEE3430 Engineering Hydrology Homework 8. Step by Step Guidance for using HEC HMS to solve homework problems 1. Solve Part 1, problem 3 above using HEC-HMS. The standard lag referred to in the inputs (and

More information

Gavin Fields Senior Water Resources Engineer XP Solutions

Gavin Fields Senior Water Resources Engineer XP Solutions Hydraulics 101 Gavin Fields Senior Water Resources Engineer XP Solutions Hydraulics 101 Introduction Structures Hydraulic Model Building Q&A XP Solutions Software for modeling wastewater, stormwater, and

More information

DAILY FLOW ROUTING WITH THE MUSKINGUM-CUNGE METHOD IN THE PECOS RIVER RIVERWARE MODEL

DAILY FLOW ROUTING WITH THE MUSKINGUM-CUNGE METHOD IN THE PECOS RIVER RIVERWARE MODEL DAILY FLOW ROUTING WITH THE MUSKINGUM-CUNGE METHOD IN THE PECOS RIVER RIVERWARE MODEL Craig B. Boroughs, P.E., Project Hydraulic Engineer, Tetra Tech, Inc., Brecenridge, CO Edie Zagona, P.E., Ph.D., Research

More information

v. 9.1 WMS 9.1 Tutorial Watershed Modeling HEC-1 Interface Learn how to setup a basic HEC-1 model using WMS

v. 9.1 WMS 9.1 Tutorial Watershed Modeling HEC-1 Interface Learn how to setup a basic HEC-1 model using WMS v. 9.1 WMS 9.1 Tutorial Learn how to setup a basic HEC-1 model using WMS Objectives Build a basic HEC-1 model from scratch using a DEM, land use, and soil data. Compute the geometric and hydrologic parameters

More information

HEC-RAS 3.0 January, 2001 Release Notes

HEC-RAS 3.0 January, 2001 Release Notes HEC-RAS 3.0 January, 2001 Release Notes A new version of HEC-RAS (3.0) has been released with significant new features over the previous version (2.21). Version 3.0 includes unsteady flow routing capabilities,

More information

River inundation modelling for risk analysis

River inundation modelling for risk analysis River inundation modelling for risk analysis L. H. C. Chua, F. Merting & K. P. Holz Institute for Bauinformatik, Brandenburg Technical University, Germany Abstract This paper presents the results of an

More information

Classwork 5 Using HEC-RAS for computing water surface profiles

Classwork 5 Using HEC-RAS for computing water surface profiles Classwork 5 Using HEC-RAS for computing water surface profiles (in collaboration with Dr. Ing. Luca Milanesi) Why classwork 5? This lecture will give us the possibility to make our first acquaintance with

More information

Modeling Detention Ponds Malaysian Example (v2009)

Modeling Detention Ponds Malaysian Example (v2009) Modeling Detention Ponds Malaysian Example (v2009) This tutorial demonstrates the usability of xpswmm and xpstorm for simulating detention basins in urban areas. This fictitious example includes the use

More information

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil Verification and Validation of Turbulent Flow around a Clark-Y Airfoil 1. Purpose 58:160 Intermediate Mechanics of Fluids CFD LAB 2 By Tao Xing and Fred Stern IIHR-Hydroscience & Engineering The University

More information

The CaMa-Flood model description

The CaMa-Flood model description Japan Agency for Marine-Earth cience and Technology The CaMa-Flood model description Dai Yamazaki JAMTEC Japan Agency for Marine-Earth cience and Technology 4 th ep, 2015 Concepts of the CaMa-Flood development

More information

Generalisation of Topographic resolution for 2D Urban Flood Modelling. Solomon D. Seyoum Ronald Price Zoran Voijnovic

Generalisation of Topographic resolution for 2D Urban Flood Modelling. Solomon D. Seyoum Ronald Price Zoran Voijnovic Generalisation of Topographic resolution for 2D Urban Flood Modelling Solomon D. Seyoum Ronald Price Zoran Voijnovic Outline Introduction Urban Flood Modelling and Topographic data DTM Generalisation Remedial

More information

Department of Civil Engineering, Faculty of Engineering, Suranaree University of Technology, Mueang, Nakhon Ratchasima, Thailand.

Department of Civil Engineering, Faculty of Engineering, Suranaree University of Technology, Mueang, Nakhon Ratchasima, Thailand. 0 0 Mapping temporal flood extent of Chiang Mai flooding using a coupled D and quasi D floodplain inundation modeling Chatchai Jothityangkoon and Kowit Boonrawd Department of Civil Engineering, Faculty

More information

AUTOMATING MANNING S N COEFFICIENT VALUE ASSIGNMENTS FOR HYDRAULIC MODELING

AUTOMATING MANNING S N COEFFICIENT VALUE ASSIGNMENTS FOR HYDRAULIC MODELING Imagery Source: Bing Maps via ESRI AUTOMATING MANNING S N COEFFICIENT VALUE ASSIGNMENTS FOR HYDRAULIC MODELING Kyle Gallagher, GISP Black & Veatch Special Projects Corp. Project Overview USACE Tulsa District

More information

Development of a high-resolution 1D/2D coupled flood simulation of Charles City, Iowa

Development of a high-resolution 1D/2D coupled flood simulation of Charles City, Iowa University of Iowa Iowa Research Online Theses and Dissertations Spring 2011 Development of a high-resolution 1D/2D coupled flood simulation of Charles City, Iowa Matthew Roger Moore University of Iowa

More information

Watershed Modeling Maricopa County: Master Plan Creating a Predictive HEC-1 Model

Watershed Modeling Maricopa County: Master Plan Creating a Predictive HEC-1 Model v. 9.0 WMS 9.0 Tutorial Watershed Modeling Maricopa County: Master Plan Creating a Predictive HEC-1 Model Build a watershed model to predict hydrologic reactions based on land use development in Maricopa

More information

Watershed Analysis Lab Heterogeneous, Gaged Watershed I (Northwest Branch)

Watershed Analysis Lab Heterogeneous, Gaged Watershed I (Northwest Branch) Watershed Analysis Lab Heterogeneous, Gaged Watershed I (Northwest Branch) The previous lab demonstrated the process of selecting quadrangles, specifying data types, delineating a watershed, and using

More information

ISIS Free & ISIS Professional Quick Start Guide

ISIS Free & ISIS Professional Quick Start Guide ISIS Free & ISIS Professional Cost effective, integrated modelling solutions Think saving, think ISIS, think Halcrow This quick start guide enables first time users to quickly understand how to use ISIS

More information

UNCERTAINTY ISSUES IN HYDRODYNAMIC FLOOD MODELING

UNCERTAINTY ISSUES IN HYDRODYNAMIC FLOOD MODELING UNCERTAINTY ISSUES IN HYDRODYNAMIC FLOOD MODELING Alemseged T. H. a and T. H. M. Rientjes b a Department of Water Resources, ITC, P.O.Box 6, 7500AA, Enschede, The Netherlands. E-mail: haile07634@itc.nl

More information

THE NWS SIMPLIFIED DAM-BREAK FLOOD FORECASTING MODEL

THE NWS SIMPLIFIED DAM-BREAK FLOOD FORECASTING MODEL THE NWS SIMPLIFIED DAM-BREAK FLOOD FORECASTING MODEL by Jonathan N. Wetmore and Danny L. Fread 1 (Revised 12/18/91) by Danny L. Fread, Janice M. Lewis 2, and Stephen M. Wiele 2 SYNOPSIS The National Weather

More information

WMS 9.0 Tutorial Hydraulics and Floodplain Modeling HEC-RAS Analysis Learn how to setup a basic HEC-RAS analysis using WMS

WMS 9.0 Tutorial Hydraulics and Floodplain Modeling HEC-RAS Analysis Learn how to setup a basic HEC-RAS analysis using WMS v. 9.0 WMS 9.0 Tutorial Hydraulics and Floodplain Modeling HEC-RAS Analysis Learn how to setup a basic HEC-RAS analysis using WMS Objectives Learn how to build cross sections, stream centerlines, and bank

More information

Modelling with AR&R 2016

Modelling with AR&R 2016 Modelling with AR&R 2016 XP Solutions Software for modeling wastewater, stormwater, and floods Graphical User Interface (GUI) and analytical engines CAD/GIS type interface and data management tools Graphical

More information

SMS v D Summary Table. SRH-2D Tutorial. Prerequisites. Requirements. Time. Objectives

SMS v D Summary Table. SRH-2D Tutorial. Prerequisites. Requirements. Time. Objectives SMS v. 12.3 SRH-2D Tutorial Objectives Learn the process of making a summary table to compare the 2D hydraulic model results with 1D hydraulic model results. This tutorial introduces a method of presenting

More information

Automated Enforcement of High Resolution Terrain Models April 21, Brian K. Gelder, PhD Associate Scientist Iowa State University

Automated Enforcement of High Resolution Terrain Models April 21, Brian K. Gelder, PhD Associate Scientist Iowa State University Automated Enforcement of High Resolution Terrain Models April 21, 2015 Brian K. Gelder, PhD Associate Scientist Iowa State University Problem Statement High resolution digital elevation models (DEMs) should

More information

Build a MODRAT model by defining a hydrologic schematic

Build a MODRAT model by defining a hydrologic schematic v. 11.0 WMS 11.0 Tutorial Build a MODRAT model by defining a hydrologic schematic Objectives Learn how to define a basic MODRAT model using the hydrologic schematic tree in WMS by building a tree and defining

More information

WMS 8.4 Tutorial Watershed Modeling MODRAT Interface Schematic Build a MODRAT model by defining a hydrologic schematic

WMS 8.4 Tutorial Watershed Modeling MODRAT Interface Schematic Build a MODRAT model by defining a hydrologic schematic v. 8.4 WMS 8.4 Tutorial Watershed Modeling MODRAT Interface Schematic Build a MODRAT model by defining a hydrologic schematic Objectives This tutorial shows you how to define a basic MODRAT model using

More information

WMS 10.1 Tutorial Hydraulics and Floodplain Modeling HEC-RAS Analysis Learn how to setup a basic HEC-RAS analysis using WMS

WMS 10.1 Tutorial Hydraulics and Floodplain Modeling HEC-RAS Analysis Learn how to setup a basic HEC-RAS analysis using WMS v. 10.1 WMS 10.1 Tutorial Hydraulics and Floodplain Modeling HEC-RAS Analysis Learn how to setup a basic HEC-RAS analysis using WMS Objectives Learn how to build cross sections, stream centerlines, and

More information

Channel Conditions in the Onion Creek Watershed. Integrating High Resolution Elevation Data in Flood Forecasting

Channel Conditions in the Onion Creek Watershed. Integrating High Resolution Elevation Data in Flood Forecasting Channel Conditions in the Onion Creek Watershed Integrating High Resolution Elevation Data in Flood Forecasting Lukas Godbout GIS in Water Resources CE394K Fall 2016 Introduction Motivation Flooding is

More information

Numerical modeling of rapidly varying flows using HEC RAS and WSPG models

Numerical modeling of rapidly varying flows using HEC RAS and WSPG models DOI 10.1186/s40064-016-2199-0 TECHNICAL NOTE Open Access Numerical modeling of rapidly varying flows using HEC RAS and WSPG models Prasada Rao 1* and Theodore V. Hromadka II 2 *Correspondence: prasad@fullerton.edu

More information