An introduction to multi-armed bandits

Size: px
Start display at page:

Download "An introduction to multi-armed bandits"

Transcription

1 An introduction to multi-armed bandits Henry WJ Reeve (Manchester) A joint work with Joe Mellor (Edinburgh) & Professor Gavin Brown (Manchester)

2 Plan 1. An introduction to multi-armed bandits 2. The multi-armed bandit with covariates and the k-nearest neighbour UCB algorithm.

3 Plan: Intro to multi-armed bandits 1. The concept of reinforcement learning 2. Multi-armed bandits 3. The exploration vs. exploitation trade-off 4. The upper confidence bound algorithm (UCB) 5. The concentration of measure phenomenon 6. A regret bound for the UCB algorithm

4 Supervised learning and reinforcement learning

5 Supervised learning

6 Supervised learning

7 Supervised learning

8 Learning with animals

9 Learning with animals

10 Learning with animals

11 Reinforcement learning Environment Agent

12 Reinforcement learning Environment Action Agent

13 Reinforcement learning Environment Reward Action Agent

14 Reinforcement learning Environment Reward Action Agent Learning

15 Reinforcement learning No supervision - the only feedback given is the reward An agent s action affects the information it receives A sequential learning problem

16 The multi-armed bandit problem

17 The multi-armed bandit problem Bandit 1 Random reward Bandit 2

18 Multi-armed bandit formalism For Choose an arm to pull based on the reward history Receive a reward

19 Multi-armed bandit formalism For Choose an arm to pull based on the reward history Receive a reward Rewards i.i.d with

20 Applications Sequential clinical trials

21 Applications Sequential clinical trials Online advertisement optimisation

22 Notation Expected reward for each arm Arm pulled at time t Number of times each arm has been pulled at time t Empirical average of rewards for each arm at time t

23 The exploration vs. exploitation trade-off

24 Exploration vs. exploitation Exploration: Obtain more accurate estimates Choose i so that is small.,

25 Exploration vs. exploitation Exploration: Obtain more accurate estimates Choose i so that, is small. Exploitation: Achieve a high reward Choose i so that is large.

26 The upper confidence bound (UCB) algorithm: Optimism in the face of uncertainty

27 The UCB algorithm

28 The UCB algorithm

29 The UCB algorithm

30 Regret Compare oracle policy with the

31 UCB Regret Bound The gap Auer et al. (2002): The UCB policy achieves a logarithmic regret bound

32 Big O notation

33 Big O notation

34 UCB Regret Bound The gap Auer et al. (2002): The UCB policy achieves a logarithmic regret bound

35 Concentration of measure

36 Concentration of measure I flip a coin times. I get heads times and tails times. If I flip the same coin again, what s the probability I get a head?

37 Hoeffding s Inequality (1963) Independent random variables with for

38 Hoeffding s Inequality (1963) Independent random variables with for Define the empirical average

39 Hoeffding s Inequality (1963) Independent random variables with for Define the empirical average

40 Proof of the UCB regret bound

41 UCB Regret Bound The gap Auer et al. (2002): The UCB policy achieves a logarithmic regret bound

42 Notation Expected reward for each arm Arm pulled at time t Number of times each arm has been pulled at time t Empirical average of rewards for each arm at time t

43 Bad events Let s define bad events Lemma 1 for by

44 Proof of Lemma 1

45 Proof of Lemma 1

46 Proof of Lemma 1 Hoeffding s Inequality

47 Lemma 1 We defined bad events Lemma 1 for by

48 Lemma 2 Suppose, & Then At least one of or hold.

49 Proof of Lemma 2 Suppose neither one of or Then & From hold.

50 Proof of Lemma

51 Proof of Lemma & 2.

52 Proof of Lemma & 2.

53 Lemma 2 Suppose, & Then At least one of or hold.

54 Lemma 3 Lemma 1 + Lemma 3 Suppose. Then Lemma 2

55 Lemma 4 Lemma 3 Suppose. Then Lemma 4 Suppose. Then

56 Proof of Lemma 4

57 Proof of Lemma 4

58 Proof of Lemma 4

59 Proof of Lemma 4

60 Proof of UCB Regret bound Suppose. Then

61 Proof of UCB Regret bound Suppose. Then

62 Proof of UCB Regret bound Suppose. Then

63 Proof of UCB Regret bound Suppose. Then

64 The multi-armed bandit problem with covariates and the k-nearest neighbour UCB algorithm Henry WJ Reeve (Manchester) A joint work with Joe Mellor (Edinburgh) & Professor Gavin Brown (Manchester)

65 Plan 1. Multi-armed bandits with covariates 2. Non-parametric assumptions 3. Partition based policies and the UCBogram 4. Manifolds 5. The k-nearest neighbour UCB algorithm

66 The multi-armed bandit with covariates

67 Bandits with side-information Multi-armed bandits with additional side-information Example 1: Personalised sequential clinical trials - access to a patient's genome sequence. Example 2: Personalised online advertisement placement - access to a customer s interests, browsing and purchasing history.

68 Multi-armed bandit with covariates For Observe a covariate Choose an arm to pull based on & the reward history Receive a reward

69 Multi-armed bandit with covariates Covariates drawn from For each is drawn i.i.d from Expected reward, on.

70 Bandits with covariates

71 Bandits with covariates

72 Regret for bandits with covariates Compare Regret: with the oracle policy

73 Non-parametric assumptions

74 The Lipschitz assumption For define by Lipschitz assumption:, b,.

75 The Lipschitz assumption

76 The Lipschitz assumption

77 The Margin assumption Define the margin function by Margin assumption:,,.

78 The margin assumption

79 The margin assumption

80 Histogram based policies

81 The UCBogram Rigollet and Zeevi (COLT, 2010) consider UCBogram 1. Partition cubes, into 2. Apply UCB locally on each of the separate cubes.

82 The UCBogram

83 The UCBogram UCB c UCB c UCB c UCB c UCB c UCB c UCB c UCB c UCB c

84 The UCBogram Rigollet and Zeevi (2010): Suppose & is is absolutely continuous, with a well-behaved density. Suppose that the bandit satisfies the Lipchitz condition & the margin condition with Then the UCBogram satisfies:

85 Adaptively Binned Successive Elimination Perchet & Rigollet (2011): ABSE: 1. Refine the partition whenever 2. Run a standard bandit algorithm locally until the subsequent refinement

86 Adaptively Binned Successive Elimination SE SE SE SE

87 Adaptively Binned Successive Elimination SE SE SE SE SE SE SE

88 Adaptively Binned Successive Elimination SE SE SE SE SE SE SE SE SE SE SE SE SE

89 Adaptively Binned Successive Elimination Perchet & Rigollet (2011): Suppose & is is absolutely continuous, with a well-behaved density. Suppose that the bandit satisfies the Lipchitz condition & the margin condition with any Then the ABSE satisfies:

90 Bandits on manifolds

91 Manifolds A - dimensional manifold Looks locally like - dimensional Euclidean space

92 Manifolds In many applications d is large, but the data close to a -dimensional smooth manifold with. Eg. statistical regularities in the space of MRI scans/ genome sequences We should be able to exploit this property - but the manifold is not known in advance!

93 The k-nearest neighbour method in supervised learning

94 The k-nearest neighbour method The k-nearest neighbour method is simple & intuitive Effectively manages the bias-variance trade-off in supervised learning.

95 The k-nearest neighbour method Kpotufe (2012): k-nearest neighbours achieves minimax optimal rates in supervised regression (adapts to intrinsic dimension) Chaudhuri & Dasgupta (2014): k-nearest neighbours achieves minimax optimal rates in supervised classification with the margin condition Reeve & Brown (2017): k-nearest neighbours achieves minimax optimal rates for cost-sensitive learning on manifolds.

96 k-nearest Neighbours UCB

97 K-Nearest Neighbours UCB Given and we define The number of times, amongst the k-nearest neighbours of x, that arm i was pulled The cumulative reward over all the times that arm i was pulled and was amongst the k-nearest neighbours of x The k-nearest neighbour reward estimate

98 Defining uncertainty The distance to the k-th nearest neighbour Uncertainty Standard deviation Bias

99 K-nearest neighbour UCB

100 K-nearest neighbour UCB

101 K-nearest neighbour UCB

102 Choosing k? Cross-validation is not a good option in the online setting In the supervised regression setting Kpotufe (2012) Choose k by minimising an upper bound on the squared error Choose k to minimise uncertainty:

103 The K-NN UCB algorithm For Observe a covariate For Receive a reward

104 The Lipschitz assumption For define by Lipschitz assumption:, b,.

105 The margin assumption Define the margin function by Margin assumption:,,.

106 The dimension assumption Holds whenever the covariates are chosen from a well-behaved measure on a compact Riemannian manifold of dimension

107 The Regret Bound Reeve, Mellor & Brown (2017): Suppose that: 1) The Lipschitz assumption holds, 2) The margin assumption holds, 3) The dimension assumption holds, Then we have the following regret bound:

108 Empirical validation Cumulative regret A two-dimensional manifold in a fifteen-dimensional feature space Time

109 Discussion Doesn t require prior knowledge of: The time horizon The dimension of the manifold Achieves the minimax optimal rate, up to a logarithmic factor The regret bound extends to any finite number of arms & reward distributions with sub-gaussian noise

110 Thank you for listening!

Homework. Gaussian, Bishop 2.3 Non-parametric, Bishop 2.5 Linear regression Pod-cast lecture on-line. Next lectures:

Homework. Gaussian, Bishop 2.3 Non-parametric, Bishop 2.5 Linear regression Pod-cast lecture on-line. Next lectures: Homework Gaussian, Bishop 2.3 Non-parametric, Bishop 2.5 Linear regression 3.0-3.2 Pod-cast lecture on-line Next lectures: I posted a rough plan. It is flexible though so please come with suggestions Bayes

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu Web advertising We discussed how to match advertisers to queries in real-time But we did not discuss how to estimate

More information

Monte Carlo Tree Search PAH 2015

Monte Carlo Tree Search PAH 2015 Monte Carlo Tree Search PAH 2015 MCTS animation and RAVE slides by Michèle Sebag and Romaric Gaudel Markov Decision Processes (MDPs) main formal model Π = S, A, D, T, R states finite set of states of the

More information

Where we are. Exploratory Graph Analysis (40 min) Focused Graph Mining (40 min) Refinement of Query Results (40 min)

Where we are. Exploratory Graph Analysis (40 min) Focused Graph Mining (40 min) Refinement of Query Results (40 min) Where we are Background (15 min) Graph models, subgraph isomorphism, subgraph mining, graph clustering Eploratory Graph Analysis (40 min) Focused Graph Mining (40 min) Refinement of Query Results (40 min)

More information

CSE 417T: Introduction to Machine Learning. Lecture 6: Bias-Variance Trade-off. Henry Chai 09/13/18

CSE 417T: Introduction to Machine Learning. Lecture 6: Bias-Variance Trade-off. Henry Chai 09/13/18 CSE 417T: Introduction to Machine Learning Lecture 6: Bias-Variance Trade-off Henry Chai 09/13/18 Let! ", $ = the maximum number of dichotomies on " points s.t. no subset of $ points is shattered Recall

More information

Overview of various smoothers

Overview of various smoothers Chapter 2 Overview of various smoothers A scatter plot smoother is a tool for finding structure in a scatter plot: Figure 2.1: CD4 cell count since seroconversion for HIV infected men. CD4 counts vs Time

More information

Empirical risk minimization (ERM) A first model of learning. The excess risk. Getting a uniform guarantee

Empirical risk minimization (ERM) A first model of learning. The excess risk. Getting a uniform guarantee A first model of learning Let s restrict our attention to binary classification our labels belong to (or ) Empirical risk minimization (ERM) Recall the definitions of risk/empirical risk We observe the

More information

Apprenticeship Learning for Reinforcement Learning. with application to RC helicopter flight Ritwik Anand, Nick Haliday, Audrey Huang

Apprenticeship Learning for Reinforcement Learning. with application to RC helicopter flight Ritwik Anand, Nick Haliday, Audrey Huang Apprenticeship Learning for Reinforcement Learning with application to RC helicopter flight Ritwik Anand, Nick Haliday, Audrey Huang Table of Contents Introduction Theory Autonomous helicopter control

More information

Non-Parametric Modeling

Non-Parametric Modeling Non-Parametric Modeling CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Introduction Non-Parametric Density Estimation Parzen Windows Kn-Nearest Neighbor

More information

CME323 Report: Distributed Multi-Armed Bandits

CME323 Report: Distributed Multi-Armed Bandits CME323 Report: Distributed Multi-Armed Bandits Milind Rao milind@stanford.edu 1 Introduction Consider the multi-armed bandit (MAB) problem. In this sequential optimization problem, a player gets to pull

More information

Last time... Coryn Bailer-Jones. check and if appropriate remove outliers, errors etc. linear regression

Last time... Coryn Bailer-Jones. check and if appropriate remove outliers, errors etc. linear regression Machine learning, pattern recognition and statistical data modelling Lecture 3. Linear Methods (part 1) Coryn Bailer-Jones Last time... curse of dimensionality local methods quickly become nonlocal as

More information

CS6375: Machine Learning Gautam Kunapuli. Mid-Term Review

CS6375: Machine Learning Gautam Kunapuli. Mid-Term Review Gautam Kunapuli Machine Learning Data is identically and independently distributed Goal is to learn a function that maps to Data is generated using an unknown function Learn a hypothesis that minimizes

More information

Edges and Triangles. Po-Shen Loh. Carnegie Mellon University. Joint work with Jacob Fox

Edges and Triangles. Po-Shen Loh. Carnegie Mellon University. Joint work with Jacob Fox Edges and Triangles Po-Shen Loh Carnegie Mellon University Joint work with Jacob Fox Edges in triangles Observation There are graphs with the property that every edge is contained in a triangle, but no

More information

Nonparametric Methods Recap

Nonparametric Methods Recap Nonparametric Methods Recap Aarti Singh Machine Learning 10-701/15-781 Oct 4, 2010 Nonparametric Methods Kernel Density estimate (also Histogram) Weighted frequency Classification - K-NN Classifier Majority

More information

Optimization Methods for Machine Learning (OMML)

Optimization Methods for Machine Learning (OMML) Optimization Methods for Machine Learning (OMML) 2nd lecture Prof. L. Palagi References: 1. Bishop Pattern Recognition and Machine Learning, Springer, 2006 (Chap 1) 2. V. Cherlassky, F. Mulier - Learning

More information

Pruning Nearest Neighbor Cluster Trees

Pruning Nearest Neighbor Cluster Trees Pruning Nearest Neighbor Cluster Trees Samory Kpotufe Max Planck Institute for Intelligent Systems Tuebingen, Germany Joint work with Ulrike von Luxburg We ll discuss: An interesting notion of clusters

More information

Parametrizing the easiness of machine learning problems. Sanjoy Dasgupta, UC San Diego

Parametrizing the easiness of machine learning problems. Sanjoy Dasgupta, UC San Diego Parametrizing the easiness of machine learning problems Sanjoy Dasgupta, UC San Diego Outline Linear separators Mixture models Nonparametric clustering Nonparametric classification and regression Nearest

More information

Real-world bandit applications: Bridging the gap between theory and practice

Real-world bandit applications: Bridging the gap between theory and practice Real-world bandit applications: Bridging the gap between theory and practice Audrey Durand EWRL 2018 The bandit setting (Thompson, 1933; Robbins, 1952; Lai and Robbins, 1985) Action Agent Context Environment

More information

Unsupervised Learning: Clustering

Unsupervised Learning: Clustering Unsupervised Learning: Clustering Vibhav Gogate The University of Texas at Dallas Slides adapted from Carlos Guestrin, Dan Klein & Luke Zettlemoyer Machine Learning Supervised Learning Unsupervised Learning

More information

COMPUTATIONAL STATISTICS UNSUPERVISED LEARNING

COMPUTATIONAL STATISTICS UNSUPERVISED LEARNING COMPUTATIONAL STATISTICS UNSUPERVISED LEARNING Luca Bortolussi Department of Mathematics and Geosciences University of Trieste Office 238, third floor, H2bis luca@dmi.units.it Trieste, Winter Semester

More information

Section 4 Matching Estimator

Section 4 Matching Estimator Section 4 Matching Estimator Matching Estimators Key Idea: The matching method compares the outcomes of program participants with those of matched nonparticipants, where matches are chosen on the basis

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 12 Combining

More information

Instance-based Learning CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2015

Instance-based Learning CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2015 Instance-based Learning CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2015 Outline Non-parametric approach Unsupervised: Non-parametric density estimation Parzen Windows K-Nearest

More information

Recap: Gaussian (or Normal) Distribution. Recap: Minimizing the Expected Loss. Topics of This Lecture. Recap: Maximum Likelihood Approach

Recap: Gaussian (or Normal) Distribution. Recap: Minimizing the Expected Loss. Topics of This Lecture. Recap: Maximum Likelihood Approach Truth Course Outline Machine Learning Lecture 3 Fundamentals (2 weeks) Bayes Decision Theory Probability Density Estimation Probability Density Estimation II 2.04.205 Discriminative Approaches (5 weeks)

More information

MODEL SELECTION AND REGULARIZATION PARAMETER CHOICE

MODEL SELECTION AND REGULARIZATION PARAMETER CHOICE MODEL SELECTION AND REGULARIZATION PARAMETER CHOICE REGULARIZATION METHODS FOR HIGH DIMENSIONAL LEARNING Francesca Odone and Lorenzo Rosasco odone@disi.unige.it - lrosasco@mit.edu June 3, 2013 ABOUT THIS

More information

Feature Selection for Image Retrieval and Object Recognition

Feature Selection for Image Retrieval and Object Recognition Feature Selection for Image Retrieval and Object Recognition Nuno Vasconcelos et al. Statistical Visual Computing Lab ECE, UCSD Presented by Dashan Gao Scalable Discriminant Feature Selection for Image

More information

0x1A Great Papers in Computer Security

0x1A Great Papers in Computer Security CS 380S 0x1A Great Papers in Computer Security Vitaly Shmatikov http://www.cs.utexas.edu/~shmat/courses/cs380s/ C. Dwork Differential Privacy (ICALP 2006 and many other papers) Basic Setting DB= x 1 x

More information

Semi-supervised Learning

Semi-supervised Learning Semi-supervised Learning Piyush Rai CS5350/6350: Machine Learning November 8, 2011 Semi-supervised Learning Supervised Learning models require labeled data Learning a reliable model usually requires plenty

More information

Generative and discriminative classification techniques

Generative and discriminative classification techniques Generative and discriminative classification techniques Machine Learning and Category Representation 2014-2015 Jakob Verbeek, November 28, 2014 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.14.15

More information

CSC 411: Lecture 05: Nearest Neighbors

CSC 411: Lecture 05: Nearest Neighbors CSC 411: Lecture 05: Nearest Neighbors Raquel Urtasun & Rich Zemel University of Toronto Sep 28, 2015 Urtasun & Zemel (UofT) CSC 411: 05-Nearest Neighbors Sep 28, 2015 1 / 13 Today Non-parametric models

More information

What is machine learning?

What is machine learning? Machine learning, pattern recognition and statistical data modelling Lecture 12. The last lecture Coryn Bailer-Jones 1 What is machine learning? Data description and interpretation finding simpler relationship

More information

Conditional Volatility Estimation by. Conditional Quantile Autoregression

Conditional Volatility Estimation by. Conditional Quantile Autoregression International Journal of Mathematical Analysis Vol. 8, 2014, no. 41, 2033-2046 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2014.47210 Conditional Volatility Estimation by Conditional Quantile

More information

MODEL SELECTION AND REGULARIZATION PARAMETER CHOICE

MODEL SELECTION AND REGULARIZATION PARAMETER CHOICE MODEL SELECTION AND REGULARIZATION PARAMETER CHOICE REGULARIZATION METHODS FOR HIGH DIMENSIONAL LEARNING Francesca Odone and Lorenzo Rosasco odone@disi.unige.it - lrosasco@mit.edu June 6, 2011 ABOUT THIS

More information

PSU Student Research Symposium 2017 Bayesian Optimization for Refining Object Proposals, with an Application to Pedestrian Detection Anthony D.

PSU Student Research Symposium 2017 Bayesian Optimization for Refining Object Proposals, with an Application to Pedestrian Detection Anthony D. PSU Student Research Symposium 2017 Bayesian Optimization for Refining Object Proposals, with an Application to Pedestrian Detection Anthony D. Rhodes 5/10/17 What is Machine Learning? Machine learning

More information

Going nonparametric: Nearest neighbor methods for regression and classification

Going nonparametric: Nearest neighbor methods for regression and classification Going nonparametric: Nearest neighbor methods for regression and classification STAT/CSE 46: Machine Learning Emily Fox University of Washington May 3, 208 Locality sensitive hashing for approximate NN

More information

CS 229 Midterm Review

CS 229 Midterm Review CS 229 Midterm Review Course Staff Fall 2018 11/2/2018 Outline Today: SVMs Kernels Tree Ensembles EM Algorithm / Mixture Models [ Focus on building intuition, less so on solving specific problems. Ask

More information

Notes and Announcements

Notes and Announcements Notes and Announcements Midterm exam: Oct 20, Wednesday, In Class Late Homeworks Turn in hardcopies to Michelle. DO NOT ask Michelle for extensions. Note down the date and time of submission. If submitting

More information

Machine Learning. Topic 5: Linear Discriminants. Bryan Pardo, EECS 349 Machine Learning, 2013

Machine Learning. Topic 5: Linear Discriminants. Bryan Pardo, EECS 349 Machine Learning, 2013 Machine Learning Topic 5: Linear Discriminants Bryan Pardo, EECS 349 Machine Learning, 2013 Thanks to Mark Cartwright for his extensive contributions to these slides Thanks to Alpaydin, Bishop, and Duda/Hart/Stork

More information

Chapter 4: Non-Parametric Techniques

Chapter 4: Non-Parametric Techniques Chapter 4: Non-Parametric Techniques Introduction Density Estimation Parzen Windows Kn-Nearest Neighbor Density Estimation K-Nearest Neighbor (KNN) Decision Rule Supervised Learning How to fit a density

More information

Clustering. Mihaela van der Schaar. January 27, Department of Engineering Science University of Oxford

Clustering. Mihaela van der Schaar. January 27, Department of Engineering Science University of Oxford Department of Engineering Science University of Oxford January 27, 2017 Many datasets consist of multiple heterogeneous subsets. Cluster analysis: Given an unlabelled data, want algorithms that automatically

More information

Homework 4: Clustering, Recommenders, Dim. Reduction, ML and Graph Mining (due November 19 th, 2014, 2:30pm, in class hard-copy please)

Homework 4: Clustering, Recommenders, Dim. Reduction, ML and Graph Mining (due November 19 th, 2014, 2:30pm, in class hard-copy please) Virginia Tech. Computer Science CS 5614 (Big) Data Management Systems Fall 2014, Prakash Homework 4: Clustering, Recommenders, Dim. Reduction, ML and Graph Mining (due November 19 th, 2014, 2:30pm, in

More information

Nonparametric Risk Attribution for Factor Models of Portfolios. October 3, 2017 Kellie Ottoboni

Nonparametric Risk Attribution for Factor Models of Portfolios. October 3, 2017 Kellie Ottoboni Nonparametric Risk Attribution for Factor Models of Portfolios October 3, 2017 Kellie Ottoboni Outline The problem Page 3 Additive model of returns Page 7 Euler s formula for risk decomposition Page 11

More information

Machine Learning and Pervasive Computing

Machine Learning and Pervasive Computing Stephan Sigg Georg-August-University Goettingen, Computer Networks 17.12.2014 Overview and Structure 22.10.2014 Organisation 22.10.3014 Introduction (Def.: Machine learning, Supervised/Unsupervised, Examples)

More information

Nearest Neighbor Classification

Nearest Neighbor Classification Nearest Neighbor Classification Charles Elkan elkan@cs.ucsd.edu October 9, 2007 The nearest-neighbor method is perhaps the simplest of all algorithms for predicting the class of a test example. The training

More information

CPSC 340: Machine Learning and Data Mining. Non-Parametric Models Fall 2016

CPSC 340: Machine Learning and Data Mining. Non-Parametric Models Fall 2016 CPSC 340: Machine Learning and Data Mining Non-Parametric Models Fall 2016 Admin Course add/drop deadline tomorrow. Assignment 1 is due Friday. Setup your CS undergrad account ASAP to use Handin: https://www.cs.ubc.ca/getacct

More information

The Boundary Graph Supervised Learning Algorithm for Regression and Classification

The Boundary Graph Supervised Learning Algorithm for Regression and Classification The Boundary Graph Supervised Learning Algorithm for Regression and Classification! Jonathan Yedidia! Disney Research!! Outline Motivation Illustration using a toy classification problem Some simple refinements

More information

Overfitting. Machine Learning CSE546 Carlos Guestrin University of Washington. October 2, Bias-Variance Tradeoff

Overfitting. Machine Learning CSE546 Carlos Guestrin University of Washington. October 2, Bias-Variance Tradeoff Overfitting Machine Learning CSE546 Carlos Guestrin University of Washington October 2, 2013 1 Bias-Variance Tradeoff Choice of hypothesis class introduces learning bias More complex class less bias More

More information

CPSC 340: Machine Learning and Data Mining. Non-Parametric Models Fall 2016

CPSC 340: Machine Learning and Data Mining. Non-Parametric Models Fall 2016 CPSC 340: Machine Learning and Data Mining Non-Parametric Models Fall 2016 Assignment 0: Admin 1 late day to hand it in tonight, 2 late days for Wednesday. Assignment 1 is out: Due Friday of next week.

More information

Model Assessment and Selection. Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer

Model Assessment and Selection. Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer Model Assessment and Selection Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer 1 Model Training data Testing data Model Testing error rate Training error

More information

Learning from High Dimensional fmri Data using Random Projections

Learning from High Dimensional fmri Data using Random Projections Learning from High Dimensional fmri Data using Random Projections Author: Madhu Advani December 16, 011 Introduction The term the Curse of Dimensionality refers to the difficulty of organizing and applying

More information

Planning and Control: Markov Decision Processes

Planning and Control: Markov Decision Processes CSE-571 AI-based Mobile Robotics Planning and Control: Markov Decision Processes Planning Static vs. Dynamic Predictable vs. Unpredictable Fully vs. Partially Observable Perfect vs. Noisy Environment What

More information

5 Learning hypothesis classes (16 points)

5 Learning hypothesis classes (16 points) 5 Learning hypothesis classes (16 points) Consider a classification problem with two real valued inputs. For each of the following algorithms, specify all of the separators below that it could have generated

More information

Introduction to machine learning, pattern recognition and statistical data modelling Coryn Bailer-Jones

Introduction to machine learning, pattern recognition and statistical data modelling Coryn Bailer-Jones Introduction to machine learning, pattern recognition and statistical data modelling Coryn Bailer-Jones What is machine learning? Data interpretation describing relationship between predictors and responses

More information

Supervised vs unsupervised clustering

Supervised vs unsupervised clustering Classification Supervised vs unsupervised clustering Cluster analysis: Classes are not known a- priori. Classification: Classes are defined a-priori Sometimes called supervised clustering Extract useful

More information

Machine Learning Techniques for Data Mining

Machine Learning Techniques for Data Mining Machine Learning Techniques for Data Mining Eibe Frank University of Waikato New Zealand 10/25/2000 1 PART VII Moving on: Engineering the input and output 10/25/2000 2 Applying a learner is not all Already

More information

3D Point Cloud Processing

3D Point Cloud Processing 3D Point Cloud Processing The image depicts how our robot Irma3D sees itself in a mirror. The laser looking into itself creates distortions as well as changes in intensity that give the robot a single

More information

Nearest Neighbor Classification

Nearest Neighbor Classification Nearest Neighbor Classification Professor Ameet Talwalkar Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 11, 2017 1 / 48 Outline 1 Administration 2 First learning algorithm: Nearest

More information

Announcements. CS 188: Artificial Intelligence Spring Classification: Feature Vectors. Classification: Weights. Learning: Binary Perceptron

Announcements. CS 188: Artificial Intelligence Spring Classification: Feature Vectors. Classification: Weights. Learning: Binary Perceptron CS 188: Artificial Intelligence Spring 2010 Lecture 24: Perceptrons and More! 4/20/2010 Announcements W7 due Thursday [that s your last written for the semester!] Project 5 out Thursday Contest running

More information

Risk bounds for some classification and regression models that interpolate

Risk bounds for some classification and regression models that interpolate Risk bounds for some classification and regression models that interpolate Daniel Hsu Columbia University Joint work with: Misha Belkin (The Ohio State University) Partha Mitra (Cold Spring Harbor Laboratory)

More information

We use non-bold capital letters for all random variables in these notes, whether they are scalar-, vector-, matrix-, or whatever-valued.

We use non-bold capital letters for all random variables in these notes, whether they are scalar-, vector-, matrix-, or whatever-valued. The Bayes Classifier We have been starting to look at the supervised classification problem: we are given data (x i, y i ) for i = 1,..., n, where x i R d, and y i {1,..., K}. In this section, we suppose

More information

Slides for Data Mining by I. H. Witten and E. Frank

Slides for Data Mining by I. H. Witten and E. Frank Slides for Data Mining by I. H. Witten and E. Frank 7 Engineering the input and output Attribute selection Scheme-independent, scheme-specific Attribute discretization Unsupervised, supervised, error-

More information

Chapter 3: Supervised Learning

Chapter 3: Supervised Learning Chapter 3: Supervised Learning Road Map Basic concepts Evaluation of classifiers Classification using association rules Naïve Bayesian classification Naïve Bayes for text classification Summary 2 An example

More information

Using the Kolmogorov-Smirnov Test for Image Segmentation

Using the Kolmogorov-Smirnov Test for Image Segmentation Using the Kolmogorov-Smirnov Test for Image Segmentation Yong Jae Lee CS395T Computational Statistics Final Project Report May 6th, 2009 I. INTRODUCTION Image segmentation is a fundamental task in computer

More information

Coding for Random Projects

Coding for Random Projects Coding for Random Projects CS 584: Big Data Analytics Material adapted from Li s talk at ICML 2014 (http://techtalks.tv/talks/coding-for-random-projections/61085/) Random Projections for High-Dimensional

More information

Bumptrees for Efficient Function, Constraint, and Classification Learning

Bumptrees for Efficient Function, Constraint, and Classification Learning umptrees for Efficient Function, Constraint, and Classification Learning Stephen M. Omohundro International Computer Science Institute 1947 Center Street, Suite 600 erkeley, California 94704 Abstract A

More information

Supervised Learning: K-Nearest Neighbors and Decision Trees

Supervised Learning: K-Nearest Neighbors and Decision Trees Supervised Learning: K-Nearest Neighbors and Decision Trees Piyush Rai CS5350/6350: Machine Learning August 25, 2011 (CS5350/6350) K-NN and DT August 25, 2011 1 / 20 Supervised Learning Given training

More information

Applied Statistics for Neuroscientists Part IIa: Machine Learning

Applied Statistics for Neuroscientists Part IIa: Machine Learning Applied Statistics for Neuroscientists Part IIa: Machine Learning Dr. Seyed-Ahmad Ahmadi 04.04.2017 16.11.2017 Outline Machine Learning Difference between statistics and machine learning Modeling the problem

More information

CS178: Machine Learning and Data Mining. Complexity & Nearest Neighbor Methods

CS178: Machine Learning and Data Mining. Complexity & Nearest Neighbor Methods + CS78: Machine Learning and Data Mining Complexity & Nearest Neighbor Methods Prof. Erik Sudderth Some materials courtesy Alex Ihler & Sameer Singh Machine Learning Complexity and Overfitting Nearest

More information

Feature Extractors. CS 188: Artificial Intelligence Fall Some (Vague) Biology. The Binary Perceptron. Binary Decision Rule.

Feature Extractors. CS 188: Artificial Intelligence Fall Some (Vague) Biology. The Binary Perceptron. Binary Decision Rule. CS 188: Artificial Intelligence Fall 2008 Lecture 24: Perceptrons II 11/24/2008 Dan Klein UC Berkeley Feature Extractors A feature extractor maps inputs to feature vectors Dear Sir. First, I must solicit

More information

Combinatorial Methods in Density Estimation

Combinatorial Methods in Density Estimation Luc Devroye Gabor Lugosi Combinatorial Methods in Density Estimation Springer Contents Preface vii 1. Introduction 1 a 1.1. References 3 2. Concentration Inequalities 4 2.1. Hoeffding's Inequality 4 2.2.

More information

MIT 801. Machine Learning I. [Presented by Anna Bosman] 16 February 2018

MIT 801. Machine Learning I. [Presented by Anna Bosman] 16 February 2018 MIT 801 [Presented by Anna Bosman] 16 February 2018 Machine Learning What is machine learning? Artificial Intelligence? Yes as we know it. What is intelligence? The ability to acquire and apply knowledge

More information

These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop

These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop Machine Learning Algorithms (IFT6266 A7) Prof. Douglas Eck, Université de Montréal These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop

More information

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu FMA901F: Machine Learning Lecture 3: Linear Models for Regression Cristian Sminchisescu Machine Learning: Frequentist vs. Bayesian In the frequentist setting, we seek a fixed parameter (vector), with value(s)

More information

CPSC 340: Machine Learning and Data Mining. More Regularization Fall 2017

CPSC 340: Machine Learning and Data Mining. More Regularization Fall 2017 CPSC 340: Machine Learning and Data Mining More Regularization Fall 2017 Assignment 3: Admin Out soon, due Friday of next week. Midterm: You can view your exam during instructor office hours or after class

More information

Classification: Feature Vectors

Classification: Feature Vectors Classification: Feature Vectors Hello, Do you want free printr cartriges? Why pay more when you can get them ABSOLUTELY FREE! Just # free YOUR_NAME MISSPELLED FROM_FRIEND... : : : : 2 0 2 0 PIXEL 7,12

More information

Topics in Machine Learning

Topics in Machine Learning Topics in Machine Learning Gilad Lerman School of Mathematics University of Minnesota Text/slides stolen from G. James, D. Witten, T. Hastie, R. Tibshirani and A. Ng Machine Learning - Motivation Arthur

More information

Machine Learning Lecture 3

Machine Learning Lecture 3 Machine Learning Lecture 3 Probability Density Estimation II 19.10.2017 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Exam dates We re in the process

More information

Bayesian Optimization Nando de Freitas

Bayesian Optimization Nando de Freitas Bayesian Optimization Nando de Freitas Eric Brochu, Ruben Martinez-Cantin, Matt Hoffman, Ziyu Wang, More resources This talk follows the presentation in the following review paper available fro Oxford

More information

Machine Learning in Biology

Machine Learning in Biology Università degli studi di Padova Machine Learning in Biology Luca Silvestrin (Dottorando, XXIII ciclo) Supervised learning Contents Class-conditional probability density Linear and quadratic discriminant

More information

A popular method for moving beyond linearity. 2. Basis expansion and regularization 1. Examples of transformations. Piecewise-polynomials and splines

A popular method for moving beyond linearity. 2. Basis expansion and regularization 1. Examples of transformations. Piecewise-polynomials and splines A popular method for moving beyond linearity 2. Basis expansion and regularization 1 Idea: Augment the vector inputs x with additional variables which are transformation of x use linear models in this

More information

Distribution-free Predictive Approaches

Distribution-free Predictive Approaches Distribution-free Predictive Approaches The methods discussed in the previous sections are essentially model-based. Model-free approaches such as tree-based classification also exist and are popular for

More information

w KLUWER ACADEMIC PUBLISHERS Global Optimization with Non-Convex Constraints Sequential and Parallel Algorithms Roman G. Strongin Yaroslav D.

w KLUWER ACADEMIC PUBLISHERS Global Optimization with Non-Convex Constraints Sequential and Parallel Algorithms Roman G. Strongin Yaroslav D. Global Optimization with Non-Convex Constraints Sequential and Parallel Algorithms by Roman G. Strongin Nizhni Novgorod State University, Nizhni Novgorod, Russia and Yaroslav D. Sergeyev Institute of Systems

More information

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Classification Vladimir Curic Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Outline An overview on classification Basics of classification How to choose appropriate

More information

DATA MINING LECTURE 10B. Classification k-nearest neighbor classifier Naïve Bayes Logistic Regression Support Vector Machines

DATA MINING LECTURE 10B. Classification k-nearest neighbor classifier Naïve Bayes Logistic Regression Support Vector Machines DATA MINING LECTURE 10B Classification k-nearest neighbor classifier Naïve Bayes Logistic Regression Support Vector Machines NEAREST NEIGHBOR CLASSIFICATION 10 10 Illustrating Classification Task Tid Attrib1

More information

Introduction to Mobile Robotics

Introduction to Mobile Robotics Introduction to Mobile Robotics Gaussian Processes Wolfram Burgard Cyrill Stachniss Giorgio Grisetti Maren Bennewitz Christian Plagemann SS08, University of Freiburg, Department for Computer Science Announcement

More information

CSE 573: Artificial Intelligence Autumn 2010

CSE 573: Artificial Intelligence Autumn 2010 CSE 573: Artificial Intelligence Autumn 2010 Lecture 16: Machine Learning Topics 12/7/2010 Luke Zettlemoyer Most slides over the course adapted from Dan Klein. 1 Announcements Syllabus revised Machine

More information

TECHNICAL REPORT NO Random Forests and Adaptive Nearest Neighbors 1

TECHNICAL REPORT NO Random Forests and Adaptive Nearest Neighbors 1 DEPARTMENT OF STATISTICS University of Wisconsin 1210 West Dayton St. Madison, WI 53706 TECHNICAL REPORT NO. 1055 May 29, 2002 Random Forests and Adaptive Nearest Neighbors 1 by Yi Lin and Yongho Jeon

More information

An Empirical Study of Hoeffding Racing for Model Selection in k-nearest Neighbor Classification

An Empirical Study of Hoeffding Racing for Model Selection in k-nearest Neighbor Classification An Empirical Study of Hoeffding Racing for Model Selection in k-nearest Neighbor Classification Flora Yu-Hui Yeh and Marcus Gallagher School of Information Technology and Electrical Engineering University

More information

Data Knowledge and Optimization. Patrick De Causmaecker CODeS-imec Department of Computer Science KU Leuven/ KULAK

Data Knowledge and Optimization. Patrick De Causmaecker CODeS-imec Department of Computer Science KU Leuven/ KULAK Data Knowledge and Optimization Patrick De Causmaecker CODeS-imec Department of Computer Science KU Leuven/ KULAK Whishes from West-Flanders, Belgium 10 rules for success in supply chain mngmnt & logistics

More information

Last time... Bias-Variance decomposition. This week

Last time... Bias-Variance decomposition. This week Machine learning, pattern recognition and statistical data modelling Lecture 4. Going nonlinear: basis expansions and splines Last time... Coryn Bailer-Jones linear regression methods for high dimensional

More information

Machine Learning and Data Mining. Clustering (1): Basics. Kalev Kask

Machine Learning and Data Mining. Clustering (1): Basics. Kalev Kask Machine Learning and Data Mining Clustering (1): Basics Kalev Kask Unsupervised learning Supervised learning Predict target value ( y ) given features ( x ) Unsupervised learning Understand patterns of

More information

Stanford University CS359G: Graph Partitioning and Expanders Handout 18 Luca Trevisan March 3, 2011

Stanford University CS359G: Graph Partitioning and Expanders Handout 18 Luca Trevisan March 3, 2011 Stanford University CS359G: Graph Partitioning and Expanders Handout 8 Luca Trevisan March 3, 20 Lecture 8 In which we prove properties of expander graphs. Quasirandomness of Expander Graphs Recall that

More information

Thorsten Joachims Then: Universität Dortmund, Germany Now: Cornell University, USA

Thorsten Joachims Then: Universität Dortmund, Germany Now: Cornell University, USA Retrospective ICML99 Transductive Inference for Text Classification using Support Vector Machines Thorsten Joachims Then: Universität Dortmund, Germany Now: Cornell University, USA Outline The paper in

More information

Information Driven Healthcare:

Information Driven Healthcare: Information Driven Healthcare: Machine Learning course Lecture: Feature selection I --- Concepts Centre for Doctoral Training in Healthcare Innovation Dr. Athanasios Tsanas ( Thanasis ), Wellcome Trust

More information

Chapter 3. Bootstrap. 3.1 Introduction. 3.2 The general idea

Chapter 3. Bootstrap. 3.1 Introduction. 3.2 The general idea Chapter 3 Bootstrap 3.1 Introduction The estimation of parameters in probability distributions is a basic problem in statistics that one tends to encounter already during the very first course on the subject.

More information

Supplementary Figure 1. Decoding results broken down for different ROIs

Supplementary Figure 1. Decoding results broken down for different ROIs Supplementary Figure 1 Decoding results broken down for different ROIs Decoding results for areas V1, V2, V3, and V1 V3 combined. (a) Decoded and presented orientations are strongly correlated in areas

More information

Estimating survival from Gray s flexible model. Outline. I. Introduction. I. Introduction. I. Introduction

Estimating survival from Gray s flexible model. Outline. I. Introduction. I. Introduction. I. Introduction Estimating survival from s flexible model Zdenek Valenta Department of Medical Informatics Institute of Computer Science Academy of Sciences of the Czech Republic I. Introduction Outline II. Semi parametric

More information

Bioinformatics - Lecture 07

Bioinformatics - Lecture 07 Bioinformatics - Lecture 07 Bioinformatics Clusters and networks Martin Saturka http://www.bioplexity.org/lectures/ EBI version 0.4 Creative Commons Attribution-Share Alike 2.5 License Learning on profiles

More information

Part I. Hierarchical clustering. Hierarchical Clustering. Hierarchical clustering. Produces a set of nested clusters organized as a

Part I. Hierarchical clustering. Hierarchical Clustering. Hierarchical clustering. Produces a set of nested clusters organized as a Week 9 Based in part on slides from textbook, slides of Susan Holmes Part I December 2, 2012 Hierarchical Clustering 1 / 1 Produces a set of nested clusters organized as a Hierarchical hierarchical clustering

More information

Learning with minimal supervision

Learning with minimal supervision Learning with minimal supervision Sanjoy Dasgupta University of California, San Diego Learning with minimal supervision There are many sources of almost unlimited unlabeled data: Images from the web Speech

More information