A short introduction to embedded optimization

Size: px
Start display at page:

Download "A short introduction to embedded optimization"

Transcription

1 A short introduction to embedded optimization Tecnomatix Plant Simulation Worldwide User Conference June 22nd, 2016 Realize innovation. A short introduction to embedded optimization Table of content 1. Simulation and Optimization 2. Genetic Algorithms 3. Basic Objects for Genetic Algorithms 4. Sequence Optimization 5. Optimization as an Integrated Component 6. Approximation Solutions for Stochastic Models Page 2

2 1. Simulation and Optimization Connections of Simulation and Optimization 1. The simulation is used as evaluation function of optimization We are looking for optimal parameters for a model. By systematic changes of parameters we can determine a satisfactory model configuration. Optimize r Modification Evaluation Model 2. The optimization is an integrated component of a simulation. A parent simulation is interrupted and an optimization of the current state is performed. Simulation time Optimize r A further structural connections is the use of simulation results as starting values for an optimization. See Chapter 11: L. Iitzsche, P. Schmidt, S, Völker in Lothar März, Winfried Krug, Oliver Rose, Gerald Weigert (Hrsg.) Simulation und Optimierung in Produktion und Such optimization is possibly based on pure calculations. Page 3 1. Simulation and Optimization Characteristic properties of Optimization Problems In most applications multiple targets are considered which have opposite nature and must be described in a single numerical evaluation value. Combination of several input parameter settings 1. Determination of sequences 2. Dimensioning of production resources. Solving of Trade-off 1. Reduce throughput times by prevention of waiting time 2. Just-in-time delivery 3. Reduction of the warehouse stock and associated costs We distinguish so called basic tasks 1. Sequence tasks (find a numbering of a finite set) 2. Allocation tasks (find a value of a finite range). Page 4

3 1. Simulation and Optimization Exact and Heuristic Methods for Optimization Problems Basic tasks are well examined in Operations Research. The algorithms Branch & Bound and Dynamic Programming for the Traveling Salesman Problem are described in the Example Collection (open via the Start Page). For basic tasks with practical important problem size and combined tasks there are no efficient algorithms, which find the optimal solution in reasonable computational time. Therefore heuristic methods are used, like Hill- Climbing, Simulated Annealing, Tabu Search and Genetic Page 5 Algorithms (shorted by GA). 2. Genetic Algorithms Genetic Algorithms are iterative stochastic search algorithms based on natural mechanisms of the biological evolution. GA operate on a set of solutions of a combined basic problems. The notions Generation, Individuals and Chromosomes All properties of living organisms are coded in the biologic material DNA in a sequential manner. All solutions, which are currently under consideration in a certain optimization step, form a Generation. A solution of the combined task is called an Individual. A solution of an basic task is considered as Chromosome. Page 6

4 2. Genetic Algorithms The Ideas and the Structure of Genetic Algorithms Genetic Algorithms model natural processes of the evolution. The Evolution Cycle Initialization The Fitness of the individuals describes, how well it is adapted to the environment. This evaluation is determined by the combination of their elementary properties. The Fitness can be determined by simulation or calculation. Evaluation Termination condition Parent selection Stop 1. Recombination: Use of properties of previous generation (Selection of 2 Parents according to the fitness) 2. Mutation: Generate 2 children per family by random application of Genetic Operations, like Crossover, Mutation, Inversion 3. Page Selection: 7 Select one offspring per family (child or Genetic Operators Evaluation Offspring selection 2. Genetic Algorithms The number of resulting evaluations Each new generated individual must be evaluated. The first generation has the Generation size individuals. All following generations have Generation size families. Each family has 2 children, which must be evaluated. Number of evaluations = Generation size * (2 * Number of Generations - 1) Please note, that in a stochastic simulation study an evaluations needs more than 1 simulation runs (observations). Page 8

5 3. Basic Objects for Genetic Algorithms Five Basic Objects for the Optimization by GA The controller GAOptimization Number and size of generations, Direction of the optimization (minimum or maximum) Termination condition Definition of the selection of parents and offspring Controls, such as for the fitness calculation Recording of generated individuals The other four objects are GA tables for basic tasks and its Genetic Operators. GASequence: Sequence task for a given number of items GASelection: Selection task of a certain number of elements a given number of items GARangeAllocation: Determine an item of a range between two bounds GASetAllocation: Determine an item of a set of elements Page 9 3. Basic Objects for Genetic Algorithms How do the Basic Objects work Determine the maximum of Rastigrin s Function: Fitness = 20 u*u - cos(2*pi*u) v*v - cos(2*pi*v) for GA -1 < are u,v well < 1suited for problems with multiple peaks with similar fitness. In our examples we have four maxima (± 0.5, ± 0.5) with the same value 21,5. The picture is generated by: Page 10

6 4. Sequence Optimization We will find the sequence of the Delivery table of the source, such that the throughput time for the given orders is minimal. The throughput time is determined by the setup matrix. The Plant Simulation model for a deterministic study in English class library is generated by executing a meth Start Plant Simulation with the shortcut opt /UILanguage:ENU. For this example the resulting throughput time is 8 + Siemens AG = 42. Page 11 The optimal solution is obvious. Create a model with model language Engli Select the Menu File > Preferences > Tab G 4. Sequence Optimization The evaluation of a sequence is done by simulation. For the optimization we apply the GAwizard. The fitness calculation can be defined as a weighted sum of multiple simulation results in the table Fitness. Drag & Drop the Eventcontroller onto the GAwizard. There are no general recommendations for the parameters of the Genetic Algorithm. For sequence tasks a generation size between 50 and 70 is suitable. Page 12

7 4. Sequence Optimization Press the Shift-Key and Drag & Drop the Delivery table of the source onto the GAwizard. The optimization is started on the second tab of the GAwizard. The results of the optimization can be displayed on the third tab. Page Sequence Optimization After the optimization the best solution which was found is set in the model. You find the best different solutions on the third tab. Page 14

8 4. Sequence Optimization Visualization the Optimization Progress The Performance Graph shows a typical appearance of Genetic Algorithms. It is opened by the button Evolution. The worst individual in a generation also improves if a better individual is found. Page Optimization as an Integrated Component Sequence Optimization during the simulation Scenario and Target In a line of two types of products are produced. The arrival process of the products is at random. To achieve an uniform utilization of following resources long partial sequences of single products type should not occur. During the production process the sequence is optimized. Idea In a buffer (modeled by the basic object Sorter) multiple products are collected. For this purpose the entrance and the exit of the buffer are controlled by an Observer method for the value Page 16numMU.

9 5. Optimization as an Integrated Component Online-Optimization If at the beginning of a simulation not all data are available then multiple sequencings are necessary. This leads to smaller number of items of the sequence compared to the full size of the problem. Evaluation by Rules Unwanted sequences are evaluated by a bad fitness. The evaluation of a sequence is done by one or more criteria and is performed by rules. The result of a rule describes the penalty for the forconsidered local j := 1 sequence: to sequence.ydim - 1 loop if sequence[1, j].name = sequence[1, j+1].name then result := result + 1 end; next; See Chapter 17: C. Heib, S. Nickel in Lothar März, Winfried Krug, Oliver Rose, Gerald Weigert (Hrsg.) Simulation und Optimierung in Produktion und Logistik, Sprin Page Optimization as an Integrated Component Result: The Line which succeed the Buffer shows short partial sequences of single products. Page 18

10 6. Approximation Solutions for Stochastic Models By the model we consider a combination of a sequence and parameter optimization of a stochastic simulation study. It is impossible to solve an optimization problem for a stochastic model. But in practice approximation suboptimal solutions are frequently sufficient. Page Approximation Solutions for Stochastic Models The definition of the combined optimization problem. Since we want to minimize the throughput time and the buffer capacity we weight their values. Since there are random components, we perform 5 observations per individual. Page 20

11 Thank you for your attention! Dr. Peter-Michael Schmidt QA Leader Group Plant Simulation / Germany/ R&D Weissacher Straße Stuttgart Phone: Fax: Mobile: petermichael.schmidt@siemens.com siemens.com Page 21

Intermediate Production Storage Dimensioning Using Occupancy-dependent Key Performance Indicators

Intermediate Production Storage Dimensioning Using Occupancy-dependent Key Performance Indicators Intermediate Production Storage Dimensioning Using Occupancy-dependent Key Performance Indicators Realize innovation. Key Performance Measures of a Storage Facility Contents The Full and Empty Portion

More information

Introduction to Artificial Intelligence 2 nd semester 2016/2017. Chapter 4: Beyond Classical Search

Introduction to Artificial Intelligence 2 nd semester 2016/2017. Chapter 4: Beyond Classical Search Introduction to Artificial Intelligence 2 nd semester 2016/2017 Chapter 4: Beyond Classical Search Mohamed B. Abubaker Palestine Technical College Deir El-Balah 1 Outlines local search algorithms and optimization

More information

ARTIFICIAL INTELLIGENCE (CSCU9YE ) LECTURE 5: EVOLUTIONARY ALGORITHMS

ARTIFICIAL INTELLIGENCE (CSCU9YE ) LECTURE 5: EVOLUTIONARY ALGORITHMS ARTIFICIAL INTELLIGENCE (CSCU9YE ) LECTURE 5: EVOLUTIONARY ALGORITHMS Gabriela Ochoa http://www.cs.stir.ac.uk/~goc/ OUTLINE Optimisation problems Optimisation & search Two Examples The knapsack problem

More information

University of Waterloo Department of Electrical and Computer Engineering ECE 457A: Cooperative and Adaptive Algorithms Midterm Examination

University of Waterloo Department of Electrical and Computer Engineering ECE 457A: Cooperative and Adaptive Algorithms Midterm Examination University of Waterloo Department of Electrical and Computer Engineering ECE 457A: Cooperative and Adaptive Algorithms Midterm Examination Exam Date/Time: Tuesday, June 13, 2017, 8:30-9:50 pm Exam Hall:

More information

Job Shop Scheduling Problem (JSSP) Genetic Algorithms Critical Block and DG distance Neighbourhood Search

Job Shop Scheduling Problem (JSSP) Genetic Algorithms Critical Block and DG distance Neighbourhood Search A JOB-SHOP SCHEDULING PROBLEM (JSSP) USING GENETIC ALGORITHM (GA) Mahanim Omar, Adam Baharum, Yahya Abu Hasan School of Mathematical Sciences, Universiti Sains Malaysia 11800 Penang, Malaysia Tel: (+)

More information

Application of a Genetic Algorithm to a Scheduling Assignement Problem

Application of a Genetic Algorithm to a Scheduling Assignement Problem Application of a Genetic Algorithm to a Scheduling Assignement Problem Amândio Marques a and Francisco Morgado b a CISUC - Center of Informatics and Systems of University of Coimbra, 3030 Coimbra, Portugal

More information

CHAPTER 4 GENETIC ALGORITHM

CHAPTER 4 GENETIC ALGORITHM 69 CHAPTER 4 GENETIC ALGORITHM 4.1 INTRODUCTION Genetic Algorithms (GAs) were first proposed by John Holland (Holland 1975) whose ideas were applied and expanded on by Goldberg (Goldberg 1989). GAs is

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Informed Search and Exploration Chapter 4 (4.3 4.6) Searching: So Far We ve discussed how to build goal-based and utility-based agents that search to solve problems We ve also presented

More information

GENETIC ALGORITHM with Hands-On exercise

GENETIC ALGORITHM with Hands-On exercise GENETIC ALGORITHM with Hands-On exercise Adopted From Lecture by Michael Negnevitsky, Electrical Engineering & Computer Science University of Tasmania 1 Objective To understand the processes ie. GAs Basic

More information

Escaping Local Optima: Genetic Algorithm

Escaping Local Optima: Genetic Algorithm Artificial Intelligence Escaping Local Optima: Genetic Algorithm Dae-Won Kim School of Computer Science & Engineering Chung-Ang University We re trying to escape local optima To achieve this, we have learned

More information

Metaheuristic Development Methodology. Fall 2009 Instructor: Dr. Masoud Yaghini

Metaheuristic Development Methodology. Fall 2009 Instructor: Dr. Masoud Yaghini Metaheuristic Development Methodology Fall 2009 Instructor: Dr. Masoud Yaghini Phases and Steps Phases and Steps Phase 1: Understanding Problem Step 1: State the Problem Step 2: Review of Existing Solution

More information

Local Search and Optimization Chapter 4. Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld )

Local Search and Optimization Chapter 4. Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld ) Local Search and Optimization Chapter 4 Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld ) 1 Outline Local search techniques and optimization Hill-climbing

More information

A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery

A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery Monika Sharma 1, Deepak Sharma 2 1 Research Scholar Department of Computer Science and Engineering, NNSS SGI Samalkha,

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Approximation Algorithms and Heuristics November 21, 2016 École Centrale Paris, Châtenay-Malabry, France Dimo Brockhoff Inria Saclay Ile-de-France 2 Exercise: The Knapsack

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Approximation Algorithms and Heuristics November 6, 2015 École Centrale Paris, Châtenay-Malabry, France Dimo Brockhoff INRIA Lille Nord Europe 2 Exercise: The Knapsack Problem

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Information Systems and Machine Learning Lab (ISMLL) Tomáš Horváth 10 rd November, 2010 Informed Search and Exploration Example (again) Informed strategy we use a problem-specific

More information

Local Search and Optimization Chapter 4. Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld )

Local Search and Optimization Chapter 4. Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld ) Local Search and Optimization Chapter 4 Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld ) 1 2 Outline Local search techniques and optimization Hill-climbing

More information

Local Search and Optimization Chapter 4. Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld )

Local Search and Optimization Chapter 4. Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld ) Local Search and Optimization Chapter 4 Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld ) 1 2 Outline Local search techniques and optimization Hill-climbing

More information

TDDC17. Intuitions behind heuristic search. Recall Uniform-Cost Search. Best-First Search. f(n) =... + h(n) g(n) = cost of path from root node to n

TDDC17. Intuitions behind heuristic search. Recall Uniform-Cost Search. Best-First Search. f(n) =... + h(n) g(n) = cost of path from root node to n Intuitions behind heuristic search The separation property of GRAPH-SEARCH TDDC17 Seminar III Search II Informed or Heuristic Search Beyond Classical Search Find a heuristic measure h(n) which estimates

More information

1. Introduction. 2. Motivation and Problem Definition. Volume 8 Issue 2, February Susmita Mohapatra

1. Introduction. 2. Motivation and Problem Definition. Volume 8 Issue 2, February Susmita Mohapatra Pattern Recall Analysis of the Hopfield Neural Network with a Genetic Algorithm Susmita Mohapatra Department of Computer Science, Utkal University, India Abstract: This paper is focused on the implementation

More information

Mutations for Permutations

Mutations for Permutations Mutations for Permutations Insert mutation: Pick two allele values at random Move the second to follow the first, shifting the rest along to accommodate Note: this preserves most of the order and adjacency

More information

3.6.2 Generating admissible heuristics from relaxed problems

3.6.2 Generating admissible heuristics from relaxed problems 3.6.2 Generating admissible heuristics from relaxed problems To come up with heuristic functions one can study relaxed problems from which some restrictions of the original problem have been removed The

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Local Search Vibhav Gogate The University of Texas at Dallas Some material courtesy of Luke Zettlemoyer, Dan Klein, Dan Weld, Alex Ihler, Stuart Russell, Mausam Systematic Search:

More information

Outline. Best-first search. Greedy best-first search A* search Heuristics Local search algorithms

Outline. Best-first search. Greedy best-first search A* search Heuristics Local search algorithms Outline Best-first search Greedy best-first search A* search Heuristics Local search algorithms Hill-climbing search Beam search Simulated annealing search Genetic algorithms Constraint Satisfaction Problems

More information

Suppose you have a problem You don t know how to solve it What can you do? Can you use a computer to somehow find a solution for you?

Suppose you have a problem You don t know how to solve it What can you do? Can you use a computer to somehow find a solution for you? Gurjit Randhawa Suppose you have a problem You don t know how to solve it What can you do? Can you use a computer to somehow find a solution for you? This would be nice! Can it be done? A blind generate

More information

Introduction to Genetic Algorithms. Genetic Algorithms

Introduction to Genetic Algorithms. Genetic Algorithms Introduction to Genetic Algorithms Genetic Algorithms We ve covered enough material that we can write programs that use genetic algorithms! More advanced example of using arrays Could be better written

More information

The Genetic Algorithm for finding the maxima of single-variable functions

The Genetic Algorithm for finding the maxima of single-variable functions Research Inventy: International Journal Of Engineering And Science Vol.4, Issue 3(March 2014), PP 46-54 Issn (e): 2278-4721, Issn (p):2319-6483, www.researchinventy.com The Genetic Algorithm for finding

More information

Using Genetic Algorithm with Triple Crossover to Solve Travelling Salesman Problem

Using Genetic Algorithm with Triple Crossover to Solve Travelling Salesman Problem Proc. 1 st International Conference on Machine Learning and Data Engineering (icmlde2017) 20-22 Nov 2017, Sydney, Australia ISBN: 978-0-6480147-3-7 Using Genetic Algorithm with Triple Crossover to Solve

More information

March 19, Heuristics for Optimization. Outline. Problem formulation. Genetic algorithms

March 19, Heuristics for Optimization. Outline. Problem formulation. Genetic algorithms Olga Galinina olga.galinina@tut.fi ELT-53656 Network Analysis and Dimensioning II Department of Electronics and Communications Engineering Tampere University of Technology, Tampere, Finland March 19, 2014

More information

Comparative Analysis of Genetic Algorithm Implementations

Comparative Analysis of Genetic Algorithm Implementations Comparative Analysis of Genetic Algorithm Implementations Robert Soricone Dr. Melvin Neville Department of Computer Science Northern Arizona University Flagstaff, Arizona SIGAda 24 Outline Introduction

More information

Non-deterministic Search techniques. Emma Hart

Non-deterministic Search techniques. Emma Hart Non-deterministic Search techniques Emma Hart Why do local search? Many real problems are too hard to solve with exact (deterministic) techniques Modern, non-deterministic techniques offer ways of getting

More information

Machine Learning for Software Engineering

Machine Learning for Software Engineering Machine Learning for Software Engineering Introduction and Motivation Prof. Dr.-Ing. Norbert Siegmund Intelligent Software Systems 1 2 Organizational Stuff Lectures: Tuesday 11:00 12:30 in room SR015 Cover

More information

A Parallel Architecture for the Generalized Traveling Salesman Problem

A Parallel Architecture for the Generalized Traveling Salesman Problem A Parallel Architecture for the Generalized Traveling Salesman Problem Max Scharrenbroich AMSC 663 Project Proposal Advisor: Dr. Bruce L. Golden R. H. Smith School of Business 1 Background and Introduction

More information

Introduction to Genetic Algorithms. Based on Chapter 10 of Marsland Chapter 9 of Mitchell

Introduction to Genetic Algorithms. Based on Chapter 10 of Marsland Chapter 9 of Mitchell Introduction to Genetic Algorithms Based on Chapter 10 of Marsland Chapter 9 of Mitchell Genetic Algorithms - History Pioneered by John Holland in the 1970s Became popular in the late 1980s Based on ideas

More information

TDDC17. Intuitions behind heuristic search. Best-First Search. Recall Uniform-Cost Search. f(n) =... + h(n) g(n) = cost of path from root node to n

TDDC17. Intuitions behind heuristic search. Best-First Search. Recall Uniform-Cost Search. f(n) =... + h(n) g(n) = cost of path from root node to n Intuitions behind heuristic search The separation property of GRAPH-SEARCH TDDC17 Seminar III Search II Informed or Heuristic Search Beyond Classical Search Find a heuristic measure h(n) which estimates

More information

Outline. Motivation. Introduction of GAs. Genetic Algorithm 9/7/2017. Motivation Genetic algorithms An illustrative example Hypothesis space search

Outline. Motivation. Introduction of GAs. Genetic Algorithm 9/7/2017. Motivation Genetic algorithms An illustrative example Hypothesis space search Outline Genetic Algorithm Motivation Genetic algorithms An illustrative example Hypothesis space search Motivation Evolution is known to be a successful, robust method for adaptation within biological

More information

Sparse Matrices Reordering using Evolutionary Algorithms: A Seeded Approach

Sparse Matrices Reordering using Evolutionary Algorithms: A Seeded Approach 1 Sparse Matrices Reordering using Evolutionary Algorithms: A Seeded Approach David Greiner, Gustavo Montero, Gabriel Winter Institute of Intelligent Systems and Numerical Applications in Engineering (IUSIANI)

More information

Computational Financial Modeling

Computational Financial Modeling Computational Financial Modeling Enhancing Technical Analysis With Genetic Algorithm SAIKIRAN DEEPAK SHARMA PRANJAL JAIN 23 RD NOV. 2012 How Genetic Algorithm can be used to improve the performance of

More information

ACO and other (meta)heuristics for CO

ACO and other (meta)heuristics for CO ACO and other (meta)heuristics for CO 32 33 Outline Notes on combinatorial optimization and algorithmic complexity Construction and modification metaheuristics: two complementary ways of searching a solution

More information

CS:4420 Artificial Intelligence

CS:4420 Artificial Intelligence CS:4420 Artificial Intelligence Spring 2018 Beyond Classical Search Cesare Tinelli The University of Iowa Copyright 2004 18, Cesare Tinelli and Stuart Russell a a These notes were originally developed

More information

The Parallel Software Design Process. Parallel Software Design

The Parallel Software Design Process. Parallel Software Design Parallel Software Design The Parallel Software Design Process Deborah Stacey, Chair Dept. of Comp. & Info Sci., University of Guelph dastacey@uoguelph.ca Why Parallel? Why NOT Parallel? Why Talk about

More information

Hill Climbing. Assume a heuristic value for each assignment of values to all variables. Maintain an assignment of a value to each variable.

Hill Climbing. Assume a heuristic value for each assignment of values to all variables. Maintain an assignment of a value to each variable. Hill Climbing Many search spaces are too big for systematic search. A useful method in practice for some consistency and optimization problems is hill climbing: Assume a heuristic value for each assignment

More information

Traveling Salesman Problem. Java Genetic Algorithm Solution

Traveling Salesman Problem. Java Genetic Algorithm Solution Traveling Salesman Problem Java Genetic Algorithm Solution author: Dušan Saiko 23.08.2005 Index Introduction...2 Genetic algorithms...2 Different approaches...5 Application description...10 Summary...15

More information

PROBLEM SOLVING AND SEARCH IN ARTIFICIAL INTELLIGENCE

PROBLEM SOLVING AND SEARCH IN ARTIFICIAL INTELLIGENCE Artificial Intelligence, Computational Logic PROBLEM SOLVING AND SEARCH IN ARTIFICIAL INTELLIGENCE Lecture 10 Tree Decompositions Sarah Gaggl Dresden, 30th June 2015 Agenda 1 Introduction 2 Uninformed

More information

A Modified Genetic Algorithm for Process Scheduling in Distributed System

A Modified Genetic Algorithm for Process Scheduling in Distributed System A Modified Genetic Algorithm for Process Scheduling in Distributed System Vinay Harsora B.V.M. Engineering College Charatar Vidya Mandal Vallabh Vidyanagar, India Dr.Apurva Shah G.H.Patel College of Engineering

More information

Informed Search. Dr. Richard J. Povinelli. Copyright Richard J. Povinelli Page 1

Informed Search. Dr. Richard J. Povinelli. Copyright Richard J. Povinelli Page 1 Informed Search Dr. Richard J. Povinelli Copyright Richard J. Povinelli Page 1 rev 1.1, 9/25/2001 Objectives You should be able to explain and contrast uniformed and informed searches. be able to compare,

More information

Single Candidate Methods

Single Candidate Methods Single Candidate Methods In Heuristic Optimization Based on: [3] S. Luke, "Essentials of Metaheuristics," [Online]. Available: http://cs.gmu.edu/~sean/book/metaheuristics/essentials.pdf. [Accessed 11 May

More information

Algorithms & Complexity

Algorithms & Complexity Algorithms & Complexity Nicolas Stroppa - nstroppa@computing.dcu.ie CA313@Dublin City University. 2006-2007. November 21, 2006 Classification of Algorithms O(1): Run time is independent of the size of

More information

Informed Search and Exploration

Informed Search and Exploration Informed Search and Exploration Chapter 4 (4.1-4.3) CS 2710 1 Introduction Ch.3 searches good building blocks for learning about search But vastly inefficient eg: Can we do better? Breadth Depth Uniform

More information

mywbut.com Informed Search Strategies-II

mywbut.com Informed Search Strategies-II Informed Search Strategies-II 1 3.3 Iterative-Deepening A* 3.3.1 IDA* Algorithm Iterative deepening A* or IDA* is similar to iterative-deepening depth-first, but with the following modifications: The depth

More information

Informed Search and Exploration

Informed Search and Exploration Informed Search and Exploration Berlin Chen 2005 Reference: 1. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach, Chapter 4 2. S. Russell s teaching materials AI - Berlin Chen 1 Introduction

More information

A Two-Stage Stochastic Programming Approach for Location-Allocation Models in Uncertain Environments

A Two-Stage Stochastic Programming Approach for Location-Allocation Models in Uncertain Environments A Two-Stage Stochastic Programming Approach for Location-Allocation in Uncertain Environments Markus Kaiser, Kathrin Klamroth Optimization & Approximation Department of Mathematics University of Wuppertal

More information

Optimizing the Sailing Route for Fixed Groundfish Survey Stations

Optimizing the Sailing Route for Fixed Groundfish Survey Stations International Council for the Exploration of the Sea CM 1996/D:17 Optimizing the Sailing Route for Fixed Groundfish Survey Stations Magnus Thor Jonsson Thomas Philip Runarsson Björn Ævar Steinarsson Presented

More information

Local Search (Ch )

Local Search (Ch ) Local Search (Ch. 4-4.1) Local search Before we tried to find a path from the start state to a goal state using a fringe set Now we will look at algorithms that do not care about a fringe, but just neighbors

More information

Search Algorithms for Regression Test Suite Minimisation

Search Algorithms for Regression Test Suite Minimisation School of Physical Sciences and Engineering King s College London MSc in Advanced Software Engineering Search Algorithms for Regression Test Suite Minimisation By Benjamin Cook Supervised by Prof. Mark

More information

Local Search. CS 486/686: Introduction to Artificial Intelligence Winter 2016

Local Search. CS 486/686: Introduction to Artificial Intelligence Winter 2016 Local Search CS 486/686: Introduction to Artificial Intelligence Winter 2016 1 Overview Uninformed Search Very general: assumes no knowledge about the problem BFS, DFS, IDS Informed Search Heuristics A*

More information

Algorithm Design (4) Metaheuristics

Algorithm Design (4) Metaheuristics Algorithm Design (4) Metaheuristics Takashi Chikayama School of Engineering The University of Tokyo Formalization of Constraint Optimization Minimize (or maximize) the objective function f(x 0,, x n )

More information

BI-OBJECTIVE EVOLUTIONARY ALGORITHM FOR FLEXIBLE JOB-SHOP SCHEDULING PROBLEM. Minimizing Make Span and the Total Workload of Machines

BI-OBJECTIVE EVOLUTIONARY ALGORITHM FOR FLEXIBLE JOB-SHOP SCHEDULING PROBLEM. Minimizing Make Span and the Total Workload of Machines International Journal of Mathematics and Computer Applications Research (IJMCAR) ISSN 2249-6955 Vol. 2 Issue 4 Dec - 2012 25-32 TJPRC Pvt. Ltd., BI-OBJECTIVE EVOLUTIONARY ALGORITHM FOR FLEXIBLE JOB-SHOP

More information

Lecture 9. Heuristic search, continued. CS-424 Gregory Dudek

Lecture 9. Heuristic search, continued. CS-424 Gregory Dudek Lecture 9 Heuristic search, continued A* revisited Reminder: with A* we want to find the best-cost (C ) path to the goal first. To do this, all we have to do is make sure our cost estimates are less than

More information

Automatic Generation of Test Case based on GATS Algorithm *

Automatic Generation of Test Case based on GATS Algorithm * Automatic Generation of Test Case based on GATS Algorithm * Xiajiong Shen and Qian Wang Institute of Data and Knowledge Engineering Henan University Kaifeng, Henan Province 475001, China shenxj@henu.edu.cn

More information

Local Search. CS 486/686: Introduction to Artificial Intelligence

Local Search. CS 486/686: Introduction to Artificial Intelligence Local Search CS 486/686: Introduction to Artificial Intelligence 1 Overview Uninformed Search Very general: assumes no knowledge about the problem BFS, DFS, IDS Informed Search Heuristics A* search and

More information

Informed search algorithms. Chapter 4

Informed search algorithms. Chapter 4 Informed search algorithms Chapter 4 Outline Best-first search Greedy best-first search A * search Heuristics Memory Bounded A* Search Best-first search Idea: use an evaluation function f(n) for each node

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Lesson 4 Local Search Local improvement, no paths Look around at states in the local neighborhood and choose the one with the best value Pros: Quick (usually linear) Sometimes enough

More information

DIT411/TIN175, Artificial Intelligence. Peter Ljunglöf. 23 January, 2018

DIT411/TIN175, Artificial Intelligence. Peter Ljunglöf. 23 January, 2018 DIT411/TIN175, Artificial Intelligence Chapters 3 4: More search algorithms CHAPTERS 3 4: MORE SEARCH ALGORITHMS DIT411/TIN175, Artificial Intelligence Peter Ljunglöf 23 January, 2018 1 TABLE OF CONTENTS

More information

Introduction to Combinatorial Algorithms

Introduction to Combinatorial Algorithms Fall 2009 Intro Introduction to the course What are : Combinatorial Structures? Combinatorial Algorithms? Combinatorial Problems? Combinatorial Structures Combinatorial Structures Combinatorial structures

More information

Solving Traveling Salesman Problem Using Parallel Genetic. Algorithm and Simulated Annealing

Solving Traveling Salesman Problem Using Parallel Genetic. Algorithm and Simulated Annealing Solving Traveling Salesman Problem Using Parallel Genetic Algorithm and Simulated Annealing Fan Yang May 18, 2010 Abstract The traveling salesman problem (TSP) is to find a tour of a given number of cities

More information

Introduction to Computer Science and Programming for Astronomers

Introduction to Computer Science and Programming for Astronomers Introduction to Computer Science and Programming for Astronomers Lecture 9. István Szapudi Institute for Astronomy University of Hawaii March 21, 2018 Outline Reminder 1 Reminder 2 3 Reminder We have demonstrated

More information

Lecture 4. Convexity Robust cost functions Optimizing non-convex functions. 3B1B Optimization Michaelmas 2017 A. Zisserman

Lecture 4. Convexity Robust cost functions Optimizing non-convex functions. 3B1B Optimization Michaelmas 2017 A. Zisserman Lecture 4 3B1B Optimization Michaelmas 2017 A. Zisserman Convexity Robust cost functions Optimizing non-convex functions grid search branch and bound simulated annealing evolutionary optimization The Optimization

More information

Research Incubator: Combinatorial Optimization. Dr. Lixin Tao December 9, 2003

Research Incubator: Combinatorial Optimization. Dr. Lixin Tao December 9, 2003 Research Incubator: Combinatorial Optimization Dr. Lixin Tao December 9, 23 Content General Nature of Research on Combinatorial Optimization Problem Identification and Abstraction Problem Properties and

More information

Dr. Mustafa Jarrar. Chapter 4 Informed Searching. Sina Institute, University of Birzeit

Dr. Mustafa Jarrar. Chapter 4 Informed Searching. Sina Institute, University of Birzeit Lecture Notes, Advanced Artificial Intelligence (SCOM7341) Sina Institute, University of Birzeit 2 nd Semester, 2012 Advanced Artificial Intelligence (SCOM7341) Chapter 4 Informed Searching Dr. Mustafa

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms CSE 101, Winter 2018 Design and Analysis of Algorithms Lecture 17: Coping With Intractability Class URL: http://vlsicad.ucsd.edu/courses/cse101-w18/ Branch-and-Bound (B&B) Variant of backtrack with costs

More information

Welfare Navigation Using Genetic Algorithm

Welfare Navigation Using Genetic Algorithm Welfare Navigation Using Genetic Algorithm David Erukhimovich and Yoel Zeldes Hebrew University of Jerusalem AI course final project Abstract Using standard navigation algorithms and applications (such

More information

Heuristic Optimisation

Heuristic Optimisation Heuristic Optimisation Revision Lecture Sándor Zoltán Németh http://web.mat.bham.ac.uk/s.z.nemeth s.nemeth@bham.ac.uk University of Birmingham S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University

More information

Artificial Intelligence. 2. Informed Search

Artificial Intelligence. 2. Informed Search Artificial Intelligence Artificial Intelligence 2. Informed Search Lars Schmidt-Thieme Information Systems and Machine Learning Lab (ISMLL) Institute of Economics and Information Systems & Institute of

More information

Experimental Comparison of Different Techniques to Generate Adaptive Sequences

Experimental Comparison of Different Techniques to Generate Adaptive Sequences Experimental Comparison of Different Techniques to Generate Adaptive Sequences Carlos Molinero 1, Manuel Núñez 1 and Robert M. Hierons 2 1 Departamento de Sistemas Informáticos y Computación, Universidad

More information

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Artificial Intelligence,

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Artificial Intelligence, Course on Artificial Intelligence, winter term 2012/2013 0/25 Artificial Intelligence Artificial Intelligence 2. Informed Search Lars Schmidt-Thieme Information Systems and Machine Learning Lab (ISMLL)

More information

Dr. Mustafa Jarrar. Chapter 4 Informed Searching. Artificial Intelligence. Sina Institute, University of Birzeit

Dr. Mustafa Jarrar. Chapter 4 Informed Searching. Artificial Intelligence. Sina Institute, University of Birzeit Lecture Notes on Informed Searching University of Birzeit, Palestine 1 st Semester, 2014 Artificial Intelligence Chapter 4 Informed Searching Dr. Mustafa Jarrar Sina Institute, University of Birzeit mjarrar@birzeit.edu

More information

Image Processing algorithm for matching horizons across faults in seismic data

Image Processing algorithm for matching horizons across faults in seismic data Image Processing algorithm for matching horizons across faults in seismic data Melanie Aurnhammer and Klaus Tönnies Computer Vision Group, Otto-von-Guericke University, Postfach 410, 39016 Magdeburg, Germany

More information

Evolutionary Computation Algorithms for Cryptanalysis: A Study

Evolutionary Computation Algorithms for Cryptanalysis: A Study Evolutionary Computation Algorithms for Cryptanalysis: A Study Poonam Garg Information Technology and Management Dept. Institute of Management Technology Ghaziabad, India pgarg@imt.edu Abstract The cryptanalysis

More information

Evolutionary Algorithm for Embedded System Topology Optimization. Supervisor: Prof. Dr. Martin Radetzki Author: Haowei Wang

Evolutionary Algorithm for Embedded System Topology Optimization. Supervisor: Prof. Dr. Martin Radetzki Author: Haowei Wang Evolutionary Algorithm for Embedded System Topology Optimization Supervisor: Prof. Dr. Martin Radetzki Author: Haowei Wang Agenda Introduction to the problem Principle of evolutionary algorithm Model specification

More information

DERIVATIVE-FREE OPTIMIZATION

DERIVATIVE-FREE OPTIMIZATION DERIVATIVE-FREE OPTIMIZATION Main bibliography J.-S. Jang, C.-T. Sun and E. Mizutani. Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice Hall, New Jersey,

More information

Comparison between Neighbourhood and Genetic Algorithms on two Analytic Objective Functions and on a 2.5D Synthetic Seismic Inverse Problems

Comparison between Neighbourhood and Genetic Algorithms on two Analytic Objective Functions and on a 2.5D Synthetic Seismic Inverse Problems Comparison between Neighbourhood and Genetic Algorithms on two Analytic Objective Functions and on a 2.5D Synthetic Seismic Inverse Problems A. Sajeva*, M. Aleardi*, A. Mazzotti* and E. Stucchi** * Università

More information

Comparison of Heuristics for the Colorful Traveling Salesman Problem

Comparison of Heuristics for the Colorful Traveling Salesman Problem Comparison of Heuristics for the Colorful Traveling Salesman Problem John Silberholz R.H. Smith School of Business University of Maryland Joint Work With: Andrea Raiconi, Raffaele Cerulli, Monica Gentili,

More information

Chapter 14 Global Search Algorithms

Chapter 14 Global Search Algorithms Chapter 14 Global Search Algorithms An Introduction to Optimization Spring, 2015 Wei-Ta Chu 1 Introduction We discuss various search methods that attempts to search throughout the entire feasible set.

More information

Solving ISP Problem by Using Genetic Algorithm

Solving ISP Problem by Using Genetic Algorithm International Journal of Basic & Applied Sciences IJBAS-IJNS Vol:09 No:10 55 Solving ISP Problem by Using Genetic Algorithm Fozia Hanif Khan 1, Nasiruddin Khan 2, Syed Inayatulla 3, And Shaikh Tajuddin

More information

Artificial Intelligence p.1/49. n-queens. Artificial Intelligence p.2/49. Initial state: the empty board or a board with n random

Artificial Intelligence p.1/49. n-queens. Artificial Intelligence p.2/49. Initial state: the empty board or a board with n random Example: n-queens Put n queens on an n n board with no two queens on the same row, column, or diagonal A search problem! State space: the board with 0 to n queens Initial state: the empty board or a board

More information

A New Selection Operator - CSM in Genetic Algorithms for Solving the TSP

A New Selection Operator - CSM in Genetic Algorithms for Solving the TSP A New Selection Operator - CSM in Genetic Algorithms for Solving the TSP Wael Raef Alkhayri Fahed Al duwairi High School Aljabereyah, Kuwait Suhail Sami Owais Applied Science Private University Amman,

More information

Parallel Computing in Combinatorial Optimization

Parallel Computing in Combinatorial Optimization Parallel Computing in Combinatorial Optimization Bernard Gendron Université de Montréal gendron@iro.umontreal.ca Course Outline Objective: provide an overview of the current research on the design of parallel

More information

A COMPARATIVE STUDY OF FIVE PARALLEL GENETIC ALGORITHMS USING THE TRAVELING SALESMAN PROBLEM

A COMPARATIVE STUDY OF FIVE PARALLEL GENETIC ALGORITHMS USING THE TRAVELING SALESMAN PROBLEM A COMPARATIVE STUDY OF FIVE PARALLEL GENETIC ALGORITHMS USING THE TRAVELING SALESMAN PROBLEM Lee Wang, Anthony A. Maciejewski, Howard Jay Siegel, and Vwani P. Roychowdhury * Microsoft Corporation Parallel

More information

Gradient Descent. 1) S! initial state 2) Repeat: Similar to: - hill climbing with h - gradient descent over continuous space

Gradient Descent. 1) S! initial state 2) Repeat: Similar to: - hill climbing with h - gradient descent over continuous space Local Search 1 Local Search Light-memory search method No search tree; only the current state is represented! Only applicable to problems where the path is irrelevant (e.g., 8-queen), unless the path is

More information

The study of comparisons of three crossover operators in genetic algorithm for solving single machine scheduling problem. Quan OuYang, Hongyun XU a*

The study of comparisons of three crossover operators in genetic algorithm for solving single machine scheduling problem. Quan OuYang, Hongyun XU a* International Conference on Manufacturing Science and Engineering (ICMSE 2015) The study of comparisons of three crossover operators in genetic algorithm for solving single machine scheduling problem Quan

More information

Wissensverarbeitung. - Search - Alexander Felfernig und Gerald Steinbauer Institut für Softwaretechnologie Inffeldgasse 16b/2 A-8010 Graz Austria

Wissensverarbeitung. - Search - Alexander Felfernig und Gerald Steinbauer Institut für Softwaretechnologie Inffeldgasse 16b/2 A-8010 Graz Austria - Search - Alexander Felfernig und Gerald Steinbauer Institut für Softwaretechnologie Inffeldgasse 16b/2 A-8010 Graz Austria 1 References Skriptum (TU Wien, Institut für Informationssysteme, Thomas Eiter

More information

Solving A Nonlinear Side Constrained Transportation Problem. by Using Spanning Tree-based Genetic Algorithm. with Fuzzy Logic Controller

Solving A Nonlinear Side Constrained Transportation Problem. by Using Spanning Tree-based Genetic Algorithm. with Fuzzy Logic Controller Solving A Nonlinear Side Constrained Transportation Problem by Using Spanning Tree-based Genetic Algorithm with Fuzzy Logic Controller Yasuhiro Tsujimura *, Mitsuo Gen ** and Admi Syarif **,*** * Department

More information

Informed search algorithms. Chapter 4

Informed search algorithms. Chapter 4 Informed search algorithms Chapter 4 Material Chapter 4 Section 1 - Exclude memory-bounded heuristic search 3 Outline Best-first search Greedy best-first search A * search Heuristics Local search algorithms

More information

Using Genetic Algorithms to optimize ACS-TSP

Using Genetic Algorithms to optimize ACS-TSP Using Genetic Algorithms to optimize ACS-TSP Marcin L. Pilat and Tony White School of Computer Science, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada {mpilat,arpwhite}@scs.carleton.ca

More information

Introduction to Genetic Algorithms

Introduction to Genetic Algorithms Advanced Topics in Image Analysis and Machine Learning Introduction to Genetic Algorithms Week 3 Faculty of Information Science and Engineering Ritsumeikan University Today s class outline Genetic Algorithms

More information

Simulative Algorithm Analysis in Online Optimization with Lookahead

Simulative Algorithm Analysis in Online Optimization with Lookahead Simulation in Produktion und Logistik Entscheidungsunterstützung von der Planung bis zur Steuerung Wilhelm Dangelmaier, Christoph Laroque & Alexander Klaas (Hrsg.) Paderborn, HNI-Verlagsschriftenreihe

More information

Task Graph Scheduling on Multiprocessor System using Genetic Algorithm

Task Graph Scheduling on Multiprocessor System using Genetic Algorithm Task Graph Scheduling on Multiprocessor System using Genetic Algorithm Amit Bansal M.Tech student DCSE, G.N.D.U. Amritsar, India Ravreet Kaur Asst. Professor DCSE, G.N.D.U. Amritsar, India Abstract Task

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence CS482, CS682, MW 1 2:15, SEM 201, MS 227 Prerequisites: 302, 365 Instructor: Sushil Louis, sushil@cse.unr.edu, http://www.cse.unr.edu/~sushil Informed Search Best First Search A*

More information

Vorlesung Grundlagen der Künstlichen Intelligenz

Vorlesung Grundlagen der Künstlichen Intelligenz Vorlesung Grundlagen der Künstlichen Intelligenz Reinhard Lafrenz / Prof. A. Knoll Robotics and Embedded Systems Department of Informatics I6 Technische Universität München www6.in.tum.de lafrenz@in.tum.de

More information