Lecture 1: An Introduction to Online Algorithms

Size: px
Start display at page:

Download "Lecture 1: An Introduction to Online Algorithms"

Transcription

1 Algoritmos e Incerteza (PUC-Rio INF979, 017.1) Lecture 1: An Introduction to Online Algorithms Mar 1, 017 Lecturer: Marco Molinaro Scribe: Joao Pedro T. Brandao Online algorithms differ from traditional algorithms in how the instances are processed. In traditional or deterministic algorithms, all of an instance I, is known before the process begins, where as in an online algorithms a decision must be made as each element of the instance is revealed. For example, in finance, when trading stocks we want to be able to predict whether a stock s price will go up or down based on its history. At each moment we must decide whether to buy, sell, or hold. We can thus characterize an online algorithm as the following: 1. The instance I has values in discrete time t, where t = 1,,..., n.. We gain new information at every moment t, e.g. Every minute there is a new price to a particular stock.. At every moment t, we make a decision, e.g. which stock to buy, sell, or hold.. The objective is to either maximize or minimize a certain objective function, e.g. to maximize profits. 1 The Ski-Rental Problem Problem: A ski resort is open during ski season. The season is determined by weather conditions, specifically if there is enough snow on the tracks. At some unknown day in the future, the resort will close. Each day you check if the resort is open or closed. If it s open, you choose whether you want to rent or buy a pair of skis. The rent is valid for the one day, while buying allows you to ski for the remainder of the season. The objective is to minimize your cost. To better understand the problem, we ll work with an example. Assume that ski rental is $1 per day and it costs $b to buy a pair of skis. Each day we re told whether the ski tracks are open or closed, we ll denote l as the last day the resort is open. The instance of this problem is then characterized by b and l, where b is known at time t = 0 and l is unknown. Lets assume that the cost for buying skis is $10, and the resort is opened for four days. Below we exemplify with an instance and a solution. Example: b = 10, and l = 1

2 Time t Track Status Decision Cost t = 1 Open Rent +1 t = Open Rent +1 t = Open Buy +10 t = Open N.A. +0 t = 5 Closed N.A. +0 Total Cost: 1 If we know before hand that the last open day is the fourth day, the optimal solution has total cost $. It is achieved by renting every day which is cheaper than purchasing the skis. Question: How do we know how good the above algorithm is, given the uncertainty of the instance? Moreover, how can we objectively measure and compare different algorithms to determine which is the best? Answer: Compare the online algorithm to the offline optimal solution, i.e. the optimal solution knowing the last open day of the ski resort. Definition: An algorithm, ALGO is α-competitive if, for every instance I ALGO(I) α Where ALGO(I) returns the cost of the online algorithm and the cost of the optimal offline algorithm. In the Ski-Rental problem, the OP T (b, l) is equal to the minimum value of b and l. OP T (b, l) = minb, l} 1.1 An Algorithm for Ski-Rental Problem Lets assume the cost to buy a pair of skis is $10, and, as usual, we don t know how many days the tracks will remain open, i.e. b = 10 and, l unknown. Any algorithm will need to make a decision when to buy the skis. Lets determine that our algorithm, ALGO decides to buy on the first day (if opened), t = 1. How competitive is ALGO? In evaluating competitiveness of an online algorithm, it is useful to think of an analogy of a twoplayer game, where the first player chooses an algorithm that minimizes the cost, and the second player chooses an instance that maximizes the first player s algorithm. In this case, the worst possible instance would be if the ski tracks close on the following day, l = 1. The algorithm s competitiveness is then 10, α = 10. There is no smaller α for this algorithm. ALGO(I) 10

3 A more general algorithm, would be to buy on day b. The worst possible instance in this case is when the last day is also day b, i.e. l = b. Intuitively, the algorithm is at least twice as costly as the offline optimal solution. Lemma: Proof. The algorithm ALGO, that chooses to buy at day b is -competitive. ALGO(I) = l if l < b, b 1 + b if l b. If l < b, then ALGO(I) = l l =. If l b then ALGO(I) = b l b =. In either case, ALGO never exceeds twice the value returned by the optimal offline solution. ALGO(I) 1. Lower Bound for Deterministic Algorithms The following lemma gives a slightly tighter bound to the previous result. Lemma: For any algorithm ALGO, there exists an instance I, such that ALGO(I) 1 Proof. First, note that ALGO is equivalent to deciding to buy on day x. Up to day x 1 our cost is $x 1, we buy on day x, raising our cost to $x 1 + b. In which ever day x is, the worst instance, I x, is the one where the ski tracks close on day x + 1, i.e. l = x. Finally, we have that ALGO(I x ) = (x 1) + b while OP T (I x ) = minx, b}. Therefore, ALGO(I x ) minx, b} 1 = OP T (I x ) 1 As desired. 1. Random Algorithms The main idea is to include a random variable into our decision making process. For example, consider the algorithm, A, it flips a coin; If it s heads, A buys on day one, If it s tails, A buys on day 0 (if tracks are open).

4 Question: What is A s cost? How can we quantify the cost if we can get different costs for the same instance? Answer: We take the expected value of the cost. E A = 1 [cost of buying on day 1] + 1 [cost of buying on day 0] Definition: A random algorithm, A, is α-competitive if for any instance I, E A α The advantage of random algorithms lies in their ability to behave as multiple deterministic algorithms. In the previous example, A buys on the first day half of the time, and the other half buys on day 0. It is then hard to find a single instance that is simultaneously costly to more than one behavior. The following theorem determines a better competitiveness than the deterministic algorithm. Theorem 1.1. ([1]) There exists a random algorithm that is problem. e -competitive for the ski-rental e 1 Proof. (Sketch) We assume there is a probability distribution p t associated with each day t, such that there is always a probability p t that you buy on day t. We must then calculate the theoretical value of E A, for every instance I. Then find the worst instance I and optimize the probabilities p t for that instance. We ll consider a simpler version of the problem where b = and l. The table below shows the competitiveness of each algorithm A i in each instance I j, where i determines which day to buy, and j determines the last day of the ski tracks. Each entry of the table is the ratio between the A algorithm and the optimal solution for that instance, i.e. i (I j ) α. OP T j (I j ) A 1 A A A φ I I I 1 The best deterministic algorithms are A and A φ that are both -competitive. If we mix algorithms we could potentially improve the competitiveness. We can mix the two best algorithms. Consider that the algorithm A runs algorithm A and A φ, each with 1 probability. Algorithm A has the following results for the different instances:

5 A I 1 1 I 5 I It is still -competitive. We were unable to improve on the previous result. Note how algorithms A and A φ are simultaneously costly (in relation to the optimal) on instance I. Ideally, we d choose two or more algorithms that are complementary to each other. For this next try, we ll be choosing algorithms A 1 and A, note how they are complementary to each other. This time, we will not be attributing a priori probabilities to them. Let algorithm A 1 occur with probability p and algorithm A occur with probability 1 p. We have the following results for the algorithm A. A I 1 p + 1 I I p p We assume that each instance I j can occur with equal probability, so P r(i 1 ) = P r(i ). We conclude that p = 1. By taking the expected value of A, we obtain that the algorithm A is -competitive, a strict improvement on our previous findings. 1. Lower Bound for Randomized Algorithms Theorem 1.. No algorithm (even randomized) is better than e -competitive. e 1 Example: Let b = 10, and let algorithm A choose to buy at time t with probability p t. How can we determine an instance l that make A s cost high? Difficulty: We cannot find a single instance that stops exactly after the randomized algorithm buys. We could, instead, look at EA((b = 10, l)) and for each l we get to choose a bad instance. Unfortunately, E is not always easy to evaluate for more complex problems. 5

6 Main idea: Yao s MINIMAX principle gives reduction to deterministic case: Randomized algorithm on deterministic instance Deterministic algorithm on random instance A randomized algorithm can be thought of as A 1 A,... A, p 1 p,... where A i is a deterministic algorithm and A has probability p i of running algorithm A i. We want to show that there is no randomized algorithm that is better than e -competitive, e.g. there are no e 1 randomized algorithm that is 1.1-competitive, equivalently: For every randomized algorithm A, there exists I such that E > 1.1 j p ja j (I) > 1.1 A random instance I can be thought of as I 1 I,... I q 1 q,..., where I i is a deterministic instance and I has probability q i of instantiating to I i. Theorem 1.. (Yao s MINIMAX principle) For all randomized algorithm A and instance I as detailed above we have [ E ] max min I E [ ] I det A Where the on the left side we re running the randomized algorithm A over the worst fixed instance and right side we re running the best deterministic algorithm over a random instance. Observation 1. Under technical conditions the inequality becomes equality (non-trivial, uses, e.g., von Neumann s Minimax). Example: Back to the matrix example. Consider the random instance I 1 with probability 1 I = I with probability 6

7 The expected competitive ratio is a weighted average over ratio on the possible instances: E I = 1 A(I 1 ) OP T (I 1 ) + A(I ) OP T (I ) The table below shows the expected ratios of the deterministic algorithms for this random instance I. I A 1 A A A φ For this random instance, all deterministic algorithms have ratio at least. It is one bad random instance for all algorithms. Thus, the right-hand side of Yao s Principle is equal to, which then shows that our algorithm A = 1A 1 + A is optimal. Proof of Yao s Minimax Principle. max I E A E IE A (maximum average) E I E A = E AE I (exchanging sums) E A E I min j E I 5 min j E I A j (I) min A j (I) (average minimum) det A E I References [1] A. R. Karlin, M. S. Manasse, L. A. McGeoch, and S. Owicki. Competitive randomized algorithms for nonuniform problems. Algorithmica, 11(6):5 571,

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Algorithms and Game Theory Date: 12/3/15

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Algorithms and Game Theory Date: 12/3/15 600.363 Introduction to Algorithms / 600.463 Algorithms I Lecturer: Michael Dinitz Topic: Algorithms and Game Theory Date: 12/3/15 25.1 Introduction Today we re going to spend some time discussing game

More information

Department of Mathematics and Computer Science University of Southern Denmark, Odense. Exercises for Week 47 on. Online Algorithms

Department of Mathematics and Computer Science University of Southern Denmark, Odense. Exercises for Week 47 on. Online Algorithms Department of Mathematics and Computer Science University of Southern Denmark, Odense November 7, 06 KSL Exercises for Week 7 on Online Algorithms a topic in DM5 Introduction to Computer Science Kim Skak

More information

Lecture Overview. 2 Online Algorithms. 2.1 Ski rental problem (rent-or-buy) COMPSCI 532: Design and Analysis of Algorithms November 4, 2015

Lecture Overview. 2 Online Algorithms. 2.1 Ski rental problem (rent-or-buy) COMPSCI 532: Design and Analysis of Algorithms November 4, 2015 COMPSCI 532: Design and Analysis of Algorithms November 4, 215 Lecturer: Debmalya Panigrahi Lecture 19 Scribe: Allen Xiao 1 Overview In this lecture, we motivate online algorithms and introduce some of

More information

Randomized Algorithms for Online Matching with Two Sources

Randomized Algorithms for Online Matching with Two Sources Distributed Computing Randomized Algorithms for Online Matching with Two Sources Bachelor Thesis Thai Duong Nguyen nguyetha@student.ethz.ch Distributed Computing Group Computer Engineering and Networks

More information

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 24: Online Algorithms

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 24: Online Algorithms princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 24: Online Algorithms Lecturer: Matt Weinberg Scribe:Matt Weinberg Lecture notes sourced from Avrim Blum s lecture notes here: http://www.cs.cmu.edu/

More information

Online Algorithms. - Lecture 4 -

Online Algorithms. - Lecture 4 - Online Algorithms - Lecture 4 - Outline Quick recap.. The Cashing Problem Randomization in Online Algorithms Other views to Online Algorithms The Ski-rental problem The Parking Permit Problem 2 The Caching

More information

Primality Testing. Public-Key Cryptography needs large prime numbers How can you tell if p is prime? Try dividing p by all smaller integers

Primality Testing. Public-Key Cryptography needs large prime numbers How can you tell if p is prime? Try dividing p by all smaller integers Primality Testing Public-Key Cryptography needs large prime numbers How can you tell if p is prime? Try dividing p by all smaller integers Exponential in p (number of bits to represent p) Improvement:

More information

Online Algorithms. Lecture Notes for CSCI 570 by David Kempe December 1, 2006

Online Algorithms. Lecture Notes for CSCI 570 by David Kempe December 1, 2006 Online Algorithms Lecture Notes for CSCI 570 by David Kempe December 1, 2006 So far in class, we have only considered the traditional framework for algorithm design, as follows: we are given an input I,

More information

Lecture 8 Sept 25, 2014

Lecture 8 Sept 25, 2014 CS 224: Advanced Algorithms Fall 2014 Prof. Jelani Nelson Lecture 8 Sept 25, 2014 Scribe: Jean Pouget-Abadie 1 Online Algorithms - Overview In this lecture, we are going to cover Online algorithms which

More information

COMP260 Spring 2014 Notes: February 4th

COMP260 Spring 2014 Notes: February 4th COMP260 Spring 2014 Notes: February 4th Andrew Winslow In these notes, all graphs are undirected. We consider matching, covering, and packing in bipartite graphs, general graphs, and hypergraphs. We also

More information

Subset sum problem and dynamic programming

Subset sum problem and dynamic programming Lecture Notes: Dynamic programming We will discuss the subset sum problem (introduced last time), and introduce the main idea of dynamic programming. We illustrate it further using a variant of the so-called

More information

CSE 203A: Randomized Algorithms

CSE 203A: Randomized Algorithms CSE 203A: Randomized Algorithms (00:30) The Minimax Principle (Ch 2) Lecture on 10/18/2017 by Daniel Kane Notes by Peter Greer-Berezovsky Game Tree Evaluation (2.1) - n round deterministic 2-player game

More information

Online Algorithms with Advice

Online Algorithms with Advice Online Algorithms with Advice Marc Renault Supervisor: Adi Rosén, Algorithms and Complexity LRI August 21, 2010 This report is written in English as the maternal language of Marc Renault is English and

More information

COMP Online Algorithms. Online Bin Packing. Shahin Kamali. Lecture 20 - Nov. 16th, 2017 University of Manitoba

COMP Online Algorithms. Online Bin Packing. Shahin Kamali. Lecture 20 - Nov. 16th, 2017 University of Manitoba COMP 7720 - Online Algorithms Online Bin Packing Shahin Kamali Lecture 20 - Nov. 16th, 2017 University of Manitoba COMP 7720 - Online Algorithms Online Bin Packing 1 / 24 Review & Plan COMP 7720 - Online

More information

Efficient Online Strategies for Renting Servers in the Cloud. Shahin Kamali, Alejandro López-Ortiz. University of Waterloo, Canada.

Efficient Online Strategies for Renting Servers in the Cloud. Shahin Kamali, Alejandro López-Ortiz. University of Waterloo, Canada. Efficient Online Strategies for Renting Servers in the Cloud Shahin Kamali, Alejandro López-Ortiz University of Waterloo, Canada. arxiv:408.456v [cs.ds] 8 Aug 04 Abstract. In Cloud systems, we often deal

More information

Online Coloring Known Graphs

Online Coloring Known Graphs Online Coloring Known Graphs Magnús M. Halldórsson Science Institute University of Iceland IS-107 Reykjavik, Iceland mmh@hi.is, www.hi.is/ mmh. Submitted: September 13, 1999; Accepted: February 24, 2000.

More information

Vertex Cover Approximations

Vertex Cover Approximations CS124 Lecture 20 Heuristics can be useful in practice, but sometimes we would like to have guarantees. Approximation algorithms give guarantees. It is worth keeping in mind that sometimes approximation

More information

The Online Connected Facility Location Problem

The Online Connected Facility Location Problem The Online Connected Facility Location Problem Mário César San Felice 1, David P. Willamson 2, and Orlando Lee 1 1 Unicamp, Institute of Computing, Campinas SP 13083-852, Brazil felice@ic.unicamp.br, lee@ic.unicamp.br

More information

Randomized algorithms: Two examples and Yao s Minimax Principle

Randomized algorithms: Two examples and Yao s Minimax Principle Randomized algorithms: Two examles and Yao s Minimax Princile Maximum Satisfiability Consider the roblem Maximum Satisfiability (MAX-SAT). Bring your knowledge u-to-date on the Satisfiability roblem. Maximum

More information

Advanced Algorithms. On-line Algorithms

Advanced Algorithms. On-line Algorithms Advanced Algorithms On-line Algorithms 1 Introduction Online Algorithms are algorithms that need to make decisions without full knowledge of the input. They have full knowledge of the past but no (or partial)

More information

CS261: A Second Course in Algorithms Lecture #16: The Traveling Salesman Problem

CS261: A Second Course in Algorithms Lecture #16: The Traveling Salesman Problem CS61: A Second Course in Algorithms Lecture #16: The Traveling Salesman Problem Tim Roughgarden February 5, 016 1 The Traveling Salesman Problem (TSP) In this lecture we study a famous computational problem,

More information

Group Strategyproof Mechanisms via Primal-Dual Algorithms. Key Points to Discuss

Group Strategyproof Mechanisms via Primal-Dual Algorithms. Key Points to Discuss Group Strategyproof Mechanisms via Primal-Dual Algorithms Martin Pál and Éva Tardos (2003) Key Points to Discuss The Cost-Sharing Problem Metric Facility Location Single Source Rent-or-Buy Definition of

More information

Approximation Algorithms for Item Pricing

Approximation Algorithms for Item Pricing Approximation Algorithms for Item Pricing Maria-Florina Balcan July 2005 CMU-CS-05-176 Avrim Blum School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 School of Computer Science,

More information

Competitive analysis of aggregate max in windowed streaming. July 9, 2009

Competitive analysis of aggregate max in windowed streaming. July 9, 2009 Competitive analysis of aggregate max in windowed streaming Elias Koutsoupias University of Athens Luca Becchetti University of Rome July 9, 2009 The streaming model Streaming A stream is a sequence of

More information

Online Facility Location

Online Facility Location Online Facility Location Adam Meyerson Abstract We consider the online variant of facility location, in which demand points arrive one at a time and we must maintain a set of facilities to service these

More information

11.1 Facility Location

11.1 Facility Location CS787: Advanced Algorithms Scribe: Amanda Burton, Leah Kluegel Lecturer: Shuchi Chawla Topic: Facility Location ctd., Linear Programming Date: October 8, 2007 Today we conclude the discussion of local

More information

Algorithmic Game Theory and Applications. Lecture 16: Selfish Network Routing, Congestion Games, and the Price of Anarchy.

Algorithmic Game Theory and Applications. Lecture 16: Selfish Network Routing, Congestion Games, and the Price of Anarchy. Algorithmic Game Theory and Applications Lecture 16: Selfish Network Routing, Congestion Games, and the Price of Anarchy Kousha Etessami games and the internet Basic idea: The internet is a huge experiment

More information

Online algorithms for clustering problems

Online algorithms for clustering problems University of Szeged Department of Computer Algorithms and Artificial Intelligence Online algorithms for clustering problems Summary of the Ph.D. thesis by Gabriella Divéki Supervisor Dr. Csanád Imreh

More information

CMPSCI611: The Simplex Algorithm Lecture 24

CMPSCI611: The Simplex Algorithm Lecture 24 CMPSCI611: The Simplex Algorithm Lecture 24 Let s first review the general situation for linear programming problems. Our problem in standard form is to choose a vector x R n, such that x 0 and Ax = b,

More information

CMPSCI611: Approximating SET-COVER Lecture 21

CMPSCI611: Approximating SET-COVER Lecture 21 CMPSCI611: Approximating SET-COVER Lecture 21 Today we look at two more examples of approximation algorithms for NP-hard optimization problems. The first, for the SET-COVER problem, has an approximation

More information

A Guide to Deterministic and Randomized Online Algorithms for the List Access Problem

A Guide to Deterministic and Randomized Online Algorithms for the List Access Problem MT F, BIT, and COMB: A Guide to Deterministic and Randomized Online Algorithms for the List Access Problem Kevin Andrew kandrew@cs.hmc.edu David Gleich dgleich@cs.hmc.edu April 30, 2004 Abstract In this

More information

A Primal-Dual Approach for Online Problems. Nikhil Bansal

A Primal-Dual Approach for Online Problems. Nikhil Bansal A Primal-Dual Approach for Online Problems Nikhil Bansal Online Algorithms Input revealed in parts. Algorithm has no knowledge of future. Scheduling, Load Balancing, Routing, Caching, Finance, Machine

More information

Lecture 7. s.t. e = (u,v) E x u + x v 1 (2) v V x v 0 (3)

Lecture 7. s.t. e = (u,v) E x u + x v 1 (2) v V x v 0 (3) COMPSCI 632: Approximation Algorithms September 18, 2017 Lecturer: Debmalya Panigrahi Lecture 7 Scribe: Xiang Wang 1 Overview In this lecture, we will use Primal-Dual method to design approximation algorithms

More information

1 Linear programming relaxation

1 Linear programming relaxation Cornell University, Fall 2010 CS 6820: Algorithms Lecture notes: Primal-dual min-cost bipartite matching August 27 30 1 Linear programming relaxation Recall that in the bipartite minimum-cost perfect matching

More information

4 Integer Linear Programming (ILP)

4 Integer Linear Programming (ILP) TDA6/DIT37 DISCRETE OPTIMIZATION 17 PERIOD 3 WEEK III 4 Integer Linear Programg (ILP) 14 An integer linear program, ILP for short, has the same form as a linear program (LP). The only difference is that

More information

Lecture 10: SVM Lecture Overview Support Vector Machines The binary classification problem

Lecture 10: SVM Lecture Overview Support Vector Machines The binary classification problem Computational Learning Theory Fall Semester, 2012/13 Lecture 10: SVM Lecturer: Yishay Mansour Scribe: Gitit Kehat, Yogev Vaknin and Ezra Levin 1 10.1 Lecture Overview In this lecture we present in detail

More information

Lecture 2. 1 Introduction. 2 The Set Cover Problem. COMPSCI 632: Approximation Algorithms August 30, 2017

Lecture 2. 1 Introduction. 2 The Set Cover Problem. COMPSCI 632: Approximation Algorithms August 30, 2017 COMPSCI 632: Approximation Algorithms August 30, 2017 Lecturer: Debmalya Panigrahi Lecture 2 Scribe: Nat Kell 1 Introduction In this lecture, we examine a variety of problems for which we give greedy approximation

More information

The limits of adaptive sensing

The limits of adaptive sensing The limits of adaptive sensing Mark A. Davenport Stanford University Department of Statistics Sparse Estimation -sparse How well can we estimate? Background: Dantzig Selector Choose a random matrix fill

More information

Lecture 3 February 9, 2010

Lecture 3 February 9, 2010 6.851: Advanced Data Structures Spring 2010 Dr. André Schulz Lecture 3 February 9, 2010 Scribe: Jacob Steinhardt and Greg Brockman 1 Overview In the last lecture we continued to study binary search trees

More information

Lecture Online Algorithms and the k-server problem June 14, 2011

Lecture Online Algorithms and the k-server problem June 14, 2011 Approximation Algorithms Workshop June 13-17, 2011, Princeton Lecture Online Algorithms and the k-server problem June 14, 2011 Joseph (Seffi) Naor Scribe: Mohammad Moharrami 1 Overview In this lecture,

More information

Lecture 1. 2 Motivation: Fast. Reliable. Cheap. Choose two.

Lecture 1. 2 Motivation: Fast. Reliable. Cheap. Choose two. Approximation Algorithms and Hardness of Approximation February 19, 2013 Lecture 1 Lecturer: Ola Svensson Scribes: Alantha Newman 1 Class Information 4 credits Lecturers: Ola Svensson (ola.svensson@epfl.ch)

More information

On the Max Coloring Problem

On the Max Coloring Problem On the Max Coloring Problem Leah Epstein Asaf Levin May 22, 2010 Abstract We consider max coloring on hereditary graph classes. The problem is defined as follows. Given a graph G = (V, E) and positive

More information

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18 601.433/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18 22.1 Introduction We spent the last two lectures proving that for certain problems, we can

More information

15-451/651: Design & Analysis of Algorithms November 4, 2015 Lecture #18 last changed: November 22, 2015

15-451/651: Design & Analysis of Algorithms November 4, 2015 Lecture #18 last changed: November 22, 2015 15-451/651: Design & Analysis of Algorithms November 4, 2015 Lecture #18 last changed: November 22, 2015 While we have good algorithms for many optimization problems, the previous lecture showed that many

More information

Dynamic Routing on Networks with Fixed-Size Buffers

Dynamic Routing on Networks with Fixed-Size Buffers 1 Dynamic Routing on Networks with Fixed-Size Buffers William Aiello Eyal Kushilevitz Rafail Ostrovsky Adi Rosén AT&T Labs Technion Telcordia Tech. Technion 2 Simple Packet Network Model directed graph

More information

An IPS for TQBF Intro to Approximability

An IPS for TQBF Intro to Approximability An IPS for TQBF Intro to Approximability Outline Proof that TQBF (the language of true (valid) quantified Boolean formulas) is in the class IP Introduction to approximation algorithms for NP optimization

More information

On-line Steiner Trees in the Euclidean Plane

On-line Steiner Trees in the Euclidean Plane On-line Steiner Trees in the Euclidean Plane Noga Alon Yossi Azar Abstract Suppose we are given a sequence of n points in the Euclidean plane, and our objective is to construct, on-line, a connected graph

More information

Lecture Notes: Euclidean Traveling Salesman Problem

Lecture Notes: Euclidean Traveling Salesman Problem IOE 691: Approximation Algorithms Date: 2/6/2017, 2/8/2017 ecture Notes: Euclidean Traveling Salesman Problem Instructor: Viswanath Nagarajan Scribe: Miao Yu 1 Introduction In the Euclidean Traveling Salesman

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Prof. Tapio Elomaa tapio.elomaa@tut.fi Course Basics A new 4 credit unit course Part of Theoretical Computer Science courses at the Department of Mathematics There will be 4 hours

More information

Network Design Foundations Fall 2011 Lecture 10

Network Design Foundations Fall 2011 Lecture 10 Network Design Foundations Fall 2011 Lecture 10 Instructor: Mohammad T. Hajiaghayi Scribe: Catalin-Stefan Tiseanu November 2, 2011 1 Overview We study constant factor approximation algorithms for CONNECTED

More information

A Reduction of Conway s Thrackle Conjecture

A Reduction of Conway s Thrackle Conjecture A Reduction of Conway s Thrackle Conjecture Wei Li, Karen Daniels, and Konstantin Rybnikov Department of Computer Science and Department of Mathematical Sciences University of Massachusetts, Lowell 01854

More information

Algorithmic Game Theory and Applications. Lecture 6: The Simplex Algorithm

Algorithmic Game Theory and Applications. Lecture 6: The Simplex Algorithm Algorithmic Game Theory and Applications Lecture 6: The Simplex Algorithm Kousha Etessami Recall our example 1 x + y

More information

Online Algorithms. Lecture 11

Online Algorithms. Lecture 11 Online Algorithms Lecture 11 Today DC on trees DC on arbitrary metrics DC on circle Scheduling K-server on trees Theorem The DC Algorithm is k-competitive for the k server problem on arbitrary tree metrics.

More information

Graph Contraction. Graph Contraction CSE341T/CSE549T 10/20/2014. Lecture 14

Graph Contraction. Graph Contraction CSE341T/CSE549T 10/20/2014. Lecture 14 CSE341T/CSE549T 10/20/2014 Lecture 14 Graph Contraction Graph Contraction So far we have mostly talking about standard techniques for solving problems on graphs that were developed in the context of sequential

More information

A Combined BIT and TIMESTAMP Algorithm for. the List Update Problem. Susanne Albers, Bernhard von Stengel, Ralph Werchner

A Combined BIT and TIMESTAMP Algorithm for. the List Update Problem. Susanne Albers, Bernhard von Stengel, Ralph Werchner A Combined BIT and TIMESTAMP Algorithm for the List Update Problem Susanne Albers, Bernhard von Stengel, Ralph Werchner International Computer Science Institute, 1947 Center Street, Berkeley, CA 94704,

More information

Lecture 15: The subspace topology, Closed sets

Lecture 15: The subspace topology, Closed sets Lecture 15: The subspace topology, Closed sets 1 The Subspace Topology Definition 1.1. Let (X, T) be a topological space with topology T. subset of X, the collection If Y is a T Y = {Y U U T} is a topology

More information

ONLY AVAILABLE IN ELECTRONIC FORM

ONLY AVAILABLE IN ELECTRONIC FORM MANAGEMENT SCIENCE doi 10.1287/mnsc.1070.0812ec pp. ec1 ec7 e-companion ONLY AVAILABLE IN ELECTRONIC FORM informs 2008 INFORMS Electronic Companion Customized Bundle Pricing for Information Goods: A Nonlinear

More information

Problem Set 1. Solution. CS4234: Optimization Algorithms. Solution Sketches

Problem Set 1. Solution. CS4234: Optimization Algorithms. Solution Sketches CS4234: Optimization Algorithms Sketches Problem Set 1 S-1. You are given a graph G = (V, E) with n nodes and m edges. (Perhaps the graph represents a telephone network.) Each edge is colored either blue

More information

COMP Online Algorithms. k-server Problem & Advice. Shahin Kamali. Lecture 13 - Oct. 24, 2017 University of Manitoba

COMP Online Algorithms. k-server Problem & Advice. Shahin Kamali. Lecture 13 - Oct. 24, 2017 University of Manitoba COMP 7720 - Online Algorithms k-server Problem & Advice Shahin Kamali Lecture 13 - Oct. 24, 2017 University of Manitoba COMP 7720 - Online Algorithms k-server Problem & Advice 1 / 20 Review & Plan COMP

More information

JOB SHOP SCHEDULING WITH UNIT LENGTH TASKS

JOB SHOP SCHEDULING WITH UNIT LENGTH TASKS JOB SHOP SCHEDULING WITH UNIT LENGTH TASKS MEIKE AKVELD AND RAPHAEL BERNHARD Abstract. In this paper, we consider a class of scheduling problems that are among the fundamental optimization problems in

More information

Data Structures and Algorithms

Data Structures and Algorithms Data Structures and Algorithms Session 26. April 29, 2009 Instructor: Bert Huang http://www.cs.columbia.edu/~bert/courses/3137 Announcements Homework 6 due before last class: May 4th Final Review May 4th

More information

arxiv: v1 [cs.dc] 3 Apr 2018

arxiv: v1 [cs.dc] 3 Apr 2018 The Transactional Conflict Problem Dan Alistarh IST Austria Syed Kamran Haider UConn Giorgi Nadiradze ETH Zurich Raphael Kübler ETH Zurich arxiv:184.947v1 [cs.dc] 3 Apr 218 Abstract The transactional conflict

More information

Problem Set 4 Solutions

Problem Set 4 Solutions Design and Analysis of Algorithms March 5, 205 Massachusetts Institute of Technology 6.046J/8.40J Profs. Erik Demaine, Srini Devadas, and Nancy Lynch Problem Set 4 Solutions Problem Set 4 Solutions This

More information

/ Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang

/ Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang 600.469 / 600.669 Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang 9.1 Linear Programming Suppose we are trying to approximate a minimization

More information

Online algorithms for clustering problems

Online algorithms for clustering problems University of Szeged Department of Computer Algorithms and Artificial Intelligence Online algorithms for clustering problems Ph.D. Thesis Gabriella Divéki Supervisor: Dr. Csanád Imreh University of Szeged

More information

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Priority Queues / Heaps Date: 9/27/17

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Priority Queues / Heaps Date: 9/27/17 01.433/33 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Priority Queues / Heaps Date: 9/2/1.1 Introduction In this lecture we ll talk about a useful abstraction, priority queues, which are

More information

(67686) Mathematical Foundations of AI July 30, Lecture 11

(67686) Mathematical Foundations of AI July 30, Lecture 11 (67686) Mathematical Foundations of AI July 30, 2008 Lecturer: Ariel D. Procaccia Lecture 11 Scribe: Michael Zuckerman and Na ama Zohary 1 Cooperative Games N = {1,...,n} is the set of players (agents).

More information

The Online Minimum Matching Problem on the Line

The Online Minimum Matching Problem on the Line Connecticut College Digital Commons @ Connecticut College Computer Science Honors Papers Computer Science Department 2016 The Online Minimum Matching Problem on the Line Maximillian Bender Connecticut

More information

Outline. CS38 Introduction to Algorithms. Linear programming 5/21/2014. Linear programming. Lecture 15 May 20, 2014

Outline. CS38 Introduction to Algorithms. Linear programming 5/21/2014. Linear programming. Lecture 15 May 20, 2014 5/2/24 Outline CS38 Introduction to Algorithms Lecture 5 May 2, 24 Linear programming simplex algorithm LP duality ellipsoid algorithm * slides from Kevin Wayne May 2, 24 CS38 Lecture 5 May 2, 24 CS38

More information

E-Companion: On Styles in Product Design: An Analysis of US. Design Patents

E-Companion: On Styles in Product Design: An Analysis of US. Design Patents E-Companion: On Styles in Product Design: An Analysis of US Design Patents 1 PART A: FORMALIZING THE DEFINITION OF STYLES A.1 Styles as categories of designs of similar form Our task involves categorizing

More information

Algorithmic Game Theory and Applications. Lecture 16: Selfish Network Routing, Congestion Games, and the Price of Anarchy

Algorithmic Game Theory and Applications. Lecture 16: Selfish Network Routing, Congestion Games, and the Price of Anarchy Algorithmic Game Theory and Applications Lecture 16: Selfish Network Routing, Congestion Games, and the Price of Anarchy Kousha Etessami warning, again 1 In the few remaining lectures, we will briefly

More information

Comp Online Algorithms

Comp Online Algorithms Comp 7720 - Online Algorithms Notes 4: Bin Packing Shahin Kamalli University of Manitoba - Fall 208 December, 208 Introduction Bin packing is one of the fundamental problems in theory of computer science.

More information

Welcome to the course Algorithm Design

Welcome to the course Algorithm Design Welcome to the course Algorithm Design Summer Term 2011 Friedhelm Meyer auf der Heide Lecture 12, 8.7.2011 Friedhelm Meyer auf der Heide 1 Randomised Algorithms Friedhelm Meyer auf der Heide 2 Topics -

More information

Delayed Information and Action in On-Line Algorithms 1

Delayed Information and Action in On-Line Algorithms 1 Information and Computation 170, 135 152 (2001) doi:10.1006/inco.2001.3057, available online at http://www.idealibrary.com on Delayed Information and Action in On-Line Algorithms 1 Susanne Albers 2 Institut

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Prof. Tapio Elomaa tapio.elomaa@tut.fi Course Basics A 4 credit unit course Part of Theoretical Computer Science courses at the Laboratory of Mathematics There will be 4 hours

More information

Poketree: A Dynamically Competitive Data Structure with Good Worst-Case Performance

Poketree: A Dynamically Competitive Data Structure with Good Worst-Case Performance Poketree: A Dynamically Competitive Data Structure with Good Worst-Case Performance Jussi Kujala and Tapio Elomaa Institute of Software Systems Tampere University of Technology P.O. Box 553, FI-33101 Tampere,

More information

Introduction to Stochastic Combinatorial Optimization

Introduction to Stochastic Combinatorial Optimization Introduction to Stochastic Combinatorial Optimization Stefanie Kosuch PostDok at TCSLab www.kosuch.eu/stefanie/ Guest Lecture at the CUGS PhD course Heuristic Algorithms for Combinatorial Optimization

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Subhash Suri June 5, 2018 1 Figure of Merit: Performance Ratio Suppose we are working on an optimization problem in which each potential solution has a positive cost, and we want

More information

Online file caching with rejection penalties

Online file caching with rejection penalties Online file caching with rejection penalties Leah Epstein Csanád Imreh Asaf Levin Judit Nagy-György Abstract In the file caching problem, the input is a sequence of requests for files out of a slow memory.

More information

Lecture 5: Linear Classification

Lecture 5: Linear Classification Lecture 5: Linear Classification CS 194-10, Fall 2011 Laurent El Ghaoui EECS Department UC Berkeley September 8, 2011 Outline Outline Data We are given a training data set: Feature vectors: data points

More information

Lecture 12 March 4th

Lecture 12 March 4th Math 239: Discrete Mathematics for the Life Sciences Spring 2008 Lecture 12 March 4th Lecturer: Lior Pachter Scribe/ Editor: Wenjing Zheng/ Shaowei Lin 12.1 Alignment Polytopes Recall that the alignment

More information

Lecture 4: Linear Programming

Lecture 4: Linear Programming COMP36111: Advanced Algorithms I Lecture 4: Linear Programming Ian Pratt-Hartmann Room KB2.38: email: ipratt@cs.man.ac.uk 2017 18 Outline The Linear Programming Problem Geometrical analysis The Simplex

More information

Econ 172A - Slides from Lecture 2

Econ 172A - Slides from Lecture 2 Econ 205 Sobel Econ 172A - Slides from Lecture 2 Joel Sobel September 28, 2010 Announcements 1. Sections this evening (Peterson 110, 8-9 or 9-10). 2. Podcasts available when I remember to use microphone.

More information

1 Computer arithmetic with unsigned integers

1 Computer arithmetic with unsigned integers 1 Computer arithmetic with unsigned integers All numbers are w-bit unsigned integers unless otherwise noted. A w-bit unsigned integer x can be written out in binary as x x x w 2...x 2 x 1 x 0, where x

More information

Parallel and Sequential Data Structures and Algorithms Lecture (Spring 2012) Lecture 16 Treaps; Augmented BSTs

Parallel and Sequential Data Structures and Algorithms Lecture (Spring 2012) Lecture 16 Treaps; Augmented BSTs Lecture 16 Treaps; Augmented BSTs Parallel and Sequential Data Structures and Algorithms, 15-210 (Spring 2012) Lectured by Margaret Reid-Miller 8 March 2012 Today: - More on Treaps - Ordered Sets and Tables

More information

Simpler Approximation of the Maximum Asymmetric Traveling Salesman Problem

Simpler Approximation of the Maximum Asymmetric Traveling Salesman Problem Simpler Approximation of the Maximum Asymmetric Traveling Salesman Problem Katarzyna Paluch 1, Khaled Elbassioni 2, and Anke van Zuylen 2 1 Institute of Computer Science, University of Wroclaw ul. Joliot-Curie

More information

MODEL SELECTION AND REGULARIZATION PARAMETER CHOICE

MODEL SELECTION AND REGULARIZATION PARAMETER CHOICE MODEL SELECTION AND REGULARIZATION PARAMETER CHOICE REGULARIZATION METHODS FOR HIGH DIMENSIONAL LEARNING Francesca Odone and Lorenzo Rosasco odone@disi.unige.it - lrosasco@mit.edu June 6, 2011 ABOUT THIS

More information

Lecture 10 October 7, 2014

Lecture 10 October 7, 2014 6.890: Algorithmic Lower Bounds: Fun With Hardness Proofs Fall 2014 Lecture 10 October 7, 2014 Prof. Erik Demaine Scribes: Fermi Ma, Asa Oines, Mikhail Rudoy, Erik Waingarten Overview This lecture begins

More information

1 The Traveling Salesperson Problem (TSP)

1 The Traveling Salesperson Problem (TSP) CS 598CSC: Approximation Algorithms Lecture date: January 23, 2009 Instructor: Chandra Chekuri Scribe: Sungjin Im In the previous lecture, we had a quick overview of several basic aspects of approximation

More information

Copyright 2000, Kevin Wayne 1

Copyright 2000, Kevin Wayne 1 Guessing Game: NP-Complete? 1. LONGEST-PATH: Given a graph G = (V, E), does there exists a simple path of length at least k edges? YES. SHORTEST-PATH: Given a graph G = (V, E), does there exists a simple

More information

CPSC 536N: Randomized Algorithms Term 2. Lecture 10

CPSC 536N: Randomized Algorithms Term 2. Lecture 10 CPSC 536N: Randomized Algorithms 011-1 Term Prof. Nick Harvey Lecture 10 University of British Columbia In the first lecture we discussed the Max Cut problem, which is NP-complete, and we presented a very

More information

AM 221: Advanced Optimization Spring 2016

AM 221: Advanced Optimization Spring 2016 AM 221: Advanced Optimization Spring 2016 Prof Yaron Singer Lecture 3 February 1st 1 Overview In our previous lecture we presented fundamental results from convex analysis and in particular the separating

More information

6 Randomized rounding of semidefinite programs

6 Randomized rounding of semidefinite programs 6 Randomized rounding of semidefinite programs We now turn to a new tool which gives substantially improved performance guarantees for some problems We now show how nonlinear programming relaxations can

More information

CS261: A Second Course in Algorithms Lecture #14: Online Bipartite Matching

CS261: A Second Course in Algorithms Lecture #14: Online Bipartite Matching CS61: A Second Course in Algorithms Lecture #14: Online Bipartite Matching Tim Roughgarden February 18, 16 1 Online Bipartite Matching Our final lecture on online algorithms concerns the online bipartite

More information

arxiv: v2 [cs.ds] 9 Apr 2009

arxiv: v2 [cs.ds] 9 Apr 2009 Pairing Heaps with Costless Meld arxiv:09034130v2 [csds] 9 Apr 2009 Amr Elmasry Max-Planck Institut für Informatik Saarbrücken, Germany elmasry@mpi-infmpgde Abstract Improving the structure and analysis

More information

Lecture 2 September 3

Lecture 2 September 3 EE 381V: Large Scale Optimization Fall 2012 Lecture 2 September 3 Lecturer: Caramanis & Sanghavi Scribe: Hongbo Si, Qiaoyang Ye 2.1 Overview of the last Lecture The focus of the last lecture was to give

More information

Lecture 6: Faces, Facets

Lecture 6: Faces, Facets IE 511: Integer Programming, Spring 2019 31 Jan, 2019 Lecturer: Karthik Chandrasekaran Lecture 6: Faces, Facets Scribe: Setareh Taki Disclaimer: These notes have not been subjected to the usual scrutiny

More information

AM 221: Advanced Optimization Spring 2016

AM 221: Advanced Optimization Spring 2016 AM 221: Advanced Optimization Spring 2016 Prof. Yaron Singer Lecture 2 Wednesday, January 27th 1 Overview In our previous lecture we discussed several applications of optimization, introduced basic terminology,

More information

Applied Lagrange Duality for Constrained Optimization

Applied Lagrange Duality for Constrained Optimization Applied Lagrange Duality for Constrained Optimization Robert M. Freund February 10, 2004 c 2004 Massachusetts Institute of Technology. 1 1 Overview The Practical Importance of Duality Review of Convexity

More information

Approximation Algorithms

Approximation Algorithms Chapter 8 Approximation Algorithms Algorithm Theory WS 2016/17 Fabian Kuhn Approximation Algorithms Optimization appears everywhere in computer science We have seen many examples, e.g.: scheduling jobs

More information