14.5 Directional Derivatives and the Gradient Vector

Size: px
Start display at page:

Download "14.5 Directional Derivatives and the Gradient Vector"

Transcription

1 14.5 Directional Derivatives and the Gradient Vector 1. Directional Derivatives. Recall z = f (x, y) and the partial derivatives f x and f y are defined as f (x 0 + h, y 0 ) f (x 0, y 0 ) f x (x 0, y 0 ) = lim h 0 h f (x 0, y 0 + h) f (x 0, y 0 ) f y (x 0, y 0 ) = lim h 0 h and represent the rates of change of in the x- and y-directions, that is, in the directions of the unit vectors i and j. Suppose that we now wish to ind the rate of change of z at (x 0, y 0 ) in the direction of an arbitrary unit vector u =< a, b >. To do this we consider the surface S with the equation z = f (x, y) (the graph of f) and we let z 0 = f (x 0, y 0 ). Then the point P(x 0, y 0, z 0 ) lies on S. The vertical plane that passes through P in the direction of u intersects S in a curve C. The slope of the tangent line T to C at the point P is the rate of change of z in the direction of u. The directional derivative if f at (x 0, y 0 ) in the direction of a unit vector u =< a,b > is D u f (x 0, y 0 ) = lim h 0 f (x 0 + ha, y 0 + hb) f (x 0, y 0 ) h (1) if the limit exists. 2. Theorem. If f is differentiable function of x and y, then f has a directional derivative in the direction of any unit vector u =< a,b > and D u f (x, y) = f x (x, y)a + f y (x, y)b (2) 1

2 3. If u makes an angle θ with the positive x-axis, then we can write u =< cosθ,sinθ > and D u f (x, y) = f x (x, y)cosθ + f y (x, y)sinθ (3) Exercise 1. Find D u f (x, y) if f (x, y) = x 3 3x y + 4y 2 and u is the unit vector given by an angle θ = π 6. What is D u f (1,2) 4. Gradient Vector. Notice that D u f (x, y) = f x (x, y)a + f y (x, y)b (4) =< f x (x, y), f y (x, y) > < a,b > (5) =< f x (x, y), f y (x, y) > u (6) If f is a function of two variables x and y, then the gradient of f is the vector f defined by Also, Exercise 2. Find f when f (x, y) = sin x + e x y f (x, y) =< f x (x, y), f y (x, y) >= f x i + f y j (7) D u f (x, y) = f (x, y) u (8) Exercise 3. Find the directional derivative of the function f (x, y) = x 2 y 3 4y at the point (2,-1) in the direction of the vector v = 2i + 5j 5. Function of 3 Variables. The directional derivative if f at (x 0, y 0, z 0 ) in the direction of a unit vector u =< a,b,c > is D u f (x 0, y 0, z 0 ) = lim h 0 f (x 0 + ha, y 0 + hb, z 0 + hc) f (x 0, y 0, z 0 ) h (9) if the limit exists. D u f (x, y, z) = f x (x, y, z)a + f y (x, y, z) + f z (x, y, z)c = f (x, y, z) u where f (x, y, z) =< f x, f y, f z > Exercise 4. If f (x, y, z) = x sin(y z) (a) Find the gradient of f (b) Find the directional derivative of f at (1,3,0) at the direction of v =< 1,2, 1 > 2

3 6. Maximizing Directional Derivatives. Suppose is a differentiable function of two or three variables. The maximum value of the directional derivative D u f (x) is f (x) and it occurs when u has the same direction as the gradient vector f (x). Exercise 5. (a) If f (x, y) = xe y, fin the rate of change of f at the point P(2,0) in the direction from P to Q(0.5,2). (b) In what direction does f have the maximum rate of change? What is the maximum rate of change? 7. Tangent Planes to Level Surfaces. The Tangent Planes to the level surface F (x, y, z) = k at P(x 0, y 0, z 0 ) is the plane passes through P and with normal vector F (x 0, y 0, z 0 ). The equation is F x (x 0, y 0, z 0 )(x x 0 ) + F y (x 0, y 0, z 0 )(y y 0 ) + F z (x 0, y 0, z 0 )(z z 0 ) = 0 (10) The normal line to S at P is the line passing through P and perpendicular to the tangent plane. The direction of the normal line is therefore given by the gradient vector F (x 0, y 0, z 0 ) and so its symmetric equations are x x 0 F x (x 0, y 0, z 0 ) = y y 0 F y (x 0, y 0, z 0 ) = z z 0 F z (x 0, y 0, z 0 ) Exercise 6. Find the equations of the tangent plane and normal line at the point (-2,1,-3) to the ellipsoid x y 2 + z2 9 = 3 3

4 14.6 Problem Set 1. Find the directional derivative of f at the given point in the direction indicated by the angle θ. (a) f (x, y) = x 3 y 4 + x 4 y 3, (1,1), θ = π 6 (b) f (x, y) = ye x, (0,4), θ = 2π 3 2. For the following questions, find the gradient of f, the gradient at the point P, and find the rate of change of f at P in the direction of u (a) f (x, y) = sin(2x + 3y), P(-6,4), u =< 3 2, 1 2 > (b) f (x, y, z) = x 2 y z x y z 3, P(2,-1,1), u =< 0, 4 5, 3 5 > 3. Find the directional derivative of the function at the point P, and find the rate of change of f at P in the direction of u (a) f (p, q) = p 4 p 2 q 3, P(2,1), u =< 1,3 > (b) f (x, y, z) = xe y + ye z + ze x, P(0,0,0), u =< 5,1, 2 > (c) f (x, y, z) = ln(3x + 6y + 9z), P(1,1,1), u =< 4,12,6 > 4. Find the directional derivative of f (x, y) = x y at P(2,8) in the direction of Q(5,4). 5. Find the directional derivative of f (x, y, z) = x y + y z + zx at P(1,-1,3) in the direction of Q(2,4,5). 6. Find the maximum rate of change of f at the given point and the direction in which it occurs. (a) f (x, y) = 4y x, (4,1) (b) f (x, y) = sin(x, y), (1,0) (c) f (x, y, z) = x+y z, (1,1,-1) 7. Find the directions in which the directional derivative of f (x, y) = ye x y at the point (0,2) has the value Find all points at which the direction of fastest change of the function f (x, y) = x 2 + y 2 2x 4y is i + j 9. Find the equations of the tangent plane and the normal line to the given surface at the given point (a) 2(x 2) 2 + (y 1) 2 + (z 3) 2 = 10, (3,3,5) (b) y = x 2 z 2, (4,7,3) (c) x y z 2 = 6, (3,2,1) 4

5 14.7 Max and Min 1. (Local Max/Min. ) A function of two variables has a local maximum at (a,b) if f (x, y) f (a,b) when (x,y) is near (a,b). [This means that f (x, y) f (a,b) for all points (x,y) in some disk with center (a,b).] The number f(a,b) is called a local maximum value. If f (x, y) f (a,b) when (x,y) is near (a,b), then f has a local minimum at (a,b) and f(a,b) is a local minimum value 2. If the inequalities hold for all points in the domain of f, then f has an absolute maximum (or absolute minimum) at (a,b). 3. Theorem. If f has a local maximum or minimum at (a,b) and the first-order partial derivatives of f exist there, then f x (a,b) = 0 and f y (a,b) = 0 4. If the graph of f has a tangent plane at a local maximum or minimum, then the tangent plane must be horizontal. 5. Stationary Point. A point (a,b) is called a critical point (or stationary point) of f if f x (a,b) = 0 and f y (a,b) = 0, or if one of these partial derivatives does not exist 6. If f has local max/min at (a,b), then (a,b) is a critical point of f. However, not all critical points give rise to max/min. At a critical point, a function could have local max/min or neither. Exercise 7. Let f (x, y) = x 2 + y 2 2x 6y Find local max/min. Exercise 8. Find the extreme values of f (x, y) = y 2 x Second Derivative Test. Suppose the second partial derivatives of f are continuous on a disk with center (a,b), and suppose that f x (a,b) = 0 and f y (a,b) = 0 [that is, (a,b) is a critical point of f]. Let D = D(a,b) = f xx (a,b)f y y (a,b) [f x y (a,b)] 2 (11) 5

6 (a) If D>0 and f x x(a,b) > 0, then f(a,b) is a local min. (b) If D>0 and f x x(a,b) < 0, then f(a,b) is a local max. (c) If D<0, then f(a,b) is not a local max or min. In this case, (a,b) is a saddle point of f and the graph of f crosses its tangent plane at (a,b). (d) If D=0, inconclusive. That is, f(a,b) may be local max, or local min, or (a,b) may be a saddle point of f. Exercise 9. Find the local max and min and saddle points of f (x, y) = x 4 + y 4 4x y + 1 Exercise 10. Find and classify the critical points of Also find the highest point on the graph of f. f (x, y) = 10x 2 y = 5x 2 4y 2 x 4 2y 4 Exercise 11. Find the shortest distance from the point (1,0,-2) to the plane x + 2y + z = 4. Exercise 12. A rectangular box without a lid is to be made from 12 m 2 of cardboard. Find the maximum volume of such a box. 8. Extreme Value Theorem for Functions of Two Variables. If f is continuous on a closed, bounded set D in R 2, then f attains an absolute maximum value f (x 1, y 1 ) and an absolute minimum value f (x 2, y 2 ) at some points (x 1, y 1 ) and (x 2, y 2 ) in D. 9. To find the absolute maximum and minimum values of a continuous function f on a closed, bounded set D: 1. Find the values of f at the critical points of f in D 2. Find the extreme values of f on the boundary of D. 3. The largest of the values from steps 1 and 2 is the absolute maximum value; the smallest of these values is the absolute minimum value. Exercise 13. Find the absolute maximum and minimum values of the function f (x, y) = x 2 2x y + 2y on the rectangle D = {(x, y) 0 x 3,0 y 2} 6

7 14.7 Problem Set 1. Find the local max/min values and saddle points of the function. (a) f (x, y) = x 2 + x y + y 2 + y (b) f (x, y) = x y 2x 2y x 2 y 2 (c) f (x, y) = (x y)(1 x y) (d) f (x, y) = x y + 1 x + 1 y (e) f (x, y) = e x cos y 2. Show f (x, y) = x 2 + 4y 2 4x y + 2 has an infinite number of critical points and that D=0 at each one. Then show f has a local and absolute minimum at each critical point. 3. Find absolute max/min in the region D. (a) f (x, y) = x 2 + y 2 2x, D is the closed triangular region with vertices (2,0), (0,2) and (0,-2) (b) f (x, y) = x + y x y, D is the closed triangular region with vertices (0,0), (0,2) and (4,0) (c) f (x, y) = x 2 + y 2 + x 2 y + 4, D = {(x, y) x 1, y 1} (d) f (x, y) = 4x + 6y x 2 y 2, D = {(x, y) 0 x 4,0 y 5} 4. Find the shortest distance from the point (2,0,-3) to the plane x + y + z = 1 5. Find the point on the plane x 2y + 3z = 6 that is closest to the point (0,1,1). 6. Find three positive numbers whose sum is 100 and whose product is a maximum 7. Find three positive numbers whose sum is 12 and the sum of whose squares is as small as possible. 8. Find the dimensions of the rectangular box with largest volume if the total surface area is given as 64 cm 2. 7

8 LAGRANGE MULTIPLIER Lagrange Multiplier 1. Find the extreme values of f (x, y, z) subject to the constraint g (x, y, z) = k. Step 1: Find all x, y, z and λ such that f (x, y, z) = λ g (x, y, z) (12) and g (x, y, z) = k (13) Step 2: Evaluate f at all points (x,y,z) from step 1. The largest of these values is the max of f. The smallest value is the min. Alternative of Step 1: Let F (x, y, z) = f (x, y, z) λ(g (x, y, z) k), find solution of F x = 0 F y = 0 F z = 0 F λ = 0 Exercise 14. Find the extreme value of f (x, y) = x 2 y ln x subject to 8x + 3y = 0. Exercise 15. Find the extreme value of f (x, y) = x y subject to 3x 2 + y 2 = 6. Exercise 16. A rectangular box without a lid is to be made from 12 m 2 of cardboard. Find the maximum volume of such a box. Exercise 17. Find the extreme values of the function f (x, y) = x 2 +2y 2 on the circle x 2 + y 2 = 1. Exercise 18. Find the points on the sphere x 2 + y 2 + z 2 = 4 that are closest to and farthest from the point (3,1,-1) 2. Two constraints. Step 1: Find all x, y, z and λ such that and f (x, y, z) = λ g (x, y, z) (14) f (x, y, z) = µ h(x, y, z) (15) g (x, y, z) = k (16) h(x, y, z) = c (17) 8

9 LAGRANGE MULTIPLIER Step 2: Evaluate f at all points (x,y,z) from step 1. The largest of these values is the max of f. The smallest value is the min. Alternative of Step 1: Let F (x, y, z) = f (x, y, z) λ(g (x, y, z) k) µ(h(x, y, z) c), find solution of F x = 0 F y = 0 F z = 0 F λ = 0 F µ = 0 Exercise 19. Find the maximum value of the function f (x, y, z) = x + 2y + 3z on the curve of intersection of the plane x y + z = 1 and the cylinder x 2 + y 2 = 1 9

10 PROBLEM SET Problem Set 1. Find the max/min values of the function subject to the given constant (a) f (x, y) = x 2 + y 2, x y = 1 (b) f (x, y) = 3x + y, x 2 + y 2 = 1 (c) f (x, y) = y 2 x 2, 1 4 x2 + y 2 = 1 (d) f (x, y, z) = 2x + 2y + z, x 2 + y 2 + z 2 = 1 (e) f (x, y, z) = x 2 + y 2 + z 2, x + y + z = 12 (f) f (x, y, z) = x y z, x 2 + 2y 2 + 3z 2 = 1 2. Find the extreme values of f subject to both constraints (a) f (x, y, z) = x + 2y, x + y + 1 = 1, y 2 + z 2 = 4 (b) f (x, y, z) = 3x y 3z, x + y z = 0, x 2 + 2z 2 = 1 (c) f (x, y, z) = y z + x y, x y = 1, y 2 + z 2 = 1 3. Find extreme value of f on the region described by the inequality (a) f (x, y) = x 2 + y 2 + 4x 4y, x 2 + y 2 9 (b) f (x, y) = 2x 2 + 3y 2 4x 5, x 2 + y

Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives

Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives Recall that if z = f(x, y), then the partial derivatives f x and f y are defined as and represent the rates of change of z in the x- and y-directions, that is, in the directions of the unit vectors i and

More information

Kevin James. MTHSC 206 Section 15.6 Directional Derivatives and the Gra

Kevin James. MTHSC 206 Section 15.6 Directional Derivatives and the Gra MTHSC 206 Section 15.6 Directional Derivatives and the Gradient Vector Definition We define the directional derivative of the function f (x, y) at the point (x 0, y 0 ) in the direction of the unit vector

More information

3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers

3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers 3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers Prof. Tesler Math 20C Fall 2018 Prof. Tesler 3.3 3.4 Optimization Math 20C / Fall 2018 1 / 56 Optimizing y = f (x) In Math 20A, we

More information

14.6 Directional Derivatives and the Gradient Vector

14.6 Directional Derivatives and the Gradient Vector 14 Partial Derivatives 14.6 and the Gradient Vector Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. and the Gradient Vector In this section we introduce

More information

Math 253, Section 102, Fall 2006 Practice Final Solutions

Math 253, Section 102, Fall 2006 Practice Final Solutions Math 253, Section 102, Fall 2006 Practice Final Solutions 1 2 1. Determine whether the two lines L 1 and L 2 described below intersect. If yes, find the point of intersection. If not, say whether they

More information

Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers

Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers In this section we present Lagrange s method for maximizing or minimizing a general function f(x, y, z) subject to a constraint (or side condition) of the form g(x, y, z) = k. Figure 1 shows this curve

More information

Practice problems from old exams for math 233 William H. Meeks III December 21, 2009

Practice problems from old exams for math 233 William H. Meeks III December 21, 2009 Practice problems from old exams for math 233 William H. Meeks III December 21, 2009 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information

6. Find the equation of the plane that passes through the point (-1,2,1) and contains the line x = y = z.

6. Find the equation of the plane that passes through the point (-1,2,1) and contains the line x = y = z. Week 1 Worksheet Sections from Thomas 13 th edition: 12.4, 12.5, 12.6, 13.1 1. A plane is a set of points that satisfies an equation of the form c 1 x + c 2 y + c 3 z = c 4. (a) Find any three distinct

More information

302 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES. 4. Function of several variables, their domain. 6. Limit of a function of several variables

302 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES. 4. Function of several variables, their domain. 6. Limit of a function of several variables 302 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES 3.8 Chapter Review 3.8.1 Concepts to Know You should have an understanding of, and be able to explain the concepts listed below. 1. Boundary and interior points

More information

MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS

MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT203 covers essentially the same material as MAT201, but is more in depth and theoretical. Exam problems are often more sophisticated in scope and difficulty

More information

Multivariate Calculus Review Problems for Examination Two

Multivariate Calculus Review Problems for Examination Two Multivariate Calculus Review Problems for Examination Two Note: Exam Two is on Thursday, February 28, class time. The coverage is multivariate differential calculus and double integration: sections 13.3,

More information

Constrained Optimization and Lagrange Multipliers

Constrained Optimization and Lagrange Multipliers Constrained Optimization and Lagrange Multipliers MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Constrained Optimization In the previous section we found the local or absolute

More information

Chapter 5 Partial Differentiation

Chapter 5 Partial Differentiation Chapter 5 Partial Differentiation For functions of one variable, y = f (x), the rate of change of the dependent variable can dy be found unambiguously by differentiation: f x. In this chapter we explore

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Calculus III-Final review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the corresponding position vector. 1) Define the points P = (-,

More information

we wish to minimize this function; to make life easier, we may minimize

we wish to minimize this function; to make life easier, we may minimize Optimization and Lagrange Multipliers We studied single variable optimization problems in Calculus 1; given a function f(x), we found the extremes of f relative to some constraint. Our ability to find

More information

Practice problems. 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b.

Practice problems. 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b. Practice problems 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b. 1, 1 = c 1 3, 2 + c 2 2, 1. Solve c 1, c 2. 2. Suppose a is a vector in the plane. If the component of the a in

More information

Functions of Several Variables

Functions of Several Variables Functions of Several Variables Directional Derivatives and the Gradient Vector Philippe B Laval KSU April 7, 2012 Philippe B Laval (KSU) Functions of Several Variables April 7, 2012 1 / 19 Introduction

More information

A small review, Second Midterm, Calculus 3, Prof. Montero 3450: , Fall 2008

A small review, Second Midterm, Calculus 3, Prof. Montero 3450: , Fall 2008 A small review, Second Midterm, Calculus, Prof. Montero 45:-4, Fall 8 Maxima and minima Let us recall first, that for a function f(x, y), the gradient is the vector ( f)(x, y) = ( ) f f (x, y); (x, y).

More information

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is 1. Let f(x, y) = 5 + 3x 2 + 3y 2 + 2y 3 + x 3. (a) Final all critical points of f. (b) Use the second derivatives test to classify the critical points you found in (a) as a local maximum, local minimum,

More information

LECTURE 18 - OPTIMIZATION

LECTURE 18 - OPTIMIZATION LECTURE 18 - OPTIMIZATION CHRIS JOHNSON Abstract. In this lecture we ll describe extend the optimization techniques you learned in your first semester calculus class to optimize functions of multiple variables.

More information

Directional Derivatives and the Gradient Vector Part 2

Directional Derivatives and the Gradient Vector Part 2 Directional Derivatives and the Gradient Vector Part 2 Lecture 25 February 28, 2007 Recall Fact Recall Fact If f is a dierentiable function of x and y, then f has a directional derivative in the direction

More information

What you will learn today

What you will learn today What you will learn today Tangent Planes and Linear Approximation and the Gradient Vector Vector Functions 1/21 Recall in one-variable calculus, as we zoom in toward a point on a curve, the graph becomes

More information

. Tutorial Class V 3-10/10/2012 First Order Partial Derivatives;...

. Tutorial Class V 3-10/10/2012 First Order Partial Derivatives;... Tutorial Class V 3-10/10/2012 1 First Order Partial Derivatives; Tutorial Class V 3-10/10/2012 1 First Order Partial Derivatives; 2 Application of Gradient; Tutorial Class V 3-10/10/2012 1 First Order

More information

x 6 + λ 2 x 6 = for the curve y = 1 2 x3 gives f(1, 1 2 ) = λ actually has another solution besides λ = 1 2 = However, the equation λ

x 6 + λ 2 x 6 = for the curve y = 1 2 x3 gives f(1, 1 2 ) = λ actually has another solution besides λ = 1 2 = However, the equation λ Math 0 Prelim I Solutions Spring 010 1. Let f(x, y) = x3 y for (x, y) (0, 0). x 6 + y (4 pts) (a) Show that the cubic curves y = x 3 are level curves of the function f. Solution. Substituting y = x 3 in

More information

Answer sheet: Second Midterm for Math 2339

Answer sheet: Second Midterm for Math 2339 Answer sheet: Second Midterm for Math 2339 October 26, 2010 Problem 1. True or false: (check one of the box, and briefly explain why) (1) If a twice differentiable f(x,y) satisfies f x (a,b) = f y (a,b)

More information

Math 213 Exam 2. Each question is followed by a space to write your answer. Please write your answer neatly in the space provided.

Math 213 Exam 2. Each question is followed by a space to write your answer. Please write your answer neatly in the space provided. Math 213 Exam 2 Name: Section: Do not remove this answer page you will return the whole exam. You will be allowed two hours to complete this test. No books or notes may be used other than a onepage cheat

More information

(c) 0 (d) (a) 27 (b) (e) x 2 3x2

(c) 0 (d) (a) 27 (b) (e) x 2 3x2 1. Sarah the architect is designing a modern building. The base of the building is the region in the xy-plane bounded by x =, y =, and y = 3 x. The building itself has a height bounded between z = and

More information

d f(g(t), h(t)) = x dt + f ( y dt = 0. Notice that we can rewrite the relationship on the left hand side of the equality using the dot product: ( f

d f(g(t), h(t)) = x dt + f ( y dt = 0. Notice that we can rewrite the relationship on the left hand side of the equality using the dot product: ( f Gradients and the Directional Derivative In 14.3, we discussed the partial derivatives f f and, which tell us the rate of change of the x y height of the surface defined by f in the x direction and the

More information

Directional Derivatives and the Gradient Vector Part 2

Directional Derivatives and the Gradient Vector Part 2 Directional Derivatives and the Gradient Vector Part 2 Marius Ionescu October 26, 2012 Marius Ionescu () Directional Derivatives and the Gradient Vector Part October 2 26, 2012 1 / 12 Recall Fact Marius

More information

MATH 2023 Multivariable Calculus

MATH 2023 Multivariable Calculus MATH 2023 Multivariable Calculus Problem Sets Note: Problems with asterisks represent supplementary informations. You may want to read their solutions if you like, but you don t need to work on them. Set

More information

Hw 4 Due Feb 22. D(fg) x y z (

Hw 4 Due Feb 22. D(fg) x y z ( Hw 4 Due Feb 22 2.2 Exercise 7,8,10,12,15,18,28,35,36,46 2.3 Exercise 3,11,39,40,47(b) 2.4 Exercise 6,7 Use both the direct method and product rule to calculate where f(x, y, z) = 3x, g(x, y, z) = ( 1

More information

1 Vector Functions and Space Curves

1 Vector Functions and Space Curves ontents 1 Vector Functions and pace urves 2 1.1 Limits, Derivatives, and Integrals of Vector Functions...................... 2 1.2 Arc Length and urvature..................................... 2 1.3 Motion

More information

ID: Find all the local maxima, local minima, and saddle points of the function.

ID: Find all the local maxima, local minima, and saddle points of the function. 1. Find all the local maxima, local minima, and saddle points of the function. f(x,y) = x + xy + y + 5x 5y + 4 A. A local maximum occurs at. The local maximum value(s) is/are. B. There are no local maxima.

More information

Multivariate Calculus: Review Problems for Examination Two

Multivariate Calculus: Review Problems for Examination Two Multivariate Calculus: Review Problems for Examination Two Note: Exam Two is on Tuesday, August 16. The coverage is multivariate differential calculus and double integration. You should review the double

More information

Introduction to PDEs: Notation, Terminology and Key Concepts

Introduction to PDEs: Notation, Terminology and Key Concepts Chapter 1 Introduction to PDEs: Notation, Terminology and Key Concepts 1.1 Review 1.1.1 Goal The purpose of this section is to briefly review notation as well as basic concepts from calculus. We will also

More information

Final Exam - Review. Cumulative Final Review covers sections and Chapter 12

Final Exam - Review. Cumulative Final Review covers sections and Chapter 12 Final Exam - eview Cumulative Final eview covers sections 11.4-11.8 and Chapter 12 The following is a list of important concepts from each section that will be tested on the Final Exam, but were not covered

More information

Math 210, Exam 2, Spring 2010 Problem 1 Solution

Math 210, Exam 2, Spring 2010 Problem 1 Solution Math, Exam, Spring Problem Solution. Find and classify the critical points of the function f(x,y) x 3 +3xy y 3. Solution: By definition, an interior point (a,b) in the domain of f is a critical point of

More information

Name: Class: Date: 1. Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint.

Name: Class: Date: 1. Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint. . Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint. f (x, y) = x y, x + y = 8. Set up the triple integral of an arbitrary continuous function

More information

Math 233. Lagrange Multipliers Basics

Math 233. Lagrange Multipliers Basics Math 33. Lagrange Multipliers Basics Optimization problems of the form to optimize a function f(x, y, z) over a constraint g(x, y, z) = k can often be conveniently solved using the method of Lagrange multipliers:

More information

Daily WeBWorK, #1. This means the two planes normal vectors must be multiples of each other.

Daily WeBWorK, #1. This means the two planes normal vectors must be multiples of each other. Daily WeBWorK, #1 Consider the ellipsoid x 2 + 3y 2 + z 2 = 11. Find all the points where the tangent plane to this ellipsoid is parallel to the plane 2x + 3y + 2z = 0. In order for the plane tangent to

More information

13.1. Functions of Several Variables. Introduction to Functions of Several Variables. Functions of Several Variables. Objectives. Example 1 Solution

13.1. Functions of Several Variables. Introduction to Functions of Several Variables. Functions of Several Variables. Objectives. Example 1 Solution 13 Functions of Several Variables 13.1 Introduction to Functions of Several Variables Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. Objectives Understand

More information

Math 113 Calculus III Final Exam Practice Problems Spring 2003

Math 113 Calculus III Final Exam Practice Problems Spring 2003 Math 113 Calculus III Final Exam Practice Problems Spring 23 1. Let g(x, y, z) = 2x 2 + y 2 + 4z 2. (a) Describe the shapes of the level surfaces of g. (b) In three different graphs, sketch the three cross

More information

2 Second Derivatives. As we have seen, a function f (x, y) of two variables has four different partial derivatives: f xx. f yx. f x y.

2 Second Derivatives. As we have seen, a function f (x, y) of two variables has four different partial derivatives: f xx. f yx. f x y. 2 Second Derivatives As we have seen, a function f (x, y) of two variables has four different partial derivatives: (x, y), (x, y), f yx (x, y), (x, y) It is convenient to gather all four of these into

More information

Lagrange multipliers October 2013

Lagrange multipliers October 2013 Lagrange multipliers 14.8 14 October 2013 Example: Optimization with constraint. Example: Find the extreme values of f (x, y) = x + 2y on the ellipse 3x 2 + 4y 2 = 3. 3/2 1 1 3/2 Example: Optimization

More information

Math 233. Lagrange Multipliers Basics

Math 233. Lagrange Multipliers Basics Math 233. Lagrange Multipliers Basics Optimization problems of the form to optimize a function f(x, y, z) over a constraint g(x, y, z) = k can often be conveniently solved using the method of Lagrange

More information

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections REVIEW I MATH 254 Calculus IV Exam I (Friday, April 29 will cover sections 14.1-8. 1. Functions of multivariables The definition of multivariable functions is similar to that of functions of one variable.

More information

Equation of tangent plane: for explicitly defined surfaces

Equation of tangent plane: for explicitly defined surfaces Equation of tangent plane: for explicitly defined surfaces Suppose that the surface z = f(x,y) has a non-vertical tangent plane at a point (a, b, f(a,b)). The plane y = b intersects the surface at a curve

More information

UNIVERSIDAD CARLOS III DE MADRID MATHEMATICS II EXERCISES (SOLUTIONS ) CHAPTER 3: Partial derivatives and differentiation

UNIVERSIDAD CARLOS III DE MADRID MATHEMATICS II EXERCISES (SOLUTIONS ) CHAPTER 3: Partial derivatives and differentiation UNIVERSIDAD CARLOS III DE MADRID MATHEMATICS II EXERCISES SOLUTIONS ) 3-1. Find, for the following functions: a) fx, y) x cos x sin y. b) fx, y) e xy. c) fx, y) x + y ) lnx + y ). CHAPTER 3: Partial derivatives

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Homework - Solutions 3 2 Homework 2 - Solutions 3 3 Homework 3 - Solutions 9 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus

More information

Chapter 15: Functions of Several Variables

Chapter 15: Functions of Several Variables Chapter 15: Functions of Several Variables Section 15.1 Elementary Examples a. Notation: Two Variables b. Example c. Notation: Three Variables d. Functions of Several Variables e. Examples from the Sciences

More information

Functions of Two variables.

Functions of Two variables. Functions of Two variables. Ferdinánd Filip filip.ferdinand@bgk.uni-obuda.hu siva.banki.hu/jegyzetek 27 February 217 Ferdinánd Filip 27 February 217 Functions of Two variables. 1 / 36 Table of contents

More information

Lagrange multipliers 14.8

Lagrange multipliers 14.8 Lagrange multipliers 14.8 14 October 2013 Example: Optimization with constraint. Example: Find the extreme values of f (x, y) = x + 2y on the ellipse 3x 2 + 4y 2 = 3. 3/2 Maximum? 1 1 Minimum? 3/2 Idea:

More information

MATH 209, Lab 5. Richard M. Slevinsky

MATH 209, Lab 5. Richard M. Slevinsky MATH 209, Lab 5 Richard M. Slevinsky Problems 1. Say the temperature T at any point (x, y, z) in space is given by T = 4 x y z 2. Find the hottest point on the sphere F = x 2 + y 2 + z 2 100 = 0; We equate

More information

Quiz 6 Practice Problems

Quiz 6 Practice Problems Quiz 6 Practice Problems Practice problems are similar, both in difficulty and in scope, to the type of problems you will see on the quiz. Problems marked with a are for your entertainment and are not

More information

Math 209 (Fall 2007) Calculus III. Solution #5. 1. Find the minimum and maximum values of the following functions f under the given constraints:

Math 209 (Fall 2007) Calculus III. Solution #5. 1. Find the minimum and maximum values of the following functions f under the given constraints: Math 9 (Fall 7) Calculus III Solution #5. Find the minimum and maximum values of the following functions f under the given constraints: (a) f(x, y) 4x + 6y, x + y ; (b) f(x, y) x y, x + y 6. Solution:

More information

NAME: Section # SSN: X X X X

NAME: Section # SSN: X X X X Math 155 FINAL EXAM A May 5, 2003 NAME: Section # SSN: X X X X Question Grade 1 5 (out of 25) 6 10 (out of 25) 11 (out of 20) 12 (out of 20) 13 (out of 10) 14 (out of 10) 15 (out of 16) 16 (out of 24)

More information

Math 326 Assignment 3. Due Wednesday, October 17, 2012.

Math 326 Assignment 3. Due Wednesday, October 17, 2012. Math 36 Assignment 3. Due Wednesday, October 7, 0. Recall that if G(x, y, z) is a function with continuous partial derivatives, and if the partial derivatives of G are not all zero at some point (x 0,y

More information

12.7 Tangent Planes and Normal Lines

12.7 Tangent Planes and Normal Lines .7 Tangent Planes and Normal Lines Tangent Plane and Normal Line to a Surface Suppose we have a surface S generated by z f(x,y). We can represent it as f(x,y)-z 0 or F(x,y,z) 0 if we wish. Hence we can

More information

HOMEWORK ASSIGNMENT #4, MATH 253

HOMEWORK ASSIGNMENT #4, MATH 253 HOMEWORK ASSIGNMENT #4, MATH 253. Prove that the following differential equations are satisfied by the given functions: (a) 2 u 2 + 2 u y 2 + 2 u z 2 =0,whereu =(x2 + y 2 + z 2 ) /2. (b) x w + y w y +

More information

Differentiability and Tangent Planes October 2013

Differentiability and Tangent Planes October 2013 Differentiability and Tangent Planes 14.4 04 October 2013 Differentiability in one variable. Recall for a function of one variable, f is differentiable at a f (a + h) f (a) lim exists and = f (a) h 0 h

More information

Math 241, Final Exam. 12/11/12.

Math 241, Final Exam. 12/11/12. Math, Final Exam. //. No notes, calculator, or text. There are points total. Partial credit may be given. ircle or otherwise clearly identify your final answer. Name:. (5 points): Equation of a line. Find

More information

Mat 241 Homework Set 7 Due Professor David Schultz

Mat 241 Homework Set 7 Due Professor David Schultz Mat 41 Homework Set 7 Due Professor David Schultz Directions: Show all algebraic steps neatly and concisely using proper mathematical symbolism When graphs and technology are to be implemented, do so appropriately

More information

MA FINAL EXAM Green April 30, 2018 EXAM POLICIES

MA FINAL EXAM Green April 30, 2018 EXAM POLICIES MA 6100 FINAL EXAM Green April 0, 018 NAME STUDENT ID # YOUR TA S NAME RECITATION TIME Be sure the paper you are looking at right now is GREEN! Write the following in the TEST/QUIZ NUMBER boxes (and blacken

More information

P1 REVISION EXERCISE: 1

P1 REVISION EXERCISE: 1 P1 REVISION EXERCISE: 1 1. Solve the simultaneous equations: x + y = x +y = 11. For what values of p does the equation px +4x +(p 3) = 0 have equal roots? 3. Solve the equation 3 x 1 =7. Give your answer

More information

Gradient and Directional Derivatives

Gradient and Directional Derivatives Gradient and Directional Derivatives MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Background Given z = f (x, y) we understand that f : gives the rate of change of z in

More information

MA 243 Calculus III Fall Assignment 1. Reading assignments are found in James Stewart s Calculus (Early Transcendentals)

MA 243 Calculus III Fall Assignment 1. Reading assignments are found in James Stewart s Calculus (Early Transcendentals) MA 43 Calculus III Fall 8 Dr. E. Jacobs Assignments Reading assignments are found in James Stewart s Calculus (Early Transcendentals) Assignment. Spheres and Other Surfaces Read. -. and.6 Section./Problems

More information

= w. w u. u ; u + w. x x. z z. y y. v + w. . Remark. The formula stated above is very important in the theory of. surface integral.

= w. w u. u ; u + w. x x. z z. y y. v + w. . Remark. The formula stated above is very important in the theory of. surface integral. 1 Chain rules 2 Directional derivative 3 Gradient Vector Field 4 Most Rapid Increase 5 Implicit Function Theorem, Implicit Differentiation 6 Lagrange Multiplier 7 Second Derivative Test Theorem Suppose

More information

MAC2313 Test 3 A E g(x, y, z) dy dx dz

MAC2313 Test 3 A E g(x, y, z) dy dx dz MAC2313 Test 3 A (5 pts) 1. If the function g(x, y, z) is integrated over the cylindrical solid bounded by x 2 + y 2 = 3, z = 1, and z = 7, the correct integral in Cartesian coordinates is given by: A.

More information

Winter 2012 Math 255 Section 006. Problem Set 7

Winter 2012 Math 255 Section 006. Problem Set 7 Problem Set 7 1 a) Carry out the partials with respect to t and x, substitute and check b) Use separation of varibles, i.e. write as dx/x 2 = dt, integrate both sides and observe that the solution also

More information

Bounded, Closed, and Compact Sets

Bounded, Closed, and Compact Sets Bounded, Closed, and Compact Sets Definition Let D be a subset of R n. Then D is said to be bounded if there is a number M > 0 such that x < M for all x D. D is closed if it contains all the boundary points.

More information

3. The three points (2, 4, 1), (1, 2, 2) and (5, 2, 2) determine a plane. Which of the following points is in that plane?

3. The three points (2, 4, 1), (1, 2, 2) and (5, 2, 2) determine a plane. Which of the following points is in that plane? Math 4 Practice Problems for Midterm. A unit vector that is perpendicular to both V =, 3, and W = 4,, is (a) V W (b) V W (c) 5 6 V W (d) 3 6 V W (e) 7 6 V W. In three dimensions, the graph of the equation

More information

1. Suppose that the equation F (x, y, z) = 0 implicitly defines each of the three variables x, y, and z as functions of the other two:

1. Suppose that the equation F (x, y, z) = 0 implicitly defines each of the three variables x, y, and z as functions of the other two: Final Solutions. Suppose that the equation F (x, y, z) implicitly defines each of the three variables x, y, and z as functions of the other two: z f(x, y), y g(x, z), x h(y, z). If F is differentiable

More information

Solution 2. ((3)(1) (2)(1), (4 3), (4)(2) (3)(3)) = (1, 1, 1) D u (f) = (6x + 2yz, 2y + 2xz, 2xy) (0,1,1) = = 4 14

Solution 2. ((3)(1) (2)(1), (4 3), (4)(2) (3)(3)) = (1, 1, 1) D u (f) = (6x + 2yz, 2y + 2xz, 2xy) (0,1,1) = = 4 14 Vector and Multivariable Calculus L Marizza A Bailey Practice Trimester Final Exam Name: Problem 1. To prepare for true/false and multiple choice: Compute the following (a) (4, 3) ( 3, 2) Solution 1. (4)(

More information

= f (a, b) + (hf x + kf y ) (a,b) +

= f (a, b) + (hf x + kf y ) (a,b) + Chapter 14 Multiple Integrals 1 Double Integrals, Iterated Integrals, Cross-sections 2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals

More information

Math 11 Fall Multivariable Calculus. Final Exam

Math 11 Fall Multivariable Calculus. Final Exam Math 11 Fall 2004 Multivariable Calculus for Two-Term Advanced Placement First-Year Students Final Exam Tuesday, December 7, 11:30-2:30 Murdough, Cook Auditorium Your name (please print): Instructions:

More information

1. Show that the rectangle of maximum area that has a given perimeter p is a square.

1. Show that the rectangle of maximum area that has a given perimeter p is a square. Constrained Optimization - Examples - 1 Unit #23 : Goals: Lagrange Multipliers To study constrained optimization; that is, the maximizing or minimizing of a function subject to a constraint (or side condition).

More information

Functions of Several Variables

Functions of Several Variables . Functions of Two Variables Functions of Several Variables Rectangular Coordinate System in -Space The rectangular coordinate system in R is formed by mutually perpendicular axes. It is a right handed

More information

MAT175 Overview and Sample Problems

MAT175 Overview and Sample Problems MAT175 Overview and Sample Problems The course begins with a quick review/overview of one-variable integration including the Fundamental Theorem of Calculus, u-substitutions, integration by parts, and

More information

Answer sheet: Second Midterm for Math 2339

Answer sheet: Second Midterm for Math 2339 Answer sheet: Second Midterm for Math 2339 March 31, 2009 Problem 1. Let (a) f(x,y,z) = ln(z x 2 y 2 ). Evaluate f(1, 1, 2 + e). f(1, 1, 2 + e) = ln(2 + e 1 1) = lne = 1 (b) Find the domain of f. dom(f)

More information

Tangent Planes/Critical Points

Tangent Planes/Critical Points Tangent Planes/Critical Points Christopher Croke University of Pennsylvania Math 115 UPenn, Fall 2011 Problem: Find the tangent line to the curve of intersection of the surfaces xyz = 1 and x 2 + 2y 2

More information

Quiz problem bank. Quiz 1 problems. 1. Find all solutions (x, y) to the following:

Quiz problem bank. Quiz 1 problems. 1. Find all solutions (x, y) to the following: Quiz problem bank Quiz problems. Find all solutions x, y) to the following: xy x + y = x + 5x + 4y = ) x. Let gx) = ln. Find g x). sin x 3. Find the tangent line to fx) = xe x at x =. 4. Let hx) = x 3

More information

If the center of the sphere is the origin the the equation is. x y z 2ux 2vy 2wz d 0 -(2)

If the center of the sphere is the origin the the equation is. x y z 2ux 2vy 2wz d 0 -(2) Sphere Definition: A sphere is the locus of a point which remains at a constant distance from a fixed point. The fixed point is called the centre and the constant distance is the radius of the sphere.

More information

Workbook. MAT 397: Calculus III

Workbook. MAT 397: Calculus III Workbook MAT 397: Calculus III Instructor: Caleb McWhorter Name: Summer 2017 Contents Preface..................................................... 2 1 Spatial Geometry & Vectors 3 1.1 Basic n Euclidean

More information

21-256: Lagrange multipliers

21-256: Lagrange multipliers 21-256: Lagrange multipliers Clive Newstead, Thursday 12th June 2014 Lagrange multipliers give us a means of optimizing multivariate functions subject to a number of constraints on their variables. Problems

More information

2. Give an example of a non-constant function f(x, y) such that the average value of f over is 0.

2. Give an example of a non-constant function f(x, y) such that the average value of f over is 0. Midterm 3 Review Short Answer 2. Give an example of a non-constant function f(x, y) such that the average value of f over is 0. 3. Compute the Riemann sum for the double integral where for the given grid

More information

Exam 2 Preparation Math 2080 (Spring 2011) Exam 2: Thursday, May 12.

Exam 2 Preparation Math 2080 (Spring 2011) Exam 2: Thursday, May 12. Multivariable Calculus Exam 2 Preparation Math 28 (Spring 2) Exam 2: Thursday, May 2. Friday May, is a day off! Instructions: () There are points on the exam and an extra credit problem worth an additional

More information

Math 21a Homework 22 Solutions Spring, 2014

Math 21a Homework 22 Solutions Spring, 2014 Math 1a Homework Solutions Spring, 014 1. Based on Stewart 11.8 #6 ) Consider the function fx, y) = e xy, and the constraint x 3 + y 3 = 16. a) Use Lagrange multipliers to find the coordinates x, y) of

More information

3.6 Directional Derivatives and the Gradient Vector

3.6 Directional Derivatives and the Gradient Vector 288 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES 3.6 Directional Derivatives and te Gradient Vector 3.6.1 Functions of two Variables Directional Derivatives Let us first quickly review, one more time, te

More information

Dr. Allen Back. Aug. 27, 2014

Dr. Allen Back. Aug. 27, 2014 Dr. Allen Back Aug. 27, 2014 Math 2220 Preliminaries (2+ classes) Differentiation (12 classes) Multiple Integrals (9 classes) Vector Integrals (15 classes) Math 2220 Preliminaries (2+ classes) Differentiation

More information

12.8 Maximum/Minimum Problems

12.8 Maximum/Minimum Problems Section 12.8 Maximum/Minimum Problems Page 1 12.8 Maximum/Minimum Problems In Chapter 4 we showed how to use derivatives to find maximum and minimum values of functions of a single variable. When those

More information

Optimizations and Lagrange Multiplier Method

Optimizations and Lagrange Multiplier Method Introduction Applications Goal and Objectives Reflection Questions Once an objective of any real world application is well specified as a function of its control variables, which may subject to a certain

More information

AP Calculus AB Unit 2 Assessment

AP Calculus AB Unit 2 Assessment Class: Date: 203-204 AP Calculus AB Unit 2 Assessment Multiple Choice Identify the choice that best completes the statement or answers the question. A calculator may NOT be used on this part of the exam.

More information

8(x 2) + 21(y 1) + 6(z 3) = 0 8x + 21y + 6z = 55.

8(x 2) + 21(y 1) + 6(z 3) = 0 8x + 21y + 6z = 55. MATH 24 -Review for Final Exam. Let f(x, y, z) x 2 yz + y 3 z x 2 + z, and a (2,, 3). Note: f (2xyz 2x, x 2 z + 3y 2 z, x 2 y + y 3 + ) f(a) (8, 2, 6) (a) Find all stationary points (if any) of f. et f.

More information

5 Day 5: Maxima and minima for n variables.

5 Day 5: Maxima and minima for n variables. UNIVERSITAT POMPEU FABRA INTERNATIONAL BUSINESS ECONOMICS MATHEMATICS III. Pelegrí Viader. 2012-201 Updated May 14, 201 5 Day 5: Maxima and minima for n variables. The same kind of first-order and second-order

More information

Math 213 Calculus III Practice Exam 2 Solutions Fall 2002

Math 213 Calculus III Practice Exam 2 Solutions Fall 2002 Math 13 Calculus III Practice Exam Solutions Fall 00 1. Let g(x, y, z) = e (x+y) + z (x + y). (a) What is the instantaneous rate of change of g at the point (,, 1) in the direction of the origin? We want

More information

Coordinate Transformations in Advanced Calculus

Coordinate Transformations in Advanced Calculus Coordinate Transformations in Advanced Calculus by Sacha Nandlall T.A. for MATH 264, McGill University Email: sacha.nandlall@mail.mcgill.ca Website: http://www.resanova.com/teaching/calculus/ Fall 2006,

More information

Grad operator, triple and line integrals. Notice: this material must not be used as a substitute for attending the lectures

Grad operator, triple and line integrals. Notice: this material must not be used as a substitute for attending the lectures Grad operator, triple and line integrals Notice: this material must not be used as a substitute for attending the lectures 1 .1 The grad operator Let f(x 1, x,..., x n ) be a function of the n variables

More information

MATH 116 REVIEW PROBLEMS for the FINAL EXAM

MATH 116 REVIEW PROBLEMS for the FINAL EXAM MATH 116 REVIEW PROBLEMS for the FINAL EXAM The following questions are taken from old final exams of various calculus courses taught in Bilkent University 1. onsider the line integral (2xy 2 z + y)dx

More information

Section 4: Extreme Values & Lagrange Multipliers.

Section 4: Extreme Values & Lagrange Multipliers. Section 4: Extreme Values & Lagrange Multipliers. Compiled by Chris Tisdell S1: Motivation S2: What are local maxima & minima? S3: What is a critical point? S4: Second derivative test S5: Maxima and Minima

More information

(1) Given the following system of linear equations, which depends on a parameter a R, 3x y + 5z = 2 4x + y + (a 2 14)z = a + 2

(1) Given the following system of linear equations, which depends on a parameter a R, 3x y + 5z = 2 4x + y + (a 2 14)z = a + 2 (1 Given the following system of linear equations, which depends on a parameter a R, x + 2y 3z = 4 3x y + 5z = 2 4x + y + (a 2 14z = a + 2 (a Classify the system of equations depending on the values of

More information