Optimization Methods: Optimization using Calculus Kuhn-Tucker Conditions 1. Module - 2 Lecture Notes 5. Kuhn-Tucker Conditions

Size: px
Start display at page:

Download "Optimization Methods: Optimization using Calculus Kuhn-Tucker Conditions 1. Module - 2 Lecture Notes 5. Kuhn-Tucker Conditions"

Transcription

1 Optimization Methods: Optimization using Calculus Kuhn-Tucker Conditions Module - Lecture Notes 5 Kuhn-Tucker Conditions Introduction In the previous lecture the optimization of functions of multiple variables subected to equality constraints using the method of constrained variation and the method of Lagrange multipliers was dealt. In this lecture the Kuhn-Tucker conditions will be discussed with examples for a point to be a local optimum in case of a function subect to inequality constraints. Kuhn-Tucker Conditions It was previously established that for both an unconstrained optimization problem and an optimization problem with an equality constraint the first-order conditions are sufficient for a global optimum when the obective and constraint functions satisfy appropriate concavity/convexity conditions. The same is true for an optimization problem with inequality constraints. The Kuhn-Tucker conditions are both necessary and sufficient if the obective function is concave and each constraint is linear or each constraint function is concave, the problems belong to a class called the convex programming problems. Consider the following optimization problem: Minimize f(x) subect to g (X) 0 for =,,,p ; where X = [x x... x n ] Then the Kuhn-Tucker conditions for X * = [x * x *... x n * ] to be a local minimum are f x i m g + λ = 0 i =,,..., n x = i λ g g = 0 =,,..., m 0 =,,..., m λ 0 =,,..., m () ML5

2 Optimization Methods: Optimization using Calculus Kuhn-Tucker Conditions In case of minimization problems, if the constraints are of the form g (X) 0, then λ have to be nonpositive in (). On the other hand, if the problem is one of maximization with the constraints in the form g (X) 0, then λ have to be nonnegative. It may be noted that sign convention has to be strictly followed for the Kuhn-Tucker conditions to be applicable. Example Minimize f = x + x + 3x 3 subect to the constraints g = x x x 3 g = x + x 3x 8 3 using Kuhn-Tucker conditions. Solution: The Kuhn-Tucker conditions are given by f g g + + = a) λ λ 0 xi xi xi x + λ + λ = 0 () 4x λ + λ = 0 (3) 6x λ 3λ = 0 (4) 3 b) λ g = 0 λ ( x x x ) = 0 (5) 3 λ ( x + x 3x 8) = 0 (6) 3 c) g 0 ML5

3 Optimization Methods: Optimization using Calculus Kuhn-Tucker Conditions 3, x x x 0 (7) 3 x + x 3x 8 0 (8) 3 d) λ 0, λ 0 (9) λ 0 (0) From (5) either λ = 0 or, x x x3 =0 Case : λ = 0 From (), (3) and (4) we have x = x = λ /and x 3 = λ /. Using these in (6) we get λ + 8λ = 0, λ = 0or 8 From (0), λ 0, therefore, λ =0, X * = [ 0, 0, 0 ], this solution set satisfies all of (6) to (9) Case : x x x3 = 0 λ λ λ λ λ+ 3λ Using (), (3) and (4), we have = 0 or, 4 3 7λ + λ = 44. But conditions (9) and (0) give us λ 0 and λ 0 simultaneously, which cannot be possible with 7λ+ λ = 44. Hence the solution set for this optimization problem is X * = [ ] ML5

4 Optimization Methods: Optimization using Calculus Kuhn-Tucker Conditions 4 Example Minimize f = x + x + x subect to the constraints 60 g = x 80 0 g = x + x 0 0 using Kuhn-Tucker conditions. Solution The Kuhn-Tucker conditions are given by f g g g3 a) + λ + λ + λ = x x x x 3 0 i i i i x λ + λ = 0 () x + λ = 0 () b) λ g = 0 λ ( x 80) = 0 (3) λ ( x + x 0) = 0 (4) c) g 0, x 80 0 (5) x+ x (6) d) λ 0, ML5

5 Optimization Methods: Optimization using Calculus Kuhn-Tucker Conditions 5 λ 0 (7) λ 0 (8) From (3) either λ = 0 or, ( x 80) = 0 Case : λ = 0 λ From () and () we have λ x = 30 and x = ( ) Using these in (4) we get λ λ 50 = 0; λ = 0 or 50 Considering λ = 0, X * = [ 30, 0]. But this solution set violates (5) and (6) For λ = 50, X * = [ 45, 75]. But this solution set violates (5). Case : ( x 80) = 0 Using x = 80 in () and (), we have λ = x λ = x 0 (9) Substitute (9) in (4), we have ( x ) x 40 = 0. For this to be true, either x = 0 or x 40=0 For x = 0, λ = 0. This solution set violates (5) and (6) ML5

6 Optimization Methods: Optimization using Calculus Kuhn-Tucker Conditions 6 For x 40 = 0, λ = 40 and λ = 80. This solution set is satisfying all equations from (5) to (9) and hence the desired. Therefore, the solution set for this optimization problem is X * = [ ]. References / Further Reading:. Rao S.S., Engineering Optimization Theory and Practice, Third Edition, New Age International Limited, New Delhi, Ravindran A., D.T. Phillips and J.J. Solberg, Operations Research Principles and Practice, John Wiley & Sons, New York, Taha H.A., Operations Research An Introduction, Prentice-Hall of India Pvt. Ltd., New Delhi, Vedula S., and P.P. Muumdar, Water Resources Systems: Modelling Techniques and Analysis, Tata McGraw Hill, New Delhi, 005. ML5

Introduction to Linear Programing Problems

Introduction to Linear Programing Problems Paper: Linear Programming and Theory of Games Lesson: Introduction to Linear Programing Problems Lesson Developers: DR. MANOJ KUMAR VARSHNEY, College/Department: Department of Statistics, Hindu College,

More information

Programming, numerics and optimization

Programming, numerics and optimization Programming, numerics and optimization Lecture C-4: Constrained optimization Łukasz Jankowski ljank@ippt.pan.pl Institute of Fundamental Technological Research Room 4.32, Phone +22.8261281 ext. 428 June

More information

Lecture 2 Optimization with equality constraints

Lecture 2 Optimization with equality constraints Lecture 2 Optimization with equality constraints Constrained optimization The idea of constrained optimisation is that the choice of one variable often affects the amount of another variable that can be

More information

Demo 1: KKT conditions with inequality constraints

Demo 1: KKT conditions with inequality constraints MS-C5 Introduction to Optimization Solutions 9 Ehtamo Demo : KKT conditions with inequality constraints Using the Karush-Kuhn-Tucker conditions, see if the points x (x, x ) (, 4) or x (x, x ) (6, ) are

More information

A Computer Oriented Method for Solving Transportation Problem

A Computer Oriented Method for Solving Transportation Problem Dhaka Univ. J. Sci. 63(1): 1-7, 015 (January) A Computer Oriented Method for Solving Transportation Problem Sharmin Afroz and M. Babul Hasan* Department of Mathematics, Dhaka University, Dhaka-1000, Bangladesh

More information

Constrained Optimization COS 323

Constrained Optimization COS 323 Constrained Optimization COS 323 Last time Introduction to optimization objective function, variables, [constraints] 1-dimensional methods Golden section, discussion of error Newton s method Multi-dimensional

More information

EC5555 Economics Masters Refresher Course in Mathematics September Lecture 6 Optimization with equality constraints Francesco Feri

EC5555 Economics Masters Refresher Course in Mathematics September Lecture 6 Optimization with equality constraints Francesco Feri EC5555 Economics Masters Refresher Course in Mathematics September 2013 Lecture 6 Optimization with equality constraints Francesco Feri Constrained optimization The idea of constrained optimisation is

More information

Optimization III: Constrained Optimization

Optimization III: Constrained Optimization Optimization III: Constrained Optimization CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Doug James (and Justin Solomon) CS 205A: Mathematical Methods Optimization III: Constrained Optimization

More information

Local and Global Minimum

Local and Global Minimum Local and Global Minimum Stationary Point. From elementary calculus, a single variable function has a stationary point at if the derivative vanishes at, i.e., 0. Graphically, the slope of the function

More information

Search direction improvement for gradient-based optimization problems

Search direction improvement for gradient-based optimization problems Computer Aided Optimum Design in Engineering IX 3 Search direction improvement for gradient-based optimization problems S Ganguly & W L Neu Aerospace and Ocean Engineering, Virginia Tech, USA Abstract

More information

OPTIMIZATION METHODS

OPTIMIZATION METHODS D. Nagesh Kumar Associate Professor Department of Civil Engineering, Indian Institute of Science, Bangalore - 50 0 Email : nagesh@civil.iisc.ernet.in URL: http://www.civil.iisc.ernet.in/~nagesh Brief Contents

More information

Lagrange multipliers. Contents. Introduction. From Wikipedia, the free encyclopedia

Lagrange multipliers. Contents. Introduction. From Wikipedia, the free encyclopedia Lagrange multipliers From Wikipedia, the free encyclopedia In mathematical optimization problems, Lagrange multipliers, named after Joseph Louis Lagrange, is a method for finding the local extrema of a

More information

California Institute of Technology Crash-Course on Convex Optimization Fall Ec 133 Guilherme Freitas

California Institute of Technology Crash-Course on Convex Optimization Fall Ec 133 Guilherme Freitas California Institute of Technology HSS Division Crash-Course on Convex Optimization Fall 2011-12 Ec 133 Guilherme Freitas In this text, we will study the following basic problem: maximize x C f(x) subject

More information

MATH 19520/51 Class 10

MATH 19520/51 Class 10 MATH 19520/51 Class 10 Minh-Tam Trinh University of Chicago 2017-10-16 1 Method of Lagrange multipliers. 2 Examples of Lagrange multipliers. The Problem The ingredients: 1 A set of parameters, say x 1,...,

More information

GOAL GEOMETRIC PROGRAMMING PROBLEM (G 2 P 2 ) WITH CRISP AND IMPRECISE TARGETS

GOAL GEOMETRIC PROGRAMMING PROBLEM (G 2 P 2 ) WITH CRISP AND IMPRECISE TARGETS Volume 4, No. 8, August 2013 Journal of Global Research in Computer Science REVIEW ARTICLE Available Online at www.jgrcs.info GOAL GEOMETRIC PROGRAMMING PROBLEM (G 2 P 2 ) WITH CRISP AND IMPRECISE TARGETS

More information

Lecture Notes: Constraint Optimization

Lecture Notes: Constraint Optimization Lecture Notes: Constraint Optimization Gerhard Neumann January 6, 2015 1 Constraint Optimization Problems In constraint optimization we want to maximize a function f(x) under the constraints that g i (x)

More information

Unconstrained Optimization Principles of Unconstrained Optimization Search Methods

Unconstrained Optimization Principles of Unconstrained Optimization Search Methods 1 Nonlinear Programming Types of Nonlinear Programs (NLP) Convexity and Convex Programs NLP Solutions Unconstrained Optimization Principles of Unconstrained Optimization Search Methods Constrained Optimization

More information

5 Day 5: Maxima and minima for n variables.

5 Day 5: Maxima and minima for n variables. UNIVERSITAT POMPEU FABRA INTERNATIONAL BUSINESS ECONOMICS MATHEMATICS III. Pelegrí Viader. 2012-201 Updated May 14, 201 5 Day 5: Maxima and minima for n variables. The same kind of first-order and second-order

More information

Introduction to Constrained Optimization

Introduction to Constrained Optimization Introduction to Constrained Optimization Duality and KKT Conditions Pratik Shah {pratik.shah [at] lnmiit.ac.in} The LNM Institute of Information Technology www.lnmiit.ac.in February 13, 2013 LNMIIT MLPR

More information

Module 4 : Solving Linear Algebraic Equations Section 11 Appendix C: Steepest Descent / Gradient Search Method

Module 4 : Solving Linear Algebraic Equations Section 11 Appendix C: Steepest Descent / Gradient Search Method Module 4 : Solving Linear Algebraic Equations Section 11 Appendix C: Steepest Descent / Gradient Search Method 11 Appendix C: Steepest Descent / Gradient Search Method In the module on Problem Discretization

More information

A Short SVM (Support Vector Machine) Tutorial

A Short SVM (Support Vector Machine) Tutorial A Short SVM (Support Vector Machine) Tutorial j.p.lewis CGIT Lab / IMSC U. Southern California version 0.zz dec 004 This tutorial assumes you are familiar with linear algebra and equality-constrained optimization/lagrange

More information

Applied Lagrange Duality for Constrained Optimization

Applied Lagrange Duality for Constrained Optimization Applied Lagrange Duality for Constrained Optimization Robert M. Freund February 10, 2004 c 2004 Massachusetts Institute of Technology. 1 1 Overview The Practical Importance of Duality Review of Convexity

More information

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 2 Review Dr. Ted Ralphs IE316 Quiz 2 Review 1 Reading for The Quiz Material covered in detail in lecture Bertsimas 4.1-4.5, 4.8, 5.1-5.5, 6.1-6.3 Material

More information

Using the Simplex Method to Solve Linear Programming Maximization Problems J. Reeb and S. Leavengood

Using the Simplex Method to Solve Linear Programming Maximization Problems J. Reeb and S. Leavengood PERFORMANCE EXCELLENCE IN THE WOOD PRODUCTS INDUSTRY EM 8720-E October 1998 $3.00 Using the Simplex Method to Solve Linear Programming Maximization Problems J. Reeb and S. Leavengood A key problem faced

More information

Solving Fuzzy Sequential Linear Programming Problem by Fuzzy Frank Wolfe Algorithm

Solving Fuzzy Sequential Linear Programming Problem by Fuzzy Frank Wolfe Algorithm Global Journal of Pure and Applied Mathematics. ISSN 0973-768 Volume 3, Number (07), pp. 749-758 Research India Publications http://www.ripublication.com Solving Fuzzy Sequential Linear Programming Problem

More information

LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION. 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach

LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION. 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach Basic approaches I. Primal Approach - Feasible Direction

More information

QEM Optimization, WS 2017/18 Part 4. Constrained optimization

QEM Optimization, WS 2017/18 Part 4. Constrained optimization QEM Optimization, WS 2017/18 Part 4 Constrained optimization (about 4 Lectures) Supporting Literature: Angel de la Fuente, Mathematical Methods and Models for Economists, Chapter 7 Contents 4 Constrained

More information

Constrained Optimization and Lagrange Multipliers

Constrained Optimization and Lagrange Multipliers Constrained Optimization and Lagrange Multipliers MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Constrained Optimization In the previous section we found the local or absolute

More information

Deccan Education Society s

Deccan Education Society s Deccan Education Society s FERGUSSON COLLEGE, PUNE (AUTONOMOUS) SYLLABUS UNDER AUTONOMY SECOND YEAR B.Sc.(COMPUTER SCIENCE) MATHEMATICS SEMESTER III w.e.f. Academic Year 2017-2018 Deccan Education Society

More information

Division of the Humanities and Social Sciences. Convex Analysis and Economic Theory Winter Separation theorems

Division of the Humanities and Social Sciences. Convex Analysis and Economic Theory Winter Separation theorems Division of the Humanities and Social Sciences Ec 181 KC Border Convex Analysis and Economic Theory Winter 2018 Topic 8: Separation theorems 8.1 Hyperplanes and half spaces Recall that a hyperplane in

More information

Using the Graphical Method to Solve Linear Programs J. Reeb and S. Leavengood

Using the Graphical Method to Solve Linear Programs J. Reeb and S. Leavengood PERFORMANCE EXCELLENCE IN THE WOOD PRODUCTS INDUSTRY EM 8719-E October 1998 $2.50 Using the Graphical Method to Solve Linear Programs J. Reeb and S. Leavengood A key problem faced by managers is how to

More information

Unconstrained and Constrained Optimization

Unconstrained and Constrained Optimization Unconstrained and Constrained Optimization Agenda General Ideas of Optimization Interpreting the First Derivative Interpreting the Second Derivative Unconstrained Optimization Constrained Optimization

More information

MATH3016: OPTIMIZATION

MATH3016: OPTIMIZATION MATH3016: OPTIMIZATION Lecturer: Dr Huifu Xu School of Mathematics University of Southampton Highfield SO17 1BJ Southampton Email: h.xu@soton.ac.uk 1 Introduction What is optimization? Optimization is

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Maximum Margin Methods Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574

More information

SYLLABUS. M.Sc. III rd SEMESTER Department of Mathematics Mata Gujri Mahila Mahavidyalaya,(Auto), Jabalpur

SYLLABUS. M.Sc. III rd SEMESTER Department of Mathematics Mata Gujri Mahila Mahavidyalaya,(Auto), Jabalpur SYLLABUS M.Sc. III rd SEMESTER 2018-19 Department of Mathematics Mata Gujri Mahila Mahavidyalaya,(Auto), Jabalpur MATA GUJRI MAHILA MAHAVIDYALAYA (AUTO), JABALPUR M.Sc. (MATHEMATICS) THIRD SEMESTER Name

More information

Linear methods for supervised learning

Linear methods for supervised learning Linear methods for supervised learning LDA Logistic regression Naïve Bayes PLA Maximum margin hyperplanes Soft-margin hyperplanes Least squares resgression Ridge regression Nonlinear feature maps Sometimes

More information

Proposed syllabus for

Proposed syllabus for Proposed syllabus for Skill Enhancement Course Papers for B.Sc.(H) Mathematics/ B.Sc. (Prog)/B.A.(Prog) Department of Mathematics University of Delhi Delhi-110007 1 Sl. No. CORE COURSE (12) I II III IV

More information

Truss structural configuration optimization using the linear extended interior penalty function method

Truss structural configuration optimization using the linear extended interior penalty function method ANZIAM J. 46 (E) pp.c1311 C1326, 2006 C1311 Truss structural configuration optimization using the linear extended interior penalty function method Wahyu Kuntjoro Jamaluddin Mahmud (Received 25 October

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Constrained Optimization Marc Toussaint U Stuttgart Constrained Optimization General constrained optimization problem: Let R n, f : R n R, g : R n R m, h : R n R l find min

More information

SARDAR RAJA COLLEGE OF ENGINEERING ALANGULAM : PROTECTION AND SWITCHGEAR

SARDAR RAJA COLLEGE OF ENGINEERING ALANGULAM : PROTECTION AND SWITCHGEAR SARDAR RAJA COLLEGE OF ENGINEERING ALANGULAM DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING MICRO LESSION PLAN SUBJECT CODE SUBJECT NAME YEAR SEM CLASS : EE72 : PROTECTION AND SWITCHGEAR : IV : VII

More information

Academic Course Description. VL2003 Digital Processing Structures for VLSI First Semester, (Odd semester)

Academic Course Description. VL2003 Digital Processing Structures for VLSI First Semester, (Odd semester) Academic Course Description SRM University Faculty of Engineering and Technology Department of Electronics and Communication Engineering VL2003 Digital Processing Structures for VLSI First Semester, 2015-16

More information

Lecture 4 Duality and Decomposition Techniques

Lecture 4 Duality and Decomposition Techniques Lecture 4 Duality and Decomposition Techniques Jie Lu (jielu@kth.se) Richard Combes Alexandre Proutiere Automatic Control, KTH September 19, 2013 Consider the primal problem Lagrange Duality Lagrangian

More information

Lecture 2 September 3

Lecture 2 September 3 EE 381V: Large Scale Optimization Fall 2012 Lecture 2 September 3 Lecturer: Caramanis & Sanghavi Scribe: Hongbo Si, Qiaoyang Ye 2.1 Overview of the last Lecture The focus of the last lecture was to give

More information

Obtaining a Feasible Geometric Programming Primal Solution, Given a Near-Optimal Dual Solution

Obtaining a Feasible Geometric Programming Primal Solution, Given a Near-Optimal Dual Solution Obtaining a Feasible Geometric Programming Primal Solution, Given a ear-optimal Dual Solution DEIS L. BRICKER and JAE CHUL CHOI Dept. of Industrial Engineering The University of Iowa June 1994 A dual algorithm

More information

Winter 2012 Math 255 Section 006. Problem Set 7

Winter 2012 Math 255 Section 006. Problem Set 7 Problem Set 7 1 a) Carry out the partials with respect to t and x, substitute and check b) Use separation of varibles, i.e. write as dx/x 2 = dt, integrate both sides and observe that the solution also

More information

Elements of Economic Analysis II Lecture III: Cost Minimization, Factor Demand and Cost Function

Elements of Economic Analysis II Lecture III: Cost Minimization, Factor Demand and Cost Function Elements of Economic Analysis II Lecture III: Cost Minimization, Factor Demand and Cost Function Kai Hao Yang 10/05/2017 1 Cost Minimization In the last lecture, we saw a firm s profit maximization problem.

More information

1. Show that the rectangle of maximum area that has a given perimeter p is a square.

1. Show that the rectangle of maximum area that has a given perimeter p is a square. Constrained Optimization - Examples - 1 Unit #23 : Goals: Lagrange Multipliers To study constrained optimization; that is, the maximizing or minimizing of a function subject to a constraint (or side condition).

More information

Optimization Methods: Advanced Topics in Optimization - Multi-objective Optimization 1. Module 8 Lecture Notes 2. Multi-objective Optimization

Optimization Methods: Advanced Topics in Optimization - Multi-objective Optimization 1. Module 8 Lecture Notes 2. Multi-objective Optimization Optimization Methods: Advanced Topics in Optimization - Multi-objective Optimization 1 Module 8 Lecture Notes 2 Multi-objective Optimization Introduction In a real world problem it is very unlikely that

More information

In other words, we want to find the domain points that yield the maximum or minimum values (extrema) of the function.

In other words, we want to find the domain points that yield the maximum or minimum values (extrema) of the function. 1 The Lagrange multipliers is a mathematical method for performing constrained optimization of differentiable functions. Recall unconstrained optimization of differentiable functions, in which we want

More information

Machine Learning for Signal Processing Lecture 4: Optimization

Machine Learning for Signal Processing Lecture 4: Optimization Machine Learning for Signal Processing Lecture 4: Optimization 13 Sep 2015 Instructor: Bhiksha Raj (slides largely by Najim Dehak, JHU) 11-755/18-797 1 Index 1. The problem of optimization 2. Direct optimization

More information

A Comparative study on Algorithms for Shortest-Route Problem and Some Extensions

A Comparative study on Algorithms for Shortest-Route Problem and Some Extensions International Journal of Basic & Applied Sciences IJBAS-IJENS Vol: No: 0 A Comparative study on Algorithms for Shortest-Route Problem and Some Extensions Sohana Jahan, Md. Sazib Hasan Abstract-- The shortest-route

More information

BACHELOR OF COMPUTER APPLICATIONS DISTANCE EDUCATION SCHEME OF EXAMINATION (w.e.f ) SECOND YEAR

BACHELOR OF COMPUTER APPLICATIONS DISTANCE EDUCATION SCHEME OF EXAMINATION (w.e.f ) SECOND YEAR BACHELOR OF COMPUTER APPLICATIONS DISTANCE EDUCATION SCHEME OF EXAMINATION (w.e.f. 2014-15) Paper No. 201 202 203 204 Title of Paper Operating System Data Structures Computer Architecture Data Base Management

More information

Mathematical Programming and Research Methods (Part II)

Mathematical Programming and Research Methods (Part II) Mathematical Programming and Research Methods (Part II) 4. Convexity and Optimization Massimiliano Pontil (based on previous lecture by Andreas Argyriou) 1 Today s Plan Convex sets and functions Types

More information

STATIC FINITE ELEMENT ANALYSIS AND VALIDATION OF N1 TYPE VEHICLE CHASSIS MEMBERS FOR BENDING PERFORMANCE

STATIC FINITE ELEMENT ANALYSIS AND VALIDATION OF N1 TYPE VEHICLE CHASSIS MEMBERS FOR BENDING PERFORMANCE STATIC FINITE ELEMENT ANALYSIS AND VALIDATION OF N1 TYPE VEHICLE CHASSIS MEMBERS FOR BENDING PERFORMANCE 1 CHINMAY POTDAR, 2 AMEY PISE, 3 AISHWARYA DUBEY, 4 SUSHRUT JADHAV 1, 3 TATA Technologies Limited,

More information

MULTIDISCIPLINE DESIGN OPTIMIZATION

MULTIDISCIPLINE DESIGN OPTIMIZATION MULTIDISCIPLINE DESIGN OPTIMIZATION Garret N. Vanderplaats Founder & Chief Executive Officer Vanderplaats Research & Development, Inc. Colorado Springs, CO CHAPTER ONE 1BASIC CONCEPTS He Wants Us To Use

More information

Nonlinear Programming

Nonlinear Programming Nonlinear Programming SECOND EDITION Dimitri P. Bertsekas Massachusetts Institute of Technology WWW site for book Information and Orders http://world.std.com/~athenasc/index.html Athena Scientific, Belmont,

More information

Constrained Optimization with Calculus. Background Three Big Problems Setup and Vocabulary

Constrained Optimization with Calculus. Background Three Big Problems Setup and Vocabulary Constrained Optimization with Calculus Background Three Big Problems Setup and Vocabulary Background Information In unit 3, you learned about linear programming, in which all constraints and the objective

More information

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini DM545 Linear and Integer Programming Lecture 2 The Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. 3. 4. Standard Form Basic Feasible Solutions

More information

Kernel Methods & Support Vector Machines

Kernel Methods & Support Vector Machines & Support Vector Machines & Support Vector Machines Arvind Visvanathan CSCE 970 Pattern Recognition 1 & Support Vector Machines Question? Draw a single line to separate two classes? 2 & Support Vector

More information

LINEAR PROGRAMMING (LP), GRAPHICAL PRESENTATION GASPAR ASAMPANA

LINEAR PROGRAMMING (LP), GRAPHICAL PRESENTATION GASPAR ASAMPANA LINEAR PROGRAMMING (LP), GRAPHICAL PRESENTATION GASPAR ASAMPANA INTRODUCTION Linear Programming a is combination of a linear objective function and set of linear constraints. The linear constraints express

More information

A Comparative Study on Optimization Techniques for Solving Multi-objective Geometric Programming Problems

A Comparative Study on Optimization Techniques for Solving Multi-objective Geometric Programming Problems Applied Mathematical Sciences, Vol. 9, 205, no. 22, 077-085 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.2988/ams.205.42029 A Comparative Study on Optimization Techniques for Solving Multi-objective

More information

An Improved Subgradiend Optimization Technique for Solving IPs with Lagrangean Relaxation

An Improved Subgradiend Optimization Technique for Solving IPs with Lagrangean Relaxation Dhaka Univ. J. Sci. 61(2): 135-140, 2013 (July) An Improved Subgradiend Optimization Technique for Solving IPs with Lagrangean Relaxation M. Babul Hasan and Md. Toha De epartment of Mathematics, Dhaka

More information

Convexity Theory and Gradient Methods

Convexity Theory and Gradient Methods Convexity Theory and Gradient Methods Angelia Nedić angelia@illinois.edu ISE Department and Coordinated Science Laboratory University of Illinois at Urbana-Champaign Outline Convex Functions Optimality

More information

22. LECTURE 22. I can define critical points. I know the difference between local and absolute minimums/maximums.

22. LECTURE 22. I can define critical points. I know the difference between local and absolute minimums/maximums. . LECTURE Objectives I can define critical points. I know the difference between local and absolute minimums/maximums. In many physical problems, we re interested in finding the values (x, y) that maximize

More information

Lesson 11: Duality in linear programming

Lesson 11: Duality in linear programming Unit 1 Lesson 11: Duality in linear programming Learning objectives: Introduction to dual programming. Formulation of Dual Problem. Introduction For every LP formulation there exists another unique linear

More information

3/1/2016. Calculus: A Reminder. Calculus: A Reminder. Calculus: A Reminder. Calculus: A Reminder. Calculus: A Reminder. Calculus: A Reminder

3/1/2016. Calculus: A Reminder. Calculus: A Reminder. Calculus: A Reminder. Calculus: A Reminder. Calculus: A Reminder. Calculus: A Reminder 1 Intermediate Microeconomics W3211 Lecture 5: Choice and Demand Introduction Columbia Universit, Spring 2016 Mark Dean: mark.dean@columbia.edu 2 The Stor So Far. 3 Toda s Aims 4 We have now have had a

More information

Global Optima for Linearly Constrained Business Decision Models

Global Optima for Linearly Constrained Business Decision Models Global Optima for Linearly Constrained Hossein Arsham Division of Economics, Finance, and Management Science University of Baltimore,USA Abstract : It is well-known that many business administration decision

More information

Department of Mathematics Oleg Burdakov of 30 October Consider the following linear programming problem (LP):

Department of Mathematics Oleg Burdakov of 30 October Consider the following linear programming problem (LP): Linköping University Optimization TAOP3(0) Department of Mathematics Examination Oleg Burdakov of 30 October 03 Assignment Consider the following linear programming problem (LP): max z = x + x s.t. x x

More information

A Deterministic Dynamic Programming Approach for Optimization Problem with Quadratic Objective Function and Linear Constraints

A Deterministic Dynamic Programming Approach for Optimization Problem with Quadratic Objective Function and Linear Constraints A Deterministic Dynamic Programming Approach for Optimization Problem with Quadratic Objective Function and Linear Constraints S. Kavitha, Nirmala P. Ratchagar International Science Index, Mathematical

More information

Saudi Journal of Business and Management Studies. DOI: /sjbms ISSN (Print)

Saudi Journal of Business and Management Studies. DOI: /sjbms ISSN (Print) DOI: 10.21276/sjbms.2017.2.2.5 Saudi Journal of Business and Management Studies Scholars Middle East Publishers Dubai, United Arab Emirates Website: http://scholarsmepub.com/ ISSN 2415-6663 (Print ISSN

More information

Operations Research: An Introduction (8th Edition) By Hamdy A. Taha READ ONLINE

Operations Research: An Introduction (8th Edition) By Hamdy A. Taha READ ONLINE Operations Research: An Introduction (8th Edition) By Hamdy A. Taha READ ONLINE Hillier, F.S. and Liebermann, G.J. (2005), Introduction to Operations Research, 8th Edition, McGraw-Hill. 15. Kelton, W.D.,

More information

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture - 35 Quadratic Programming In this lecture, we continue our discussion on

More information

Classification of Optimization Problems and the Place of Calculus of Variations in it

Classification of Optimization Problems and the Place of Calculus of Variations in it Lecture 1 Classification of Optimization Problems and the Place of Calculus of Variations in it ME256 Indian Institute of Science G. K. Ananthasuresh Professor, Mechanical Engineering, Indian Institute

More information

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 2. Convex Optimization

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 2. Convex Optimization Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 2 Convex Optimization Shiqian Ma, MAT-258A: Numerical Optimization 2 2.1. Convex Optimization General optimization problem: min f 0 (x) s.t., f i

More information

and 6.855J Lagrangian Relaxation I never missed the opportunity to remove obstacles in the way of unity. Mohandas Gandhi

and 6.855J Lagrangian Relaxation I never missed the opportunity to remove obstacles in the way of unity. Mohandas Gandhi 15.082 and 6.855J Lagrangian Relaxation I never missed the opportunity to remove obstacles in the way of unity. Mohandas Gandhi On bounding in optimization In solving network flow problems, we not only

More information

Support Vector Machines

Support Vector Machines Support Vector Machines About the Name... A Support Vector A training sample used to define classification boundaries in SVMs located near class boundaries Support Vector Machines Binary classifiers whose

More information

Optimization Methods: Optimization using Calculus-Stationary Points 1. Module - 2 Lecture Notes 1

Optimization Methods: Optimization using Calculus-Stationary Points 1. Module - 2 Lecture Notes 1 Optimization Methods: Optimization using Calculus-Stationary Points 1 Module - Lecture Notes 1 Stationary points: Functions of Single and Two Variables Introduction In this session, stationary points of

More information

Spectral Methods for Network Community Detection and Graph Partitioning

Spectral Methods for Network Community Detection and Graph Partitioning Spectral Methods for Network Community Detection and Graph Partitioning M. E. J. Newman Department of Physics, University of Michigan Presenters: Yunqi Guo Xueyin Yu Yuanqi Li 1 Outline: Community Detection

More information

Lec 11 Rate-Distortion Optimization (RDO) in Video Coding-I

Lec 11 Rate-Distortion Optimization (RDO) in Video Coding-I CS/EE 5590 / ENG 401 Special Topics (17804, 17815, 17803) Lec 11 Rate-Distortion Optimization (RDO) in Video Coding-I Zhu Li Course Web: http://l.web.umkc.edu/lizhu/teaching/2016sp.video-communication/main.html

More information

Finite Element Analysis of Ellipsoidal Head Pressure Vessel

Finite Element Analysis of Ellipsoidal Head Pressure Vessel Finite Element Analysis of Ellipsoidal Head Pressure Vessel Vikram V. Mane*, Vinayak H.Khatawate.**Ashok Patole*** * (Faculty; Mechanical Engineering Department, Vidyavardhini s college of Engineering.

More information

[Ramalingam, 4(12): December 2017] ISSN DOI /zenodo Impact Factor

[Ramalingam, 4(12): December 2017] ISSN DOI /zenodo Impact Factor GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES FORCING VERTEX TRIANGLE FREE DETOUR NUMBER OF A GRAPH S. Sethu Ramalingam * 1, I. Keerthi Asir 2 and S. Athisayanathan 3 *1,2 & 3 Department of Mathematics,

More information

Some Advanced Topics in Linear Programming

Some Advanced Topics in Linear Programming Some Advanced Topics in Linear Programming Matthew J. Saltzman July 2, 995 Connections with Algebra and Geometry In this section, we will explore how some of the ideas in linear programming, duality theory,

More information

Computational Methods. Constrained Optimization

Computational Methods. Constrained Optimization Computational Methods Constrained Optimization Manfred Huber 2010 1 Constrained Optimization Unconstrained Optimization finds a minimum of a function under the assumption that the parameters can take on

More information

Chapter 3 Numerical Methods

Chapter 3 Numerical Methods Chapter 3 Numerical Methods Part 1 3.1 Linearization and Optimization of Functions of Vectors 1 Problem Notation 2 Outline 3.1.1 Linearization 3.1.2 Optimization of Objective Functions 3.1.3 Constrained

More information

DESIGN OF SPATIAL FILTER FOR WATER LEVEL DETECTION

DESIGN OF SPATIAL FILTER FOR WATER LEVEL DETECTION Far East Journal of Electronics and Communications Volume 3, Number 3, 2009, Pages 203-216 This paper is available online at http://www.pphmj.com 2009 Pushpa Publishing House DESIGN OF SPATIAL FILTER FOR

More information

Atlas of Fixed Links and Equivalent Links in Mechanisms of 6 Links, 7 Joints, 1F Kinematic Chains Using [JJ] Matrix

Atlas of Fixed Links and Equivalent Links in Mechanisms of 6 Links, 7 Joints, 1F Kinematic Chains Using [JJ] Matrix Atlas of Fixed Links and Equivalent Links in Mechanisms of 6 Links, 7 Joints, 1F Kinematic Chains Using [JJ] Matrix Dr. Ali Hasan Mechanical Engineering Department, Jamia Millia Islamia, New Delhi. ABSTRACT-Author

More information

A Modified Generalized Two-phase Exponential Estimator To Estimate Finite Population Mean

A Modified Generalized Two-phase Exponential Estimator To Estimate Finite Population Mean IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn:2319-765x. Volume 8, Issue 6 (Nov. Dec. 2013), PP 43-47 A Modified Generalized Two-phase Exponential Estimator To Estimate Finite Population

More information

Surrogate Gradient Algorithm for Lagrangian Relaxation 1,2

Surrogate Gradient Algorithm for Lagrangian Relaxation 1,2 Surrogate Gradient Algorithm for Lagrangian Relaxation 1,2 X. Zhao 3, P. B. Luh 4, and J. Wang 5 Communicated by W.B. Gong and D. D. Yao 1 This paper is dedicated to Professor Yu-Chi Ho for his 65th birthday.

More information

Programs. Introduction

Programs. Introduction 16 Interior Point I: Linear Programs Lab Objective: For decades after its invention, the Simplex algorithm was the only competitive method for linear programming. The past 30 years, however, have seen

More information

WEINER FILTER AND SUB-BLOCK DECOMPOSITION BASED IMAGE RESTORATION FOR MEDICAL APPLICATIONS

WEINER FILTER AND SUB-BLOCK DECOMPOSITION BASED IMAGE RESTORATION FOR MEDICAL APPLICATIONS WEINER FILTER AND SUB-BLOCK DECOMPOSITION BASED IMAGE RESTORATION FOR MEDICAL APPLICATIONS ARIFA SULTANA 1 & KANDARPA KUMAR SARMA 2 1,2 Department of Electronics and Communication Engineering, Gauhati

More information

Telecommunication Network (TN) and Switching

Telecommunication Network (TN) and Switching Telecommunication Network (TN) and Switching Instructor : Nyoman Karna Course Number : TTH2A3 As Taught In : 1 st semester 2015-2016 Level : Undergraduate Course Description Students learn about architecture,

More information

Lecture 7: Support Vector Machine

Lecture 7: Support Vector Machine Lecture 7: Support Vector Machine Hien Van Nguyen University of Houston 9/28/2017 Separating hyperplane Red and green dots can be separated by a separating hyperplane Two classes are separable, i.e., each

More information

Lecture 9: Linear Programming

Lecture 9: Linear Programming Lecture 9: Linear Programming A common optimization problem involves finding the maximum of a linear function of N variables N Z = a i x i i= 1 (the objective function ) where the x i are all non-negative

More information

This lecture: Convex optimization Convex sets Convex functions Convex optimization problems Why convex optimization? Why so early in the course?

This lecture: Convex optimization Convex sets Convex functions Convex optimization problems Why convex optimization? Why so early in the course? Lec4 Page 1 Lec4p1, ORF363/COS323 This lecture: Convex optimization Convex sets Convex functions Convex optimization problems Why convex optimization? Why so early in the course? Instructor: Amir Ali Ahmadi

More information

Lecture 25 Nonlinear Programming. November 9, 2009

Lecture 25 Nonlinear Programming. November 9, 2009 Nonlinear Programming November 9, 2009 Outline Nonlinear Programming Another example of NLP problem What makes these problems complex Scalar Function Unconstrained Problem Local and global optima: definition,

More information

PARAMETERS OF OPTIMUM HIERARCHY STRUCTURE IN AHP

PARAMETERS OF OPTIMUM HIERARCHY STRUCTURE IN AHP Analytic Hierarchy 014, Washington D.C., U.S.A. PARAMETERS OF OPTIMUM HIERARCHY STRUCTURE IN AHP Stan Lipovetsky GfK Custom Research North America Mineapolis, MN, USA E-mail: stan.lipovetsky@gfk.edu ABSTRACT

More information

Graphs that have the feasible bases of a given linear

Graphs that have the feasible bases of a given linear Algorithmic Operations Research Vol.1 (2006) 46 51 Simplex Adjacency Graphs in Linear Optimization Gerard Sierksma and Gert A. Tijssen University of Groningen, Faculty of Economics, P.O. Box 800, 9700

More information

Convex Programs. COMPSCI 371D Machine Learning. COMPSCI 371D Machine Learning Convex Programs 1 / 21

Convex Programs. COMPSCI 371D Machine Learning. COMPSCI 371D Machine Learning Convex Programs 1 / 21 Convex Programs COMPSCI 371D Machine Learning COMPSCI 371D Machine Learning Convex Programs 1 / 21 Logistic Regression! Support Vector Machines Support Vector Machines (SVMs) and Convex Programs SVMs are

More information

Linear Machine: A Novel Approach to Point Location Problem

Linear Machine: A Novel Approach to Point Location Problem Preprints of the 10th IFAC International Symposium on Dynamics and Control of Process Systems The International Federation of Automatic Control Linear Machine: A Novel Approach to Point Location Problem

More information

Unconstrained Optimization

Unconstrained Optimization Unconstrained Optimization Joshua Wilde, revised by Isabel Tecu, Takeshi Suzuki and María José Boccardi August 13, 2013 1 Denitions Economics is a science of optima We maximize utility functions, minimize

More information