CS201 Computer Vision Lect 4 - Image Formation

Size: px
Start display at page:

Download "CS201 Computer Vision Lect 4 - Image Formation"

Transcription

1 CS201 Computer Vision Lect 4 - Image Formation John Magee 9 September, 2014 Slides courtesy of Diane H. Theriault

2 Question of the Day: Why is Computer Vision hard?

3 Something to think about from our view out the lab Friday. All this effort to make sure the LIGHTING is good for a movie. Why is more light needed for a good quality movie? What factors affect how much light reaches the film or image sensor? Why does your cell phone take such lousy pictures at a party? How does this all affect Computer Vision?

4 How are images formed 1. Light is emitted from a light source 2. Light hits a surface 3. Light interacts with the surface 4. Reflected light enters camera aperture 5. Sensor of camera interprets light Szeliski Ch 2.2 Don t worry about all the details of the math Shapiro & Stockman Ch. 6, Ch. 2 (

5 Light is emitted Point light sources radiates (emits) light uniformly in all directions Properties of light: Color spectrum (Wavelength distribution) Intensity (Watts / Area * Solid Angle) Note: A solid angle is like a cone Note: Area light sources, like fluorescent lights, are a little different

6 Light hits a surface Surface orientation is very important for determining the amount of incident light! Distance: 2.5 m Orientation: 0 degrees Solid angle: 22.6 degrees Distance: 2.5 m Orientation: 45 degrees Solid angle: 11.4 degrees foreshortening Distance: 5 m Orientation: 0 degrees Solid angle: 16.4 degrees attenuation The amount of incident light that falls on a surface (irradiated light) size of the surface solid angle of light subtended by the surface depends on distance to light and orientation of surface

7 Light Interacts with a surface Some light absorbed due to surface color What happens to the rest? The orientation of a surface is defined by its normal vector which sticks straight up out of the surface. Simplified BRDF modeled with two components: Bi-direction reflectance function: BRDF expresses : the amount, direction, and color spectrum of reflected light depending on the amount, direction, and color spectrum of incoming light Lambertian, flat or matte component : light radiated equally in all directions Specular, shiny, or highlight component: radiated light is reflected across the normal from the incoming light

8 Reflected light enters a camera Pinhole Model Object location focal plane / image plane focal distance / focal length Image location Optical axis Center of Projection Scene Depth Red triangle (behind camera) and blue triangle (in front of camera) are similar: therefore: Given any three terms, you can determine the fourth

9 Reflected light enters a camera For given focal length, Lens Equation leads to A blur circle or circle of confusion results when projections of objects are not focused on the image plane. The size of the blur circle depends on the distance to the object and the size of the aperture. The allowable size of the blur circle (e.g. a pixel) determines the allowable range of depths in the scene ( depth of field ) Note: The F number or f stop commonly used in photography is the ratio of focal length to aperture size. (

10 Camera sensor interprets light ghtandcolor/vision.html Image is quantized into pixels to go from physical size of projection to pixel coordinates Szeliski 2.3, Shapiro & Stockman 2.2

11 Now what? Interaction between light, objects, and the camera leads to images The way image values change hopefully tells us something about the objects, the light, and the camera

12 Image Gradients the way image values change image derivative Gradient at a particular point (x, y) is a vector that points in the direction of largest change Gradient can be in Cartesian (x, y) or Polar (magnitude, angle) coordinates Every point in an image may have a different gradient vector Friday s lab and this week s homework will be devoted to image gradients and edges.

13 Discussion Questions: What influences are mixed together when we observe the light reflected from a surface? In order to infer surface orientation, what assumptions do we need to make? Can we construct restricted imaging conditions that make this job easier? In order to infer surface properties, what assumptions do we need to make? Can we construct restricted imaging conditions that make this job easier? What are some things we would like to know about objects that we can t directly observe, even if we could correctly reconstruct surface orientation, color, texture, and reflectance properties? (hint: clothes) What steps could we take to try to understand those things, given the image information Think of some ways that we could define the scope of some tasks that we might be able to do, even if all we have is the image appearance and we can t infer scene structure and surface orientation and properties.

14 Light incident on a surface The amount of light that falls on a surface (irradiated light) size of the surface solid angle of light subtended by the surface Surfaces that are further away from the light subtend a smaller solid angle attenuation Surfaces that are turned away from the light subtend a smaller solid angle foreshortening

15 Image Gradients The gradient is a vector like any other vector. It just happens to represent the way the values of the image are changing. One way to compute gradient: finite differences : Just compute the difference between each pixel and the previous one (horizontally and vertically). Switching from the Cartesian representation (x,y) to the polar representation (magnitude, direction) is often helpful, and very, very important. Friday s lab and this week s homework will be devoted to image gradients and edges.

Lecture 22: Basic Image Formation CAP 5415

Lecture 22: Basic Image Formation CAP 5415 Lecture 22: Basic Image Formation CAP 5415 Today We've talked about the geometry of scenes and how that affects the image We haven't talked about light yet Today, we will talk about image formation and

More information

Capturing light. Source: A. Efros

Capturing light. Source: A. Efros Capturing light Source: A. Efros Review Pinhole projection models What are vanishing points and vanishing lines? What is orthographic projection? How can we approximate orthographic projection? Lenses

More information

Understanding Variability

Understanding Variability Understanding Variability Why so different? Light and Optics Pinhole camera model Perspective projection Thin lens model Fundamental equation Distortion: spherical & chromatic aberration, radial distortion

More information

Introduction to Computer Vision. Introduction CMPSCI 591A/691A CMPSCI 570/670. Image Formation

Introduction to Computer Vision. Introduction CMPSCI 591A/691A CMPSCI 570/670. Image Formation Introduction CMPSCI 591A/691A CMPSCI 570/670 Image Formation Lecture Outline Light and Optics Pinhole camera model Perspective projection Thin lens model Fundamental equation Distortion: spherical & chromatic

More information

INFOGR Computer Graphics. J. Bikker - April-July Lecture 10: Shading Models. Welcome!

INFOGR Computer Graphics. J. Bikker - April-July Lecture 10: Shading Models. Welcome! INFOGR Computer Graphics J. Bikker - April-July 2016 - Lecture 10: Shading Models Welcome! Today s Agenda: Introduction Light Transport Materials Sensors Shading INFOGR Lecture 10 Shading Models 3 Introduction

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 20: Light, reflectance and photometric stereo Light by Ted Adelson Readings Szeliski, 2.2, 2.3.2 Light by Ted Adelson Readings Szeliski, 2.2, 2.3.2 Properties

More information

Measuring Light: Radiometry and Cameras

Measuring Light: Radiometry and Cameras Lecture 11: Measuring Light: Radiometry and Cameras Computer Graphics CMU 15-462/15-662, Fall 2015 Slides credit: a majority of these slides were created by Matt Pharr and Pat Hanrahan Simulating a pinhole

More information

Module 5: Video Modeling Lecture 28: Illumination model. The Lecture Contains: Diffuse and Specular Reflection. Objectives_template

Module 5: Video Modeling Lecture 28: Illumination model. The Lecture Contains: Diffuse and Specular Reflection. Objectives_template The Lecture Contains: Diffuse and Specular Reflection file:///d /...0(Ganesh%20Rana)/MY%20COURSE_Ganesh%20Rana/Prof.%20Sumana%20Gupta/FINAL%20DVSP/lecture%2028/28_1.htm[12/30/2015 4:22:29 PM] Diffuse and

More information

CS201 Computer Vision Camera Geometry

CS201 Computer Vision Camera Geometry CS201 Computer Vision Camera Geometry John Magee 25 November, 2014 Slides Courtesy of: Diane H. Theriault (deht@bu.edu) Question of the Day: How can we represent the relationships between cameras and the

More information

Today. Global illumination. Shading. Interactive applications. Rendering pipeline. Computergrafik. Shading Introduction Local shading models

Today. Global illumination. Shading. Interactive applications. Rendering pipeline. Computergrafik. Shading Introduction Local shading models Computergrafik Matthias Zwicker Universität Bern Herbst 2009 Today Introduction Local shading models Light sources strategies Compute interaction of light with surfaces Requires simulation of physics Global

More information

CS5670: Computer Vision

CS5670: Computer Vision CS5670: Computer Vision Noah Snavely Light & Perception Announcements Quiz on Tuesday Project 3 code due Monday, April 17, by 11:59pm artifact due Wednesday, April 19, by 11:59pm Can we determine shape

More information

Topics and things to know about them:

Topics and things to know about them: Practice Final CMSC 427 Distributed Tuesday, December 11, 2007 Review Session, Monday, December 17, 5:00pm, 4424 AV Williams Final: 10:30 AM Wednesday, December 19, 2007 General Guidelines: The final will

More information

DD2423 Image Analysis and Computer Vision IMAGE FORMATION. Computational Vision and Active Perception School of Computer Science and Communication

DD2423 Image Analysis and Computer Vision IMAGE FORMATION. Computational Vision and Active Perception School of Computer Science and Communication DD2423 Image Analysis and Computer Vision IMAGE FORMATION Mårten Björkman Computational Vision and Active Perception School of Computer Science and Communication November 8, 2013 1 Image formation Goal:

More information

CS4670: Computer Vision

CS4670: Computer Vision CS4670: Computer Vision Noah Snavely Lecture 30: Light, color, and reflectance Light by Ted Adelson Readings Szeliski, 2.2, 2.3.2 Light by Ted Adelson Readings Szeliski, 2.2, 2.3.2 Properties of light

More information

COSC579: Scene Geometry. Jeremy Bolton, PhD Assistant Teaching Professor

COSC579: Scene Geometry. Jeremy Bolton, PhD Assistant Teaching Professor COSC579: Scene Geometry Jeremy Bolton, PhD Assistant Teaching Professor Overview Linear Algebra Review Homogeneous vs non-homogeneous representations Projections and Transformations Scene Geometry The

More information

Radiometry Measuring Light

Radiometry Measuring Light 1 Radiometry Measuring Light CS 554 Computer Vision Pinar Duygulu Bilkent University 2 How do we see? [Plato] from our eyes flows a light similar to the light of the sun [Chalcidius, middle ages] Therefore,

More information

CMSC427 Shading Intro. Credit: slides from Dr. Zwicker

CMSC427 Shading Intro. Credit: slides from Dr. Zwicker CMSC427 Shading Intro Credit: slides from Dr. Zwicker 2 Today Shading Introduction Radiometry & BRDFs Local shading models Light sources Shading strategies Shading Compute interaction of light with surfaces

More information

Image Formation: Light and Shading. Introduction to Computer Vision CSE 152 Lecture 3

Image Formation: Light and Shading. Introduction to Computer Vision CSE 152 Lecture 3 Image Formation: Light and Shading CSE 152 Lecture 3 Announcements Homework 1 is due Apr 11, 11:59 PM Homework 2 will be assigned on Apr 11 Reading: Chapter 2: Light and Shading Geometric image formation

More information

Digital Image Processing COSC 6380/4393

Digital Image Processing COSC 6380/4393 Digital Image Processing COSC 6380/4393 Lecture 4 Jan. 24 th, 2019 Slides from Dr. Shishir K Shah and Frank (Qingzhong) Liu Digital Image Processing COSC 6380/4393 TA - Office: PGH 231 (Update) Shikha

More information

CS5620 Intro to Computer Graphics

CS5620 Intro to Computer Graphics So Far wireframe hidden surfaces Next step 1 2 Light! Need to understand: How lighting works Types of lights Types of surfaces How shading works Shading algorithms What s Missing? Lighting vs. Shading

More information

Image Formation. Antonino Furnari. Image Processing Lab Dipartimento di Matematica e Informatica Università degli Studi di Catania

Image Formation. Antonino Furnari. Image Processing Lab Dipartimento di Matematica e Informatica Università degli Studi di Catania Image Formation Antonino Furnari Image Processing Lab Dipartimento di Matematica e Informatica Università degli Studi di Catania furnari@dmi.unict.it 18/03/2014 Outline Introduction; Geometric Primitives

More information

CSE 167: Lecture #7: Color and Shading. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011

CSE 167: Lecture #7: Color and Shading. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 CSE 167: Introduction to Computer Graphics Lecture #7: Color and Shading Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 Announcements Homework project #3 due this Friday,

More information

Illumination Models & Shading

Illumination Models & Shading Illumination Models & Shading Lighting vs. Shading Lighting Interaction between materials and light sources Physics Shading Determining the color of a pixel Computer Graphics ZBuffer(Scene) PutColor(x,y,Col(P));

More information

Lecture 1 Image Formation.

Lecture 1 Image Formation. Lecture 1 Image Formation peimt@bit.edu.cn 1 Part 3 Color 2 Color v The light coming out of sources or reflected from surfaces has more or less energy at different wavelengths v The visual system responds

More information

CENG 477 Introduction to Computer Graphics. Ray Tracing: Shading

CENG 477 Introduction to Computer Graphics. Ray Tracing: Shading CENG 477 Introduction to Computer Graphics Ray Tracing: Shading Last Week Until now we learned: How to create the primary rays from the given camera and image plane parameters How to intersect these rays

More information

Computer Vision. The image formation process

Computer Vision. The image formation process Computer Vision The image formation process Filippo Bergamasco (filippo.bergamasco@unive.it) http://www.dais.unive.it/~bergamasco DAIS, Ca Foscari University of Venice Academic year 2016/2017 The image

More information

Radiance. Pixels measure radiance. This pixel Measures radiance along this ray

Radiance. Pixels measure radiance. This pixel Measures radiance along this ray Photometric stereo Radiance Pixels measure radiance This pixel Measures radiance along this ray Where do the rays come from? Rays from the light source reflect off a surface and reach camera Reflection:

More information

CSE 167: Introduction to Computer Graphics Lecture #6: Colors. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013

CSE 167: Introduction to Computer Graphics Lecture #6: Colors. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013 CSE 167: Introduction to Computer Graphics Lecture #6: Colors Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013 Announcements Homework project #3 due this Friday, October 18

More information

Introduction to 3D Concepts

Introduction to 3D Concepts PART I Introduction to 3D Concepts Chapter 1 Scene... 3 Chapter 2 Rendering: OpenGL (OGL) and Adobe Ray Tracer (ART)...19 1 CHAPTER 1 Scene s0010 1.1. The 3D Scene p0010 A typical 3D scene has several

More information

Announcements. Image Formation: Light and Shading. Photometric image formation. Geometric image formation

Announcements. Image Formation: Light and Shading. Photometric image formation. Geometric image formation Announcements Image Formation: Light and Shading Homework 0 is due Oct 5, 11:59 PM Homework 1 will be assigned on Oct 5 Reading: Chapters 2: Light and Shading CSE 252A Lecture 3 Geometric image formation

More information

Announcements. Radiometry and Sources, Shadows, and Shading

Announcements. Radiometry and Sources, Shadows, and Shading Announcements Radiometry and Sources, Shadows, and Shading CSE 252A Lecture 6 Instructor office hours This week only: Thursday, 3:45 PM-4:45 PM Tuesdays 6:30 PM-7:30 PM Library (for now) Homework 1 is

More information

Introduction to Computer Vision. Week 8, Fall 2010 Instructor: Prof. Ko Nishino

Introduction to Computer Vision. Week 8, Fall 2010 Instructor: Prof. Ko Nishino Introduction to Computer Vision Week 8, Fall 2010 Instructor: Prof. Ko Nishino Midterm Project 2 without radial distortion correction with radial distortion correction Light Light Light! How do you recover

More information

Office Hours. Scattering and Polarization

Office Hours. Scattering and Polarization Office Hours Office hours are posted on the website. Molly: Tuesdays 2-4pm Dr. Keister: Wednesdays 10am-12 Prof. Goldman: Wednesdays 2-3:30pm All office hours are in the help room downstairs If none of

More information

Radiometry and reflectance

Radiometry and reflectance Radiometry and reflectance http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 16 Course announcements Homework 4 is still ongoing - Any questions?

More information

CIS 580, Machine Perception, Spring 2015 Homework 1 Due: :59AM

CIS 580, Machine Perception, Spring 2015 Homework 1 Due: :59AM CIS 580, Machine Perception, Spring 2015 Homework 1 Due: 2015.02.09. 11:59AM Instructions. Submit your answers in PDF form to Canvas. This is an individual assignment. 1 Camera Model, Focal Length and

More information

Color and Shading. Color. Shapiro and Stockman, Chapter 6. Color and Machine Vision. Color and Perception

Color and Shading. Color. Shapiro and Stockman, Chapter 6. Color and Machine Vision. Color and Perception Color and Shading Color Shapiro and Stockman, Chapter 6 Color is an important factor for for human perception for object and material identification, even time of day. Color perception depends upon both

More information

Other approaches to obtaining 3D structure

Other approaches to obtaining 3D structure Other approaches to obtaining 3D structure Active stereo with structured light Project structured light patterns onto the object simplifies the correspondence problem Allows us to use only one camera camera

More information

CSE 167: Introduction to Computer Graphics Lecture #6: Lights. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016

CSE 167: Introduction to Computer Graphics Lecture #6: Lights. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016 CSE 167: Introduction to Computer Graphics Lecture #6: Lights Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016 Announcements Thursday in class: midterm #1 Closed book Material

More information

Introduction to Computer Vision

Introduction to Computer Vision Introduction to Computer Vision Michael J. Black Nov 2009 Perspective projection and affine motion Goals Today Perspective projection 3D motion Wed Projects Friday Regularization and robust statistics

More information

dq dt I = Irradiance or Light Intensity is Flux Φ per area A (W/m 2 ) Φ =

dq dt I = Irradiance or Light Intensity is Flux Φ per area A (W/m 2 ) Φ = Radiometry (From Intro to Optics, Pedrotti -4) Radiometry is measurement of Emag radiation (light) Consider a small spherical source Total energy radiating from the body over some time is Q total Radiant

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 21: Light, reflectance and photometric stereo Announcements Final projects Midterm reports due November 24 (next Tuesday) by 11:59pm (upload to CMS) State the

More information

Today. Global illumination. Shading. Interactive applications. Rendering pipeline. Computergrafik. Shading Introduction Local shading models

Today. Global illumination. Shading. Interactive applications. Rendering pipeline. Computergrafik. Shading Introduction Local shading models Computergrafik Thomas Buchberger, Matthias Zwicker Universität Bern Herbst 2008 Today Introduction Local shading models Light sources strategies Compute interaction of light with surfaces Requires simulation

More information

Shape from shading. Surface brightness and Surface Orientation --> Reflectance map READING: Nalwa Chapter 5. BKP Horn, Chapter 10.

Shape from shading. Surface brightness and Surface Orientation --> Reflectance map READING: Nalwa Chapter 5. BKP Horn, Chapter 10. Shape from shading Surface brightness and Surface Orientation --> Reflectance map READING: Nalwa Chapter 5. BKP Horn, Chapter 10. May 2004 SFS 1 Shading produces a compelling perception of 3-D shape. One

More information

Illumination and Shading

Illumination and Shading Illumination and Shading Light sources emit intensity: assigns intensity to each wavelength of light Humans perceive as a colour - navy blue, light green, etc. Exeriments show that there are distinct I

More information

Physics 9 Friday, September 28, 2018

Physics 9 Friday, September 28, 2018 Physics 9 Friday, September 28, 2018 Turn in HW#3. HW#4 will be due two weeks from today; I will hand out HW#4 Monday. I found a way to run both Odeon and CATT-Acoustic on MacOS without a virtual machine!

More information

Computer Vision I - Image Matching and Image Formation

Computer Vision I - Image Matching and Image Formation Computer Vision I - Image Matching and Image Formation Carsten Rother 10/12/2014 Computer Vision I: Image Formation Process Computer Vision I: Image Formation Process 10/12/2014 2 Roadmap for next five

More information

Assignment #2. (Due date: 11/6/2012)

Assignment #2. (Due date: 11/6/2012) Computer Vision I CSE 252a, Fall 2012 David Kriegman Assignment #2 (Due date: 11/6/2012) Name: Student ID: Email: Problem 1 [1 pts] Calculate the number of steradians contained in a spherical wedge with

More information

Epipolar geometry contd.

Epipolar geometry contd. Epipolar geometry contd. Estimating F 8-point algorithm The fundamental matrix F is defined by x' T Fx = 0 for any pair of matches x and x in two images. Let x=(u,v,1) T and x =(u,v,1) T, each match gives

More information

CS 563 Advanced Topics in Computer Graphics Camera Models. by Kevin Kardian

CS 563 Advanced Topics in Computer Graphics Camera Models. by Kevin Kardian CS 563 Advanced Topics in Computer Graphics Camera Models by Kevin Kardian Introduction Pinhole camera is insufficient Everything in perfect focus Less realistic Different camera models are possible Create

More information

Photometric Stereo.

Photometric Stereo. Photometric Stereo Photometric Stereo v.s.. Structure from Shading [1] Photometric stereo is a technique in computer vision for estimating the surface normals of objects by observing that object under

More information

Radiometry. Radiometry. Measuring Angle. Solid Angle. Radiance

Radiometry. Radiometry. Measuring Angle. Solid Angle. Radiance Radiometry Radiometry Computer Vision I CSE5A ecture 5-Part II Read Chapter 4 of Ponce & Forsyth Solid Angle Irradiance Radiance BRDF ambertian/phong BRDF Measuring Angle Solid Angle By analogy with angle

More information

Midterm Examination CS 534: Computational Photography

Midterm Examination CS 534: Computational Photography Midterm Examination CS 534: Computational Photography November 3, 2016 NAME: Problem Score Max Score 1 6 2 8 3 9 4 12 5 4 6 13 7 7 8 6 9 9 10 6 11 14 12 6 Total 100 1 of 8 1. [6] (a) [3] What camera setting(s)

More information

Chapter 36. Image Formation

Chapter 36. Image Formation Chapter 36 Image Formation Apr 22, 2012 Light from distant things We learn about a distant thing from the light it generates or redirects. The lenses in our eyes create images of objects our brains can

More information

Shading / Light. Thanks to Srinivas Narasimhan, Langer-Zucker, Henrik Wann Jensen, Ravi Ramamoorthi, Hanrahan, Preetham

Shading / Light. Thanks to Srinivas Narasimhan, Langer-Zucker, Henrik Wann Jensen, Ravi Ramamoorthi, Hanrahan, Preetham Shading / Light Thanks to Srinivas Narasimhan, Langer-Zucker, Henrik Wann Jensen, Ravi Ramamoorthi, Hanrahan, Preetham Phong Illumination Model See Shirley, Ch 10 and http://en.wikipedia.org/wiki/phong_shading

More information

Reflectance & Lighting

Reflectance & Lighting Reflectance & Lighting Computer Vision I CSE5A Lecture 6 Last lecture in a nutshell Need for lenses (blur from pinhole) Thin lens equation Distortion and aberrations Vignetting CS5A, Winter 007 Computer

More information

Practice Exam Sample Solutions

Practice Exam Sample Solutions CS 675 Computer Vision Instructor: Marc Pomplun Practice Exam Sample Solutions Note that in the actual exam, no calculators, no books, and no notes allowed. Question 1: out of points Question 2: out of

More information

Midterm Exam CS 184: Foundations of Computer Graphics page 1 of 11

Midterm Exam CS 184: Foundations of Computer Graphics page 1 of 11 Midterm Exam CS 184: Foundations of Computer Graphics page 1 of 11 Student Name: Class Account Username: Instructions: Read them carefully! The exam begins at 2:40pm and ends at 4:00pm. You must turn your

More information

Shading. Brian Curless CSE 557 Autumn 2017

Shading. Brian Curless CSE 557 Autumn 2017 Shading Brian Curless CSE 557 Autumn 2017 1 Reading Optional: Angel and Shreiner: chapter 5. Marschner and Shirley: chapter 10, chapter 17. Further reading: OpenGL red book, chapter 5. 2 Basic 3D graphics

More information

Light. Properties of light. What is light? Today What is light? How do we measure it? How does light propagate? How does light interact with matter?

Light. Properties of light. What is light? Today What is light? How do we measure it? How does light propagate? How does light interact with matter? Light Properties of light Today What is light? How do we measure it? How does light propagate? How does light interact with matter? by Ted Adelson Readings Andrew Glassner, Principles of Digital Image

More information

CS354 Computer Graphics Ray Tracing. Qixing Huang Januray 24th 2017

CS354 Computer Graphics Ray Tracing. Qixing Huang Januray 24th 2017 CS354 Computer Graphics Ray Tracing Qixing Huang Januray 24th 2017 Graphics Pipeline Elements of rendering Object Light Material Camera Geometric optics Modern theories of light treat it as both a wave

More information

Engineered Diffusers Intensity vs Irradiance

Engineered Diffusers Intensity vs Irradiance Engineered Diffusers Intensity vs Irradiance Engineered Diffusers are specified by their divergence angle and intensity profile. The divergence angle usually is given as the width of the intensity distribution

More information

Problem Set 4 Part 1 CMSC 427 Distributed: Thursday, November 1, 2007 Due: Tuesday, November 20, 2007

Problem Set 4 Part 1 CMSC 427 Distributed: Thursday, November 1, 2007 Due: Tuesday, November 20, 2007 Problem Set 4 Part 1 CMSC 427 Distributed: Thursday, November 1, 2007 Due: Tuesday, November 20, 2007 Programming For this assignment you will write a simple ray tracer. It will be written in C++ without

More information

Lighting affects appearance

Lighting affects appearance Lighting affects appearance 1 Source emits photons Light And then some reach the eye/camera. Photons travel in a straight line When they hit an object they: bounce off in a new direction or are absorbed

More information

Announcements. Lighting. Camera s sensor. HW1 has been posted See links on web page for readings on color. Intro Computer Vision.

Announcements. Lighting. Camera s sensor. HW1 has been posted See links on web page for readings on color. Intro Computer Vision. Announcements HW1 has been posted See links on web page for readings on color. Introduction to Computer Vision CSE 152 Lecture 6 Deviations from the lens model Deviations from this ideal are aberrations

More information

Paths, diffuse interreflections, caching and radiometry. D.A. Forsyth

Paths, diffuse interreflections, caching and radiometry. D.A. Forsyth Paths, diffuse interreflections, caching and radiometry D.A. Forsyth How we got here We want to render diffuse interreflections strategy: compute approximation B-hat, then gather B = E +(ρk)e +(ρk)( ˆB

More information

782 Schedule & Notes

782 Schedule & Notes 782 Schedule & Notes Tentative schedule - subject to change at a moment s notice. This is only a guide and not meant to be a strict schedule of how fast the material will be taught. The order of material

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics 26.1 The Reflection of Light 26.2 Forming Images With a Plane Mirror 26.3 Spherical Mirrors 26.4 Ray Tracing and the Mirror Equation 26.5 The Refraction of Light 26.6 Ray

More information

Representing the World

Representing the World Table of Contents Representing the World...1 Sensory Transducers...1 The Lateral Geniculate Nucleus (LGN)... 2 Areas V1 to V5 the Visual Cortex... 2 Computer Vision... 3 Intensity Images... 3 Image Focusing...

More information

Unit 3: Optics Chapter 4

Unit 3: Optics Chapter 4 Unit 3: Optics Chapter 4 History of Light https://www.youtube.com/watch?v=j1yiapztlos History of Light Early philosophers (Pythagoras) believed light was made up of tiny particles Later scientist found

More information

Global Illumination. Why Global Illumination. Pros/Cons and Applications. What s Global Illumination

Global Illumination. Why Global Illumination. Pros/Cons and Applications. What s Global Illumination Global Illumination Why Global Illumination Last lecture Basic rendering concepts Primitive-based rendering Today: Global illumination Ray Tracing, and Radiosity (Light-based rendering) What s Global Illumination

More information

Range Imaging Through Triangulation. Range Imaging Through Triangulation. Range Imaging Through Triangulation. Range Imaging Through Triangulation

Range Imaging Through Triangulation. Range Imaging Through Triangulation. Range Imaging Through Triangulation. Range Imaging Through Triangulation Obviously, this is a very slow process and not suitable for dynamic scenes. To speed things up, we can use a laser that projects a vertical line of light onto the scene. This laser rotates around its vertical

More information

Distribution Ray-Tracing. Programação 3D Simulação e Jogos

Distribution Ray-Tracing. Programação 3D Simulação e Jogos Distribution Ray-Tracing Programação 3D Simulação e Jogos Bibliography K. Suffern; Ray Tracing from the Ground Up, http://www.raytracegroundup.com Chapter 4, 5 for Anti-Aliasing Chapter 6 for Disc Sampling

More information

EE Light & Image Formation

EE Light & Image Formation EE 576 - Light & Electric Electronic Engineering Bogazici University January 29, 2018 EE 576 - Light & EE 576 - Light & The image of a three-dimensional object depends on: 1. Shape 2. Reflectance properties

More information

The Rendering Equation. Computer Graphics CMU /15-662

The Rendering Equation. Computer Graphics CMU /15-662 The Rendering Equation Computer Graphics CMU 15-462/15-662 Review: What is radiance? Radiance at point p in direction N is radiant energy ( #hits ) per unit time, per solid angle, per unit area perpendicular

More information

Lecture Outline Chapter 26. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 26. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 26 Physics, 4 th Edition James S. Walker Chapter 26 Geometrical Optics Units of Chapter 26 The Reflection of Light Forming Images with a Plane Mirror Spherical Mirrors Ray Tracing

More information

dq dt I = Irradiance or Light Intensity is Flux Φ per area A (W/m 2 ) Φ =

dq dt I = Irradiance or Light Intensity is Flux Φ per area A (W/m 2 ) Φ = Radiometry (From Intro to Optics, Pedrotti -4) Radiometry is measurement of Emag radiation (light) Consider a small spherical source Total energy radiating from the body over some time is Q total Radiant

More information

Computational Photography

Computational Photography Computational Photography Photography and Imaging Michael S. Brown Brown - 1 Part 1 Overview Photography Preliminaries Traditional Film Imaging (Camera) Part 2 General Imaging 5D Plenoptic Function (McMillan)

More information

What is it? How does it work? How do we use it?

What is it? How does it work? How do we use it? What is it? How does it work? How do we use it? Dual Nature http://www.youtube.com/watch?v=dfpeprq7ogc o Electromagnetic Waves display wave behavior o Created by oscillating electric and magnetic fields

More information

Physics 1202: Lecture 17 Today s Agenda

Physics 1202: Lecture 17 Today s Agenda Physics 1202: Lecture 17 Today s Agenda Announcements: Team problems today Team 10, 11 & 12: this Thursday Homework #8: due Friday Midterm 2: Tuesday April 10 Office hours if needed (M-2:30-3:30 or TH

More information

All forms of EM waves travel at the speed of light in a vacuum = 3.00 x 10 8 m/s This speed is constant in air as well

All forms of EM waves travel at the speed of light in a vacuum = 3.00 x 10 8 m/s This speed is constant in air as well Pre AP Physics Light & Optics Chapters 14-16 Light is an electromagnetic wave Electromagnetic waves: Oscillating electric and magnetic fields that are perpendicular to the direction the wave moves Difference

More information

CS667 Lecture Notes: Radiometry

CS667 Lecture Notes: Radiometry CS667 Lecture Notes: Radiometry Steve Marschner Cornell University 23-28 August 2007 Radiometry is a system for describing the flow of radiant energy through space. It is essentially a geometric topic

More information

Announcements. Light. Properties of light. Light. Project status reports on Wednesday. Readings. Today. Readings Szeliski, 2.2, 2.3.

Announcements. Light. Properties of light. Light. Project status reports on Wednesday. Readings. Today. Readings Szeliski, 2.2, 2.3. Announcements Project status reports on Wednesday prepare 5 minute ppt presentation should contain: problem statement (1 slide) description of approach (1 slide) some images (1 slide) current status +

More information

Ray Tracing. CS334 Fall Daniel G. Aliaga Department of Computer Science Purdue University

Ray Tracing. CS334 Fall Daniel G. Aliaga Department of Computer Science Purdue University Ray Tracing CS334 Fall 2013 Daniel G. Aliaga Department of Computer Science Purdue University Ray Casting and Ray Tracing Ray Casting Arthur Appel, started around 1968 Ray Tracing Turner Whitted, started

More information

Computer Vision Project-1

Computer Vision Project-1 University of Utah, School Of Computing Computer Vision Project- Singla, Sumedha sumedha.singla@utah.edu (00877456 February, 205 Theoretical Problems. Pinhole Camera (a A straight line in the world space

More information

CS 325 Computer Graphics

CS 325 Computer Graphics CS 325 Computer Graphics 04 / 02 / 2012 Instructor: Michael Eckmann Today s Topics Questions? Comments? Illumination modelling Ambient, Diffuse, Specular Reflection Surface Rendering / Shading models Flat

More information

Computer Vision Course Lecture 02. Image Formation Light and Color. Ceyhun Burak Akgül, PhD cba-research.com. Spring 2015 Last updated 04/03/2015

Computer Vision Course Lecture 02. Image Formation Light and Color. Ceyhun Burak Akgül, PhD cba-research.com. Spring 2015 Last updated 04/03/2015 Computer Vision Course Lecture 02 Image Formation Light and Color Ceyhun Burak Akgül, PhD cba-research.com Spring 2015 Last updated 04/03/2015 Photo credit: Olivier Teboul vision.mas.ecp.fr/personnel/teboul

More information

Lecture 15: Shading-I. CITS3003 Graphics & Animation

Lecture 15: Shading-I. CITS3003 Graphics & Animation Lecture 15: Shading-I CITS3003 Graphics & Animation E. Angel and D. Shreiner: Interactive Computer Graphics 6E Addison-Wesley 2012 Objectives Learn that with appropriate shading so objects appear as threedimensional

More information

CS 130 Final. Fall 2015

CS 130 Final. Fall 2015 CS 130 Final Fall 2015 Name Student ID Signature You may not ask any questions during the test. If you believe that there is something wrong with a question, write down what you think the question is trying

More information

Scanline Rendering 1 1/42

Scanline Rendering 1 1/42 Scanline Rendering 1 1/42 Scanline Renderer Think of it as setting up a virtual environment/world that mimics the real world but cheats a bit for efficiency, using what we know about light and our eye

More information

Lighting. Figure 10.1

Lighting. Figure 10.1 We have learned to build three-dimensional graphical models and to display them. However, if you render one of our models, you might be disappointed to see images that look flat and thus fail to show the

More information

Topic 9: Lighting & Reflection models 9/10/2016. Spot the differences. Terminology. Two Components of Illumination. Ambient Light Source

Topic 9: Lighting & Reflection models 9/10/2016. Spot the differences. Terminology. Two Components of Illumination. Ambient Light Source Topic 9: Lighting & Reflection models Lighting & reflection The Phong reflection model diffuse component ambient component specular component Spot the differences Terminology Illumination The transport

More information

I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S

I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S 3D Viewing: the Synthetic Camera Programmer s reference model for specifying 3D view projection parameters to the computer General synthetic camera (e.g., PHIGS Camera, Computer Graphics: Principles and

More information

Geometrical Optics. Name ID TA. Partners. Date Section. Please do not scratch, polish or touch the surface of the mirror.

Geometrical Optics. Name ID TA. Partners. Date Section. Please do not scratch, polish or touch the surface of the mirror. Geometrical Optics Name ID TA Partners Date Section Please do not scratch, polish or touch the surface of the mirror. 1. Application of geometrical optics: 2. Real and virtual images: One easy method to

More information

Light. Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see

Light. Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see Light Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see Facts About Light The speed of light, c, is constant in a vacuum. Light can be: REFLECTED ABSORBED REFRACTED

More information

Topic 9: Lighting & Reflection models. Lighting & reflection The Phong reflection model diffuse component ambient component specular component

Topic 9: Lighting & Reflection models. Lighting & reflection The Phong reflection model diffuse component ambient component specular component Topic 9: Lighting & Reflection models Lighting & reflection The Phong reflection model diffuse component ambient component specular component Spot the differences Terminology Illumination The transport

More information

Temporal Resolution. Flicker fusion threshold The frequency at which an intermittent light stimulus appears to be completely steady to the observer

Temporal Resolution. Flicker fusion threshold The frequency at which an intermittent light stimulus appears to be completely steady to the observer Temporal Resolution Flicker fusion threshold The frequency at which an intermittent light stimulus appears to be completely steady to the observer For the purposes of presenting moving images (animations),

More information

Photometric Stereo. Lighting and Photometric Stereo. Computer Vision I. Last lecture in a nutshell BRDF. CSE252A Lecture 7

Photometric Stereo. Lighting and Photometric Stereo. Computer Vision I. Last lecture in a nutshell BRDF. CSE252A Lecture 7 Lighting and Photometric Stereo Photometric Stereo HW will be on web later today CSE5A Lecture 7 Radiometry of thin lenses δa Last lecture in a nutshell δa δa'cosα δacos β δω = = ( z' / cosα ) ( z / cosα

More information

Modeling Light. On Simulating the Visual Experience

Modeling Light. On Simulating the Visual Experience Modeling Light 15-463: Rendering and Image Processing Alexei Efros On Simulating the Visual Experience Just feed the eyes the right data No one will know the difference! Philosophy: Ancient question: Does

More information

Today we will start to look at illumination models in computer graphics

Today we will start to look at illumination models in computer graphics 1 llumination Today we will start to look at illumination models in computer graphics Why do we need illumination models? Different kinds lights Different kinds reflections Basic lighting model 2 Why Lighting?

More information

Computer Vision CS 776 Fall 2018

Computer Vision CS 776 Fall 2018 Computer Vision CS 776 Fall 2018 Cameras & Photogrammetry 1 Prof. Alex Berg (Slide credits to many folks on individual slides) Cameras & Photogrammetry 1 Albrecht Dürer early 1500s Brunelleschi, early

More information