A Tabu Search Heuristic for the Generalized Traveling Salesman Problem

Size: px
Start display at page:

Download "A Tabu Search Heuristic for the Generalized Traveling Salesman Problem"

Transcription

1 A Tabu Search Heuristic for the Generalized Traveling Salesman Problem Jacques Renaud 1,2 Frédéric Semet 3,4 1. Université Laval 2. Centre de Recherche sur les Technologies de l Organisation Réseau 3. Laboratoire d Automatique et de Mécanique Industrielles et Humaines, Université de Valenciennes 4. Centre de Recherche sur les Transports, Université de Montréal Presentation Outline 1. Definition 2. Literature review 3. The proposed tabu search heuristic 4. Computational results 5. Conclusions ASAC 2004, Québec

2 Problem definition The Generalized Traveling Salesman Problem (GTSP) In the GTSP, the traveling salesman must pass through a number of predefined subsets of customers, visiting at least one customer in each subset, while minimizing the subtour traveling cost. Two decision levels: 1) In which order the subsets should be visited, 2) Which customer(s) to visit in each subset. ASAC 2004, Québec

3 Problem definition The Symmetric GTSP Let G =(V, A) be a graph, where V = {v 1,..., v n } is the vertex set, and A = {(v i, v j ): i < j, v i, v j V} is the edge set. A cost or distance matrix C =(c ij ) is defined on A. We also consider the case where the set V is partitioned into m mutually exclusive and exhaustive clusters V 1,..., V m. The objective is to determine the least cost Hamiltonian cycle containing exactly one vertex from each cluster.

4 Problem definition The Symmetric GTSP The GTSP is clearly NP-hard since it reduces to the standard Traveling Salesman Problem (TSP) when m = n, i.e. V h =1 h. Selected readings about the TSP can be found in Laporte and Osman (1995) and in Laporte (1992).

5 Literature Review Srivastava et al (1969) Henry-Labordere (1969) Saksena (1970) Laporte and Nobert (1983) Laporte et al (1987) Noon (1988) Noon and Bean (1991) Sepehri (1991) Noon and Bean (1993) Fischetti et al (1997) Dymanic programming (SGTSP) Dymanic programming (AGTSP) Dynamic programming Branch and bound (SGTSP) Branch and bound (AGTSP) Thesis, transformations, exact and heuristic algorithms Branch and bound (AGTSP) Thesis, SGTSP Transformation of the AGTSP into a Clustered TSP Transformation of the GTSP into an asymmetrical TSP (optimal solution) Branch and cut, benchmark problems up to 442 nodes Renaud and Boctor (1998) Composite heuristic GI 3. In average at 1% above the optimal solution.

6 Literature Review Applications Henry-Labordere (1969) First industrial application of a GTSP for the optimal sequencing of computer files. Noon (1988) - Warehouse order picking - Airport selection and routing for courier planes Saksena (1970) Application in the field of scheduling Laporte et al (1995) - location-routing problems, - material flow system design, - post-box collection, - stochastic vehicle routing and arc routing.

7 A small example ASAC 2004, Québec

8 An observation If the visit order of the cluster is fixed, the optimal selection of nodes to be visited is easily solved by some shortest path sub problems where links are only defined between the nodes of two consecutive clusters. This suggest that it may be interesting to work only with clusters.

9 The Tabu Search Algorithm Components of the tabu search algorithm: - Division of the clusters into subgroups, - Initial Solution procedure, - Neighborhood structure, - Evaluation of candidate moves, -Tabustatus, - Intensification phase, - The global tabu search algorithm. ASAC 2004, Québec

10 The Tabu Search Algorithm Division of the clusters into subgroups Each cluster V h is divided into a number of mutually exclusive and exhaustive subgroups W hk, k=1,, p h where p h is the number of subgroups within cluster V h. Let w hk, be the representative vertex of subgroup W hk. The tabu search algorithm works with the representative vertices.

11 The Tabu Search Algorithm Division of the clusters into subgroups Define the dispersion index of subgroup W hk as : 1 cij if Whk > 1 Γ( W ) W ( W ) hk = hk hk 1 vi, vj Vhk 0 if Whk = 1 Let the proximity measure between two non empty subgroup W hk and W hk of V h be : 2 ( Whk, Whl ) = cij Γ( Whk ) Γ( Whl ) W W hk hl v v i j W W hk hl

12 The Tabu Search Algorithm Division of the clusters into subgroups First, we consider each vertex v 1, v 2, v 3,..., v k V h as an individual subgroup. Then, at each iteration, the two subgroups W hk and W hl, for which (W hk, W hl ) is minimum, are merged together to form a larger subgroup; let W hk be that new subgroup. This process is repeated as long as: Γ( W hk ) γ Γ( V ) h where is a specified used parameter set to 0.75 in this study. ASAC 2004, Québec

13 The Tabu Search Algorithm Division of the clusters into subgroups The representative vertex w hk of subgroup W hk within cluster V h is selected as the nearest vertex to the center of gravity of subgroup W hk. We construct also a circular list in which the subgroup vertices are sorted in increasing distance from the center of gravity (in such a list, the first vertex is considering following the last one).

14 The Tabu Search Algorithm Division of the clusters into subgroups Cluster 1 In this example, the information of a 40 vertices problem can be summarized within 7 representing vertices. Cluster 3 Cluster 2 Vertex Representing vertex Subgroup ASAC 2004, Québec

15 The Tabu Search Algorithm Initial Solution procedure Phase 1 : Nearest node heuristic Starting with a given representative vertex, the next representative vertex to be added is the nearest representative vertex, among those belonging to non-visited clusters, to the last representative vertex. Phase 2 : TSP : GENIUS based improvement procedure This solution is improved by using the GENIUS TSP algorithm (Gendreau, Hertz and Laporte, 1992). GENIUS is applied on the set of vertices which are in the current solution. For each cluster order, the optimal tour is found by solving the related shortest paths. ASAC 2004, Québec

16 Neighborhood structure The Tabu Search Algorithm Let T = {v 1,..., v q } be a tour which can be either feasible or unfeasible. T is unfeasible if some clusters are not visited and/or if some clusters are visited more than once. Let L(T) be the length of T. The neighbors of T are other solutions T obtained either by i) removing a vertex which is currently on the tour, or by ii) adding a representative vertex into the current tour. ASAC 2004, Québec

17 The Tabu Search Algorithm Evaluation of candidate moves DELETION of a vertex v i which is currently on the tour If the cluster of v i is visited at least twice then f(v i )= L(T\{v i })-L(T) -α. If v i is the only vertex visited in its cluster then f(v i )=L(T\{v i })-L(T) +α. α is a penalty parameter which helps to maintain the feasibility of the solution. Initially, α is set to 0.09 L(Tinit) where Tinit is the initial solution. ASAC 2004, Québec

18 The Tabu Search Algorithm Evaluation of candidate moves ADDING a representative vertex v j into the current tour If the cluster of v j is visited at least once then g(v j )=(L(T {v j })-L(T)+α) β j. If the cluster of v j has not yet been visited then g(v j )=(L(T {v j })-L(T) -α) β j. The parameter β j is a diversification parameter which penalizes repetitive insertion of the representative vertex v j into the solution. The best move is : Min Min( f ( vi ), Min( g( v j ) i j ASAC 2004, Québec

19 The Tabu Search Algorithm Tabu status We define as tabu the reinsertion in the solution of all vertices that have been removed from the tour at the end of the previous iteration. The number of iterations for which a vertex is declared tabu is randomly selected in : [ n, 2 n] Such long tabu restrictions enabled the algorithm to explore new solution spaces and helped to avoid cycling.

20 The Tabu Search Algorithm Intensification phase This phase works on a restricted problem composed of the vertices of the subgroups currently visited. At each iteration, 1) moves are evaluated as before and 2) the GENIUS-based improvement procedure is used after each insertion. These steps are repeated for 30 iterations. Finally, during the intensification phase, the tabu restrictions are randomly selected between [2, 4].

21 The Tabu Search Algorithm Detailed description of the algorithm Step 1. Initial solution, initialization and representative vertices determination Set α := 0.09 L(T) and the iteration counter t := 1. Set n α, the adjusting frequency of α, as n α := m and the diversification frequency as D := iterations. Step 2. Best move determination Let T be the new solution. All removed vertices (T \ T ) are declared tabu. Set T :=T. Step 3. Best solution update If L(T) L(T*) and T is a feasible solution, then T* :=T, t*:=t and apply the intensification phase. Step 4. Diversification phase If the best solution has not been improved over the last D iterations, diversify the search by changing the representative vertices. Step 5. Penalty update If the last n α solutions have been feasible, set α := α/µ otherwise set α := αµ where µ is randomly selected in [1.5, 2]. Step 6. Stopping criterion Set t := t+1. If t = t* stop, otherwise go to Step 2.

22 Test problems Results We use the 36 Fischetti, Gonzalez and Toth (1997) benchmark problems for which the optimal solutions are known. The tabu search is compared with the GI 3 construction algorithm (Renaud and Boctor 1998). The tabu search algorithm has been calibrated carefully (results not presented).

23 Results % above the optimum Problems GI 3 Proposed Tabu Search Method Initial Solution Average Best Seconds EIL51 ST70 EIL76 PR76 RAT99 KROA100 KROB100 KROC100 KROD100 KROE100 RD100 EIL101 LIN105 PR107 PR124 BIER127 PR136 PR

24 Results % above the optimum Problems GI 3 Proposed Tabu Search Method Initial Solution Average Best Seconds KROA150 KROB150 PR152 U159 RAT195 D198 KROA200 KROB200 TS225 PR226 GIL262 PR264 PR299 LIN318 RD400 FL417 PR439 PCB Average Nb. of optimum

25 Results Summary of main results GI 3 (Renaud and Boctor) is at 0,99% above the optimum. The average deviation over 3 runs of the tabu search is 0,39%. If we took the best solution over the three runs, the average deviation of 0,20%.

26 Conclusion This tabu search algorithm that takes advantage of the problem configuration to guide the search and reduce the solutions space. The algorithm has been shown to be quite robust and improves over the best algorithm available. It obtains solutions which are, on average, within 0.4% of the optimum.

AN EFFICIENT COMPOSITE HEURISTIC FOR THE SYMMETRIC GENERALIZED TRAVELING SALESMAN PROBLEM

AN EFFICIENT COMPOSITE HEURISTIC FOR THE SYMMETRIC GENERALIZED TRAVELING SALESMAN PROBLEM AN EFFICIENT COMPOSITE HEURISTIC FOR THE SYMMETRIC GENERALIZED TRAVELING SALESMAN PROBLEM Jacques Renaud and Fayez F. Boctor Télé-Université, Université du Québec, Canada, and Université Laval, Canada.

More information

A Random-Key Genetic Algorithm for the Generalized Traveling Salesman Problem

A Random-Key Genetic Algorithm for the Generalized Traveling Salesman Problem A Random-Key Genetic Algorithm for the Generalized Traveling Salesman Problem Lawrence V. Snyder Mark S. Daskin Northwestern University DRAFT January 18, 2001 Abstract The Generalized Traveling Salesman

More information

A Parallel Architecture for the Generalized Traveling Salesman Problem

A Parallel Architecture for the Generalized Traveling Salesman Problem A Parallel Architecture for the Generalized Traveling Salesman Problem Max Scharrenbroich AMSC 663 Project Proposal Advisor: Dr. Bruce L. Golden R. H. Smith School of Business 1 Background and Introduction

More information

A Tabu Search solution algorithm

A Tabu Search solution algorithm Chapter 5 A Tabu Search solution algorithm The TS examines a trajectory sequence of solutions and moves to the best neighbor of the current solution. To avoid cycling, solutions that were recently examined

More information

A SWEEP BASED ALGORITHM FOR THE FLEET SIZE AND MIX VEHICLE ROUTING PROBLEM

A SWEEP BASED ALGORITHM FOR THE FLEET SIZE AND MIX VEHICLE ROUTING PROBLEM A SWEEP BASED ALGORITHM FOR THE FLEET SIZE AND MIX VEHICLE ROUTING PROBLEM Jacques Renaud and Fayez F. Boctor Centre de recherche sur les technologies de l organisation réseau (CENTOR) & Faculté des sciences

More information

A Parallel Architecture for the Generalized Travelling Salesman Problem: Project Proposal

A Parallel Architecture for the Generalized Travelling Salesman Problem: Project Proposal A Parallel Architecture for the Generalized Travelling Salesman Problem: Project Proposal Max Scharrenbroich, maxfs at umd.edu Dr. Bruce Golden, R. H. Smith School of Business, bgolden at rhsmith.umd.edu

More information

Complete Local Search with Memory

Complete Local Search with Memory Complete Local Search with Memory Diptesh Ghosh Gerard Sierksma SOM-theme A Primary Processes within Firms Abstract Neighborhood search heuristics like local search and its variants are some of the most

More information

Vladimir Dimitrijevic, Milan Milosavljevic, Milan Markovic. as: nd a minimum cost cycle which includes exactly one vertex from each

Vladimir Dimitrijevic, Milan Milosavljevic, Milan Markovic. as: nd a minimum cost cycle which includes exactly one vertex from each Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 7 (1996), 31{35. A BRANCH AND BOUND ALGORITHM FOR SOLVING A GENERALIZED TRAVELING SALESMAN PROBLEM Vladimir Dimitrijevic, Milan Milosavljevic, Milan Markovic

More information

Monte Carlo Simplification Model for Traveling Salesman Problem

Monte Carlo Simplification Model for Traveling Salesman Problem Appl. Math. Inf. Sci. 9, No. 2, 721-727 (215) 721 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/1.12785/amis/922 Monte Carlo Simplification Model for Traveling Salesman

More information

Optimal tour along pubs in the UK

Optimal tour along pubs in the UK 1 From Facebook Optimal tour along 24727 pubs in the UK Road distance (by google maps) see also http://www.math.uwaterloo.ca/tsp/pubs/index.html (part of TSP homepage http://www.math.uwaterloo.ca/tsp/

More information

arxiv: v1 [cs.ai] 9 Oct 2013

arxiv: v1 [cs.ai] 9 Oct 2013 The Generalized Traveling Salesman Problem solved with Ant Algorithms arxiv:1310.2350v1 [cs.ai] 9 Oct 2013 Camelia-M. Pintea, Petrică C. Pop, Camelia Chira North University Baia Mare, Babes-Bolyai University,

More information

Vehicle Routing Heuristic Methods

Vehicle Routing Heuristic Methods DM87 SCHEDULING, TIMETABLING AND ROUTING Outline 1. Construction Heuristics for VRPTW Lecture 19 Vehicle Routing Heuristic Methods 2. Local Search 3. Metaheuristics Marco Chiarandini 4. Other Variants

More information

6 ROUTING PROBLEMS VEHICLE ROUTING PROBLEMS. Vehicle Routing Problem, VRP:

6 ROUTING PROBLEMS VEHICLE ROUTING PROBLEMS. Vehicle Routing Problem, VRP: 6 ROUTING PROBLEMS VEHICLE ROUTING PROBLEMS Vehicle Routing Problem, VRP: Customers i=1,...,n with demands of a product must be served using a fleet of vehicles for the deliveries. The vehicles, with given

More information

A Parallel Architecture for the Generalized Travelling Salesman Problem: Mid Year Report

A Parallel Architecture for the Generalized Travelling Salesman Problem: Mid Year Report A Parallel Architecture for the Generalized Travelling Salesman Problem: Mid Year Max Scharrenbroich, maxfs at umd.edu Dr. Bruce Golden, R. H. Smith School of Business, bgolden at rhsmith.umd.edu Abstract:

More information

Regensburger DISKUSSIONSBEITRÄGE zur Wirtschaftswissenschaft

Regensburger DISKUSSIONSBEITRÄGE zur Wirtschaftswissenschaft Regensburger DISKUSSIONSBEITRÄGE zur Wirtschaftswissenschaft A Cluster Based Scatter Search Heuristic for the Vehicle Routing Problem University of Regensburg Discussion Papers in Economics No. 415, November

More information

Adapting the Genetic Algorithm to the Travelling Saleman Problem

Adapting the Genetic Algorithm to the Travelling Saleman Problem Adapting the Genetic Algorithm to the Travelling Saleman Problem Author Pullan, Wayne Published 3 Conference Title The 3 Congress on Evolutionary Computation CEC 3 DOI https://doi.org/.9/cec.3.9978 Copyright

More information

Modified Order Crossover (OX) Operator

Modified Order Crossover (OX) Operator Modified Order Crossover (OX) Operator Ms. Monica Sehrawat 1 N.C. College of Engineering, Israna Panipat, Haryana, INDIA. Mr. Sukhvir Singh 2 N.C. College of Engineering, Israna Panipat, Haryana, INDIA.

More information

DOCUMENT DE TRAVAIL

DOCUMENT DE TRAVAIL Publié par : Published by: Publicación de la: Édition électronique : Electronic publishing: Edición electrónica: Disponible sur Internet : Available on Internet Disponible por Internet : Faculté des sciences

More information

Heuristics for the Stochastic Eulerian Tour Problem

Heuristics for the Stochastic Eulerian Tour Problem Heuristics for the Stochastic Eulerian Tour Problem Srimathy Mohan Michel Gendreau Jean-Marc Rousseau October 2007 CIRRELT-2007-46 Srimathy Mohan 1, Michel Gendreau 2,3,*, Jean-Marc Rousseau 2 1. 2. 3.

More information

The Pickup and Delivery Traveling Salesman Problem with First-In-First-Out Loading

The Pickup and Delivery Traveling Salesman Problem with First-In-First-Out Loading The Pickup and Delivery Traveling Salesman Problem with First-In-First-Out Loading Güneş Erdoğan, Jean-François Cordeau Gilbert Laporte November 23, 2007 Abstract This paper addresses a variation of the

More information

A NEW HEURISTIC ALGORITHM FOR MULTIPLE TRAVELING SALESMAN PROBLEM

A NEW HEURISTIC ALGORITHM FOR MULTIPLE TRAVELING SALESMAN PROBLEM TWMS J. App. Eng. Math. V.7, N.1, 2017, pp. 101-109 A NEW HEURISTIC ALGORITHM FOR MULTIPLE TRAVELING SALESMAN PROBLEM F. NURIYEVA 1, G. KIZILATES 2, Abstract. The Multiple Traveling Salesman Problem (mtsp)

More information

Optimization Techniques for Design Space Exploration

Optimization Techniques for Design Space Exploration 0-0-7 Optimization Techniques for Design Space Exploration Zebo Peng Embedded Systems Laboratory (ESLAB) Linköping University Outline Optimization problems in ERT system design Heuristic techniques Simulated

More information

The bi-objective covering tour problem

The bi-objective covering tour problem Computers & Operations Research ( ) www.elsevier.com/locate/cor The bi-objective covering tour problem Nicolas Jozefowiez a,, Frédéric Semet b, El-Ghazali Talbi a a Laboratoire d Informatique Fondamentale

More information

Methods and Models for Combinatorial Optimization Exact methods for the Traveling Salesman Problem

Methods and Models for Combinatorial Optimization Exact methods for the Traveling Salesman Problem Methods and Models for Combinatorial Optimization Exact methods for the Traveling Salesman Problem L. De Giovanni M. Di Summa The Traveling Salesman Problem (TSP) is an optimization problem on a directed

More information

Clustering Strategy to Euclidean TSP

Clustering Strategy to Euclidean TSP 2010 Second International Conference on Computer Modeling and Simulation Clustering Strategy to Euclidean TSP Hamilton Path Role in Tour Construction Abdulah Fajar, Nur Azman Abu, Nanna Suryana Herman

More information

An ILS Algorithm for the Team Orienteering Problem with Variable Profit

An ILS Algorithm for the Team Orienteering Problem with Variable Profit An ILS Algorithm for the Team Orienteering Problem with Variable Profit Aldy Gunawan School of Information Systems Singapore Management University, Singapore Tel: (+65) 6808-5227, Email: aldygunawan@smu.edu.sg

More information

A Memetic Algorithm for the Generalized Traveling Salesman Problem

A Memetic Algorithm for the Generalized Traveling Salesman Problem A Memetic Algorithm for the Generalized Traveling Salesman Problem Gregory Gutin Daniel Karapetyan Abstract The generalized traveling salesman problem (GTSP) is an extension of the well-known traveling

More information

Algorithms and Experimental Study for the Traveling Salesman Problem of Second Order. Gerold Jäger

Algorithms and Experimental Study for the Traveling Salesman Problem of Second Order. Gerold Jäger Algorithms and Experimental Study for the Traveling Salesman Problem of Second Order Gerold Jäger joint work with Paul Molitor University Halle-Wittenberg, Germany August 22, 2008 Overview 1 Introduction

More information

Outline. Construction Heuristics for CVRP. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING

Outline. Construction Heuristics for CVRP. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING Lecture 27 Vehicle Routing Heuristics Marco Chiarandini 1. for CVRP for VRPTW 2. 3. 4. Constraint Programming for VRP 2 Outline for CVRP TSP based heuristics

More information

Parallel Computing in Combinatorial Optimization

Parallel Computing in Combinatorial Optimization Parallel Computing in Combinatorial Optimization Bernard Gendron Université de Montréal gendron@iro.umontreal.ca Course Outline Objective: provide an overview of the current research on the design of parallel

More information

Combination of Genetic Algorithm with Dynamic Programming for Solving TSP

Combination of Genetic Algorithm with Dynamic Programming for Solving TSP Int. J. Advance Soft Compu. Appl, Vol. 9, No. 2, July 2017 ISSN 2074-8523 Combination of Genetic Algorithm with Dynamic Programming for Solving TSP Hemmak Allaoua Computer science department, University

More information

Construction Heuristics and Local Search Methods for VRP/VRPTW

Construction Heuristics and Local Search Methods for VRP/VRPTW DM204, 2010 SCHEDULING, TIMETABLING AND ROUTING Lecture 31 Construction Heuristics and Local Search Methods for VRP/VRPTW Marco Chiarandini Department of Mathematics & Computer Science University of Southern

More information

A TABU SEARCH ALGORITHM FOR THE GENERALIZED MINIMUM SPANNING TREE PROBLEM

A TABU SEARCH ALGORITHM FOR THE GENERALIZED MINIMUM SPANNING TREE PROBLEM !#"$% $$ %!& '($! *)!!#% $)$ +-,/.103254 687/9:6(;=1.1?A@50

More information

A Polynomial-Time Deterministic Approach to the Traveling Salesperson Problem

A Polynomial-Time Deterministic Approach to the Traveling Salesperson Problem A Polynomial-Time Deterministic Approach to the Traveling Salesperson Problem Ali Jazayeri and Hiroki Sayama Center for Collective Dynamics of Complex Systems Department of Systems Science and Industrial

More information

7KH9HKLFOH5RXWLQJSUREOHP

7KH9HKLFOH5RXWLQJSUREOHP 7K9KO5RXWJSUREOP Given a set of vehicles with a certain capacity located at a depot and a set of customers with different demands at various locations, the vehicle routing problem (VRP) is how to satisfy

More information

Tabu Search Heuristic for a Two- Echelon Location-Routing Problem

Tabu Search Heuristic for a Two- Echelon Location-Routing Problem Tabu Search Heuristic for a Two- Echelon Location-Routing Problem Teodor Gabriel Crainic Antonio Sforza Claudio Sterle January 2011 Bureaux de Montréal : Bureaux de Québec : Université de Montréal Université

More information

Travelling Salesman Problem. Algorithms and Networks 2015/2016 Hans L. Bodlaender Johan M. M. van Rooij

Travelling Salesman Problem. Algorithms and Networks 2015/2016 Hans L. Bodlaender Johan M. M. van Rooij Travelling Salesman Problem Algorithms and Networks 2015/2016 Hans L. Bodlaender Johan M. M. van Rooij 1 Contents TSP and its applications Heuristics and approximation algorithms Construction heuristics,

More information

A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery

A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery Monika Sharma 1, Deepak Sharma 2 1 Research Scholar Department of Computer Science and Engineering, NNSS SGI Samalkha,

More information

a local optimum is encountered in such a way that further improvement steps become possible.

a local optimum is encountered in such a way that further improvement steps become possible. Dynamic Local Search I Key Idea: Modify the evaluation function whenever a local optimum is encountered in such a way that further improvement steps become possible. I Associate penalty weights (penalties)

More information

The generalized minimum spanning tree (GMST) problem occurs in telecommunications network planning,

The generalized minimum spanning tree (GMST) problem occurs in telecommunications network planning, INFORMS Journal on Computing Vol. 17, No. 3, Summer 2005, pp. 290 304 issn 1091-9856 eissn 1526-5528 05 1703 0290 informs doi 10.1287/ijoc.1040.0077 2005 INFORMS Heuristic Search for the Generalized Minimum

More information

Multiple Depot Vehicle Routing Problems on Clustering Algorithms

Multiple Depot Vehicle Routing Problems on Clustering Algorithms Thai Journal of Mathematics : 205 216 Special Issue: Annual Meeting in Mathematics 2017 http://thaijmath.in.cmu.ac.th ISSN 1686-0209 Multiple Depot Vehicle Routing Problems on Clustering Algorithms Kanokon

More information

Improving the Held and Karp Approach with Constraint Programming

Improving the Held and Karp Approach with Constraint Programming Improving the Held and Karp Approach with Constraint Programming Pascal Benchimol 1, Jean-Charles Régin 2, Louis-Martin Rousseau 1, Michel Rueher 2, Willem-Jan van Hoeve 3 1 CIRRELT,École Polytechnique

More information

ACO and other (meta)heuristics for CO

ACO and other (meta)heuristics for CO ACO and other (meta)heuristics for CO 32 33 Outline Notes on combinatorial optimization and algorithmic complexity Construction and modification metaheuristics: two complementary ways of searching a solution

More information

Ph. D. Thesis. Design, Evaluation and Analysis of Combinatorial Optimization Heuristic Algorithms

Ph. D. Thesis. Design, Evaluation and Analysis of Combinatorial Optimization Heuristic Algorithms arxiv:1207.1794v1 [cs.ds] 7 Jul 2012 Ph. D. Thesis Design, Evaluation and Analysis of Combinatorial Optimization Heuristic Algorithms Author Daniil Karapetyan Supervisor Prof. Gregory Gutin Department

More information

GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURE FOR TRAVELING SALESMAN PROBLEM. A Thesis SEUNG HO LEE

GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURE FOR TRAVELING SALESMAN PROBLEM. A Thesis SEUNG HO LEE GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURE FOR TRAVELING SALESMAN PROBLEM A Thesis by SEUNG HO LEE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements

More information

to the Traveling Salesman Problem 1 Susanne Timsj Applied Optimization and Modeling Group (TOM) Department of Mathematics and Physics

to the Traveling Salesman Problem 1 Susanne Timsj Applied Optimization and Modeling Group (TOM) Department of Mathematics and Physics An Application of Lagrangian Relaxation to the Traveling Salesman Problem 1 Susanne Timsj Applied Optimization and Modeling Group (TOM) Department of Mathematics and Physics M lardalen University SE-721

More information

56:272 Integer Programming & Network Flows Final Exam -- December 16, 1997

56:272 Integer Programming & Network Flows Final Exam -- December 16, 1997 56:272 Integer Programming & Network Flows Final Exam -- December 16, 1997 Answer #1 and any five of the remaining six problems! possible score 1. Multiple Choice 25 2. Traveling Salesman Problem 15 3.

More information

Introduction to Approximation Algorithms

Introduction to Approximation Algorithms Introduction to Approximation Algorithms Dr. Gautam K. Das Departmet of Mathematics Indian Institute of Technology Guwahati, India gkd@iitg.ernet.in February 19, 2016 Outline of the lecture Background

More information

A HEURISTIC COLUMN GENERATION METHOD FOR THE HETEROGENEOUS FLEET VRP. Éric D. Taillard

A HEURISTIC COLUMN GENERATION METHOD FOR THE HETEROGENEOUS FLEET VRP. Éric D. Taillard CRT 96 03, may 1996 A HEURISTIC COLUMN GENERATION METHOD FOR THE HETEROGENEOUS FLEET VRP Éric D. Taillard Istituto Dalle Molle di Studi sull Intelligenza Artificiale, Corso Elvezia 36, 6900 Lugano, Switzerland

More information

Effective Tour Searching for Large TSP Instances. Gerold Jäger

Effective Tour Searching for Large TSP Instances. Gerold Jäger Effective Tour Searching for Large TSP Instances Gerold Jäger Martin-Luther-University Halle-Wittenberg (Germany) joint work with Changxing Dong, Paul Molitor, Dirk Richter German Research Foundation Grant

More information

Travelling Salesman Problem: Tabu Search

Travelling Salesman Problem: Tabu Search Travelling Salesman Problem: Tabu Search (Anonymized) April 2017 Abstract The Tabu Search algorithm is a heuristic method to find optimal solutions to the Travelling Salesman Problem (TSP). It is a local

More information

Module 6 NP-Complete Problems and Heuristics

Module 6 NP-Complete Problems and Heuristics Module 6 NP-Complete Problems and Heuristics Dr. Natarajan Meghanathan Professor of Computer Science Jackson State University Jackson, MS 397 E-mail: natarajan.meghanathan@jsums.edu Optimization vs. Decision

More information

Dynamic programming for the orienteering problem with time windows

Dynamic programming for the orienteering problem with time windows Dynamic programming for the orienteering problem with time windows Giovanni Righini, Matteo Salani Dipartimento di Tecnologie dell Informazione Università degli Studi di Milano, Via Bramante 65, 26013

More information

Adaptive Tabu Search for Traveling Salesman Problems

Adaptive Tabu Search for Traveling Salesman Problems Adaptive Tabu Search for Traveling Salesman Problems S. Suwannarongsri and D. Puangdownreong Abstract One of the most intensively studied problems in computational mathematics and combinatorial optimization

More information

An Efficient Heuristic for Reliability Design Optimization Problems

An Efficient Heuristic for Reliability Design Optimization Problems An Efficient Heuristic for Reliability Design Optimization Problems Mohamed Ouzineb Mustapha Nourelfath Michel Gendreau February 2009 Mohamed Ouzineb 1,2, Mustapha Nourelfath 1,3,*, Michel Gendreau 1,2

More information

Evolutionary Algorithms for Vehicle Routing

Evolutionary Algorithms for Vehicle Routing Evolutionary Algorithms for Vehicle Routing Jean-Yves Potvin Département d informatique et de recherche opérationnelle and Centre Interuniversitaire de Recherche sur les Réseaux d Entreprise, la Logistique

More information

56:272 Integer Programming & Network Flows Final Examination -- December 14, 1998

56:272 Integer Programming & Network Flows Final Examination -- December 14, 1998 56:272 Integer Programming & Network Flows Final Examination -- December 14, 1998 Part A: Answer any four of the five problems. (15 points each) 1. Transportation problem 2. Integer LP Model Formulation

More information

Algorithms for the Bin Packing Problem with Conflicts

Algorithms for the Bin Packing Problem with Conflicts Algorithms for the Bin Packing Problem with Conflicts Albert E. Fernandes Muritiba *, Manuel Iori, Enrico Malaguti*, Paolo Toth* *Dipartimento di Elettronica, Informatica e Sistemistica, Università degli

More information

Adaptive Large Neighborhood Search

Adaptive Large Neighborhood Search Adaptive Large Neighborhood Search Heuristic algorithms Giovanni Righini University of Milan Department of Computer Science (Crema) VLSN and LNS By Very Large Scale Neighborhood (VLSN) local search, we

More information

A Hybrid Heuristic Approach for Solving the Generalized Traveling Salesman Problem

A Hybrid Heuristic Approach for Solving the Generalized Traveling Salesman Problem A Hybrid Heuristic Approach for Solving the Generalized Traveling Salesman Problem Petrică C. Pop Dept. of Mathematics and Computer Science North University of Baia Mare Str. Victoriei, 430122, Baia Mare,

More information

LEAST COST ROUTING ALGORITHM WITH THE STATE SPACE RELAXATION IN A CENTRALIZED NETWORK

LEAST COST ROUTING ALGORITHM WITH THE STATE SPACE RELAXATION IN A CENTRALIZED NETWORK VOL., NO., JUNE 08 ISSN 896608 00608 Asian Research Publishing Network (ARPN). All rights reserved. LEAST COST ROUTING ALGORITHM WITH THE STATE SPACE RELAXATION IN A CENTRALIZED NETWORK Y. J. Lee Department

More information

Traveling Salesman Problem (TSP) Input: undirected graph G=(V,E), c: E R + Goal: find a tour (Hamiltonian cycle) of minimum cost

Traveling Salesman Problem (TSP) Input: undirected graph G=(V,E), c: E R + Goal: find a tour (Hamiltonian cycle) of minimum cost Traveling Salesman Problem (TSP) Input: undirected graph G=(V,E), c: E R + Goal: find a tour (Hamiltonian cycle) of minimum cost Traveling Salesman Problem (TSP) Input: undirected graph G=(V,E), c: E R

More information

METAHEURISTICS. Introduction. Introduction. Nature of metaheuristics. Local improvement procedure. Example: objective function

METAHEURISTICS. Introduction. Introduction. Nature of metaheuristics. Local improvement procedure. Example: objective function Introduction METAHEURISTICS Some problems are so complicated that are not possible to solve for an optimal solution. In these problems, it is still important to find a good feasible solution close to the

More information

Heuristic Search Methodologies

Heuristic Search Methodologies Linköping University January 11, 2016 Department of Science and Technology Heuristic Search Methodologies Report on the implementation of a heuristic algorithm Name E-mail Joen Dahlberg joen.dahlberg@liu.se

More information

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg MVE165/MMG630, Integer linear programming algorithms Ann-Brith Strömberg 2009 04 15 Methods for ILP: Overview (Ch. 14.1) Enumeration Implicit enumeration: Branch and bound Relaxations Decomposition methods:

More information

Fundamentals of Integer Programming

Fundamentals of Integer Programming Fundamentals of Integer Programming Di Yuan Department of Information Technology, Uppsala University January 2018 Outline Definition of integer programming Formulating some classical problems with integer

More information

Genetic Algorithms for the Traveling Salesman Problem. Jean-Yves Potvin

Genetic Algorithms for the Traveling Salesman Problem. Jean-Yves Potvin 1 Genetic Algorithms for the Traveling Salesman Problem Jean-Yves Potvin Centre de Recherche sur les Transports Université de Montréal C.P. 6128, Succ. A Montréal (Québec) Canada H3C 3J7 Abstract. This

More information

Notes for Lecture 24

Notes for Lecture 24 U.C. Berkeley CS170: Intro to CS Theory Handout N24 Professor Luca Trevisan December 4, 2001 Notes for Lecture 24 1 Some NP-complete Numerical Problems 1.1 Subset Sum The Subset Sum problem is defined

More information

Exact Algorithms for NP-hard problems

Exact Algorithms for NP-hard problems 24 mai 2012 1 Why do we need exponential algorithms? 2 3 Why the P-border? 1 Practical reasons (Jack Edmonds, 1965) For practical purposes the difference between algebraic and exponential order is more

More information

More NP-complete Problems. CS255 Chris Pollett May 3, 2006.

More NP-complete Problems. CS255 Chris Pollett May 3, 2006. More NP-complete Problems CS255 Chris Pollett May 3, 2006. Outline More NP-Complete Problems Hamiltonian Cycle Recall a hamiltonian cycle is a permutation of the vertices v i_1,, v i_n of a graph G so

More information

Two new variants of Christofides heuristic for the Static TSP and a computational study of a nearest neighbor approach for the Dynamic TSP

Two new variants of Christofides heuristic for the Static TSP and a computational study of a nearest neighbor approach for the Dynamic TSP Two new variants of Christofides heuristic for the Static TSP and a computational study of a nearest neighbor approach for the Dynamic TSP Orlis Christos Kartsiotis George Samaras Nikolaos Margaritis Konstantinos

More information

SavingsAnts for the Vehicle Routing Problem. Karl Doerner Manfred Gronalt Richard F. Hartl Marc Reimann Christine Strauss Michael Stummer

SavingsAnts for the Vehicle Routing Problem. Karl Doerner Manfred Gronalt Richard F. Hartl Marc Reimann Christine Strauss Michael Stummer SavingsAnts for the Vehicle Routing Problem Karl Doerner Manfred Gronalt Richard F. Hartl Marc Reimann Christine Strauss Michael Stummer Report No. 63 December 2001 December 2001 SFB Adaptive Information

More information

Overview. H. R. Alvarez A., Ph. D.

Overview. H. R. Alvarez A., Ph. D. Network Modeling Overview Networks arise in numerous settings: transportation, electrical, and communication networks, for example. Network representations also are widely used for problems in such diverse

More information

A HYBRID GENETIC ALGORITHM A NEW APPROACH TO SOLVE TRAVELING SALESMAN PROBLEM

A HYBRID GENETIC ALGORITHM A NEW APPROACH TO SOLVE TRAVELING SALESMAN PROBLEM A HYBRID GENETIC ALGORITHM A NEW APPROACH TO SOLVE TRAVELING SALESMAN PROBLEM G.ANDAL JAYALAKSHMI Computer Science and Engineering Department, Thiagarajar College of Engineering, Madurai, Tamilnadu, India

More information

A Study of Neighborhood Structures for the Multiple Depot Vehicle Scheduling Problem

A Study of Neighborhood Structures for the Multiple Depot Vehicle Scheduling Problem A Study of Neighborhood Structures for the Multiple Depot Vehicle Scheduling Problem Benoît Laurent 1,2 and Jin-Kao Hao 2 1 Perinfo SA, Strasbourg, France 2 LERIA, Université d Angers, Angers, France blaurent@perinfo.com,

More information

Solving a combinatorial problem using a local optimization in ant based system

Solving a combinatorial problem using a local optimization in ant based system Solving a combinatorial problem using a local optimization in ant based system C-M.Pintea and D.Dumitrescu Babeş-Bolyai University of Cluj-Napoca, Department of Computer-Science Kogalniceanu 1, 400084

More information

Module 6 NP-Complete Problems and Heuristics

Module 6 NP-Complete Problems and Heuristics Module 6 NP-Complete Problems and Heuristics Dr. Natarajan Meghanathan Professor of Computer Science Jackson State University Jackson, MS 97 E-mail: natarajan.meghanathan@jsums.edu Optimization vs. Decision

More information

(Refer Slide Time: 01:00)

(Refer Slide Time: 01:00) Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture minus 26 Heuristics for TSP In this lecture, we continue our discussion

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 3,7 18,5 1.7 M Open access books available International authors and editors Downloads Our authors

More information

Precept 4: Traveling Salesman Problem, Hierarchical Clustering. Qian Zhu 2/23/2011

Precept 4: Traveling Salesman Problem, Hierarchical Clustering. Qian Zhu 2/23/2011 Precept 4: Traveling Salesman Problem, Hierarchical Clustering Qian Zhu 2/23/2011 Agenda Assignment: Traveling salesman problem Hierarchical clustering Example Comparisons with K-means TSP TSP: Given the

More information

Computational Complexity CSC Professor: Tom Altman. Capacitated Problem

Computational Complexity CSC Professor: Tom Altman. Capacitated Problem Computational Complexity CSC 5802 Professor: Tom Altman Capacitated Problem Agenda: Definition Example Solution Techniques Implementation Capacitated VRP (CPRV) CVRP is a Vehicle Routing Problem (VRP)

More information

The Traveling Salesman Problem: State of the Art

The Traveling Salesman Problem: State of the Art The Traveling Salesman Problem: State of the Art Thomas Stützle stuetzle@informatik.tu-darmstadt.de http://www.intellektik.informatik.tu-darmstadt.de/ tom. Darmstadt University of Technology Department

More information

Optimizing and Approximating Algorithms for the Single and Multiple Agent Precedence Constrained Generalized Traveling Salesman Problem

Optimizing and Approximating Algorithms for the Single and Multiple Agent Precedence Constrained Generalized Traveling Salesman Problem THESIS FOR THE DEGREE OF LICENTIATE OF PHILOSOPHY Optimizing and Approximating Algorithms for the Single and Multiple Agent Precedence Constrained Generalized Traveling Salesman Problem Raad Salman Department

More information

Traveling Salesman Problem. Algorithms and Networks 2014/2015 Hans L. Bodlaender Johan M. M. van Rooij

Traveling Salesman Problem. Algorithms and Networks 2014/2015 Hans L. Bodlaender Johan M. M. van Rooij Traveling Salesman Problem Algorithms and Networks 2014/2015 Hans L. Bodlaender Johan M. M. van Rooij 1 Contents TSP and its applications Heuristics and approximation algorithms Construction heuristics,

More information

SCIENCE & TECHNOLOGY

SCIENCE & TECHNOLOGY Pertanika J. Sci. & Technol. 25 (S): 199-210 (2017) SCIENCE & TECHNOLOGY Journal homepage: http://www.pertanika.upm.edu.my/ Water Flow-Like Algorithm Improvement Using K-Opt Local Search Wu Diyi, Zulaiha

More information

A Guided Cooperative Search for the Vehicle Routing Problem with Time Windows

A Guided Cooperative Search for the Vehicle Routing Problem with Time Windows ISSI-0076-020-1 A Guided Cooperative Search for the Vehicle Routing Problem with Time Windows Alexandre Le Bouthillier Teodor G. Crainic Peter Kropf Centre de recherche sur les transports, Université de

More information

Research Article A Water Flow-Like Algorithm for the Travelling Salesman Problem

Research Article A Water Flow-Like Algorithm for the Travelling Salesman Problem Advances in Computer Engineering, Article ID 436312, 14 pages http://dx.doi.org/10.1155/2014/436312 Research Article A Water Flow-Like Algorithm for the Travelling Salesman Problem Ayman Srour, Zulaiha

More information

Solving the Traveling Salesman Problem by an Efficient Hybrid Metaheuristic Algorithm

Solving the Traveling Salesman Problem by an Efficient Hybrid Metaheuristic Algorithm Journal of Advances in Computer Research Quarterly ISSN: 2008-6148 Sari Branch, Islamic Azad University, Sari, I.R.Iran (Vol. 3, No. 3, August 2012), Pages: 75-84 www.jacr.iausari.ac.ir Solving the Traveling

More information

A GRASP with restarts heuristic for the Steiner traveling salesman problem

A GRASP with restarts heuristic for the Steiner traveling salesman problem MIC/MAEB 2017 id 1 A GRASP with restarts heuristic for the Steiner traveling salesman problem Ruben Interian, Celso C. Ribeiro Institute of Computing, Universidade Federal Fluminense, Niterói, RJ 24210-346,

More information

Outline. Optimales Recycling - Tourenplanung in der Altglasentsorgung

Outline. Optimales Recycling - Tourenplanung in der Altglasentsorgung 1 Optimales Recycling - Ruhr-Universität Bochum, 15.02.2013 2 1. Introduction and Motivation 2. Problem Definition 3. Literature Review 4. Mathematical Model 5. Variable Neighborhood Search 6. Numerical

More information

A Development of Hybrid Cross Entropy-Tabu Search Algorithm for Travelling Repairman Problem

A Development of Hybrid Cross Entropy-Tabu Search Algorithm for Travelling Repairman Problem Proceedings of the 2012 International Conference on Industrial Engineering and Operations Management Istanbul, Turkey, July 3 6, 2012 A Development of Hybrid Cross Entropy-Tabu Search Algorithm for Travelling

More information

Travelling salesman problem using reduced algorithmic Branch and bound approach P. Ranjana Hindustan Institute of Technology and Science

Travelling salesman problem using reduced algorithmic Branch and bound approach P. Ranjana Hindustan Institute of Technology and Science Volume 118 No. 20 2018, 419-424 ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Travelling salesman problem using reduced algorithmic Branch and bound approach P. Ranjana Hindustan

More information

Metaheuristic Development Methodology. Fall 2009 Instructor: Dr. Masoud Yaghini

Metaheuristic Development Methodology. Fall 2009 Instructor: Dr. Masoud Yaghini Metaheuristic Development Methodology Fall 2009 Instructor: Dr. Masoud Yaghini Phases and Steps Phases and Steps Phase 1: Understanding Problem Step 1: State the Problem Step 2: Review of Existing Solution

More information

TABU search and Iterated Local Search classical OR methods

TABU search and Iterated Local Search classical OR methods TABU search and Iterated Local Search classical OR methods tks@imm.dtu.dk Informatics and Mathematical Modeling Technical University of Denmark 1 Outline TSP optimization problem Tabu Search (TS) (most

More information

Tabu Search - Examples

Tabu Search - Examples - Examples Petru Eles Department of Computer and Information Science (IDA) Linköpings universitet http://www.ida.liu.se/~petel/ 1 Examples Hardware/Software Partitioning Travelling Salesman 2 TS Examples:

More information

Outline. TABU search and Iterated Local Search classical OR methods. Traveling Salesman Problem (TSP) 2-opt

Outline. TABU search and Iterated Local Search classical OR methods. Traveling Salesman Problem (TSP) 2-opt TABU search and Iterated Local Search classical OR methods Outline TSP optimization problem Tabu Search (TS) (most important) Iterated Local Search (ILS) tks@imm.dtu.dk Informatics and Mathematical Modeling

More information

Restricted Delivery Problems on a Network. December 17, Abstract

Restricted Delivery Problems on a Network. December 17, Abstract Restricted Delivery Problems on a Network Esther M. Arkin y, Refael Hassin z and Limor Klein x December 17, 1996 Abstract We consider a delivery problem on a network one is given a network in which nodes

More information

Mathematical Tools for Engineering and Management

Mathematical Tools for Engineering and Management Mathematical Tools for Engineering and Management Lecture 8 8 Dec 0 Overview Models, Data and Algorithms Linear Optimization Mathematical Background: Polyhedra, Simplex-Algorithm Sensitivity Analysis;

More information

SLS Methods: An Overview

SLS Methods: An Overview HEURSTC OPTMZATON SLS Methods: An Overview adapted from slides for SLS:FA, Chapter 2 Outline 1. Constructive Heuristics (Revisited) 2. terative mprovement (Revisited) 3. Simple SLS Methods 4. Hybrid SLS

More information

Amanur Rahman Saiyed (Indiana State University) THE TRAVELING SALESMAN PROBLEM November 22, / 21

Amanur Rahman Saiyed (Indiana State University) THE TRAVELING SALESMAN PROBLEM November 22, / 21 . Amanur Rahman Saiyed (Indiana State University) THE TRAVELING SALESMAN PROBLEM November 22, 2011 1 / 21 THE TRAVELING SALESMAN PROBLEM Amanur Rahman Saiyed Indiana State University November 22, 2011

More information