2-3 search trees red-black BSTs B-trees

Size: px
Start display at page:

Download "2-3 search trees red-black BSTs B-trees"

Transcription

1 2-3 serch trees red-lck BTs B-trees 3

2 2-3 tree llow 1 or 2 keys per node. 2-node: one key, two children. 3-node: two keys, three children. ymmetric order. Inorder trversl yields keys in scending order. erfect lnce. very pth from root to null link hs sme length. 3-node 2-node smller thn J lrger thn J L X nd J null link 4

3 Locl trnsformtions in 2-3 tree plitting 4-node is locl trnsformtion: constnt numer of opertions. e c d less thn nd nd c c nd d d nd e greter thn e c e d less thn nd nd c c nd d d nd e greter thn e 6

4 2-3 tree: performnce erfect lnce. very pth from root to null link hs sme length. Tree height. Worst cse: Best cse: 8

5 2-3 tree: performnce erfect lnce. very pth from root to null link hs sme length. Tree height. Worst cse: lg N. [ll 2-nodes] Best cse: log3 N.631 lg N. [ll 3-nodes] Between 12 nd 20 for million nodes. Between 18 nd 30 for illion nodes. Gurnteed logrithmic performnce for serch nd insert. 9

6 2-3 tree: implementtion? Direct implementtion is complicted, ecuse: intining multiple node types is cumersome. Need multiple compres to move down tree. Need to move ck up the tree to split 4-nodes. Lrge numer of cses for splitting. Bottom line. ould do it, ut there's etter wy. 11

7 2-3 serch trees red-lck BTs B-trees 12

8 Left-lening red-lck BTs 3-node 1. epresent 2 3 tree s BT. lck tree 2. less for Use "internl"left-lening links s "glue" 3 nodes.greter J L less thn thn 3-node nd J less thn greter thn less thn L X J J L lck links connect 2-nodes nd 3-nodes red lck tree nd red links "glue" nodes within 3-node ncoding 3-node with two 2-nodes connected y left-lening red link tree greter thn ncoding 3-node with two 2-nodes connected y left-lening red link greter thn nd lrger key is root zontl red links thn nd X X L X 2-3 tree corresponding red-lck BT 1 correspondence red-lck nd 2-3 trees horizontl red links J 13

9 n equivlent definition BT such tht: No node hs two red links connected to it. very pth from root to null link hs the sme numer of lck links. ed links len left. "perfect lck lnce" ck tree J L X 14

10 Left-lening red-lck BTs: 1-1 correspondence with 2-3 trees Key property. 1 1 correspondence 2 3 nd LLB. red lck tree J L X horizontl red links J L X 2-3 tree J L X 15

11 erch implementtion for red-lck BTs Oservtion. erch is the sme s for elementry BT (ignore color). ut runs fster ecuse of etter lnce pulic Vl get(key key) { Node x = root; while (x!= null) { int cmp = key.compreto(x.key); if (cmp < 0) x = x.left; else if (cmp > 0) x = x.right; else if (cmp == 0) return x.vl; } return null; } ck tree J L X emrk. ost other ops (e.g., ceiling, selection, itertion) re lso identicl. 16

12 ed-lck BT representtion ch node is pointed to y precisely one link (from its prent) cn encode color of links in nodes. privte sttic finl oolen D = true; privte sttic finl oolen BLK = flse; privte clss Node { Key key; Vlue vl; Node left, right; oolen color; // color of prent link } h.left.color is D D h G J h.right.color is BLK privte oolen ised(node x) { if (x == null) return flse; return x.color == D; } null links re lck 17

13 lementry red-lck BT opertions Left rottion. Orient (temporrily) right-lening red link to len left. rotte left (efore) less thn h nd x greter thn privte Node rotteleft(node h) { ssert ised(h.right); Node x = h.right; h.right = x.left; x.left = h; x.color = h.color; h.color = D; return x; } Invrints. intins symmetric order nd perfect lck lnce. 18

14 lementry red-lck BT opertions Left rottion. Orient (temporrily) right-lening red link to len left. rotte left (fter) less thn h nd x greter thn privte Node rotteleft(node h) { ssert ised(h.right); Node x = h.right; h.right = x.left; x.left = h; x.color = h.color; h.color = D; return x; } Invrints. intins symmetric order nd perfect lck lnce. 19

15 lementry red-lck BT opertions ight rottion. Orient left-lening red link to (temporrily) len right. rotte right (efore) less thn x nd h greter thn privte Node rotteight(node h) { ssert ised(h.left); Node x = h.left; h.left = x.right; x.right = h; x.color = h.color; h.color = D; return x; } Invrints. intins symmetric order nd perfect lck lnce. 20

16 lementry red-lck BT opertions ight rottion. Orient left-lening red link to (temporrily) len right. rotte right (fter) less thn x nd h greter thn privte Node rotteight(node h) { ssert ised(h.left); Node x = h.left; h.left = x.right; x.right = h; x.color = h.color; h.color = D; return x; } Invrints. intins symmetric order nd perfect lck lnce. 21

17 lementry red-lck BT opertions olor flip. ecolor to split (temporry) 4-node. flip colors less thn (efore) nd h nd greter thn privte void flipolors(node h) { ssert!ised(h); ssert ised(h.left); sset ised(h.right); h.color = D; h.left.color = BLK; h.right.color = BLK; } Invrints. intins symmetric order nd perfect lck lnce. 22

18 lementry red-lck BT opertions olor flip. ecolor to split (temporry) 4-node. flip colors less thn (fter) nd h nd greter thn privte void flipolors(node h) { ssert!ised(h); ssert ised(h.left); sset ised(h.right); h.color = D; h.left.color = BLK; h.right.color = BLK; } Invrints. intins symmetric order nd perfect lck lnce. 23

19 Insertion in LLB tree: overview Bsic strtegy. intin 1-1 correspondence with 2-3 trees y pplying elementry red-lck BT opertions. insert dd new node here right link red so rotte left Insert into 2-node 24

20 Insertion in LLB tree Wrmup 1. Insert into tree with exctly 1 node. left root serch ends t this null link root red link to new node contining converts 2-node to 3-node right root serch ends t this null link ttched new node with red link root rotted left to mke legl 3-node 25

21 Insertion in LLB tree se 1. Insert into 2-node t the ottom. Do stndrd BT insert; color new link red. If new red link is right link, rotte left. insert dd new node here right link red so rotte left Insert into 2-node 26

22 Insertion in LLB tree Wrmup 2. Insert into tree with exctly 2 nodes. lrger c serch ends t this null link ttched new node with red link smller c serch ends t this null link c ttched new node with red link c serch ends t this null link c c ttched new node with red link colors flipped to lck c c rotted right colors flipped to lck c ed rotted left c rotted right colors flipped to lck c 27

23 Insertion in LLB tree inserting se 2. Insert into 3-node t the ottom. Do stndrd BT insert; color new link red. otte to lnce the 4-node (if needed). Flip colors to pss red link up one level. otte to mke len left (if needed). inserting dd new node here two lefts oth children red so flip colors node here two lefts in row so rotte right right link red so rotte left Insert into 3-node right link red 28

24 Insertion in LLB tree: pssing red links up the tree dd new node here se 2. Insert into 3-node t the ottom. Do stndrd BT insert; color new link red. inserting otte to lnce the 4-node (if needed). Flip colors to pss red link up one level. inserting otte to mke len left (if needed). epet cse inserting 1 or cse 2 up the tree (if needed). inserting dd new node here right link red so rotte left dd new node here two lefts in row so rotte right oth children red so flip colors two lefts in row so rotte right right link red oth so rotte children left red so flip colors two lefts in row so rotte right dd new node here oth children red so flip colors oth children red so flip colors oth children red so flip colors right link red so rotte left two lefts in row so rotte right oth children red so flip colors ssing red link up the tree oth children red so flip colors 29

25 Insertion in LLB tree: Jv implementtion me code for oth cses. ight child red, left child lck: rotte left. Left child, left-left grndchild red: rotte right. Both children red: flip colors. h right rotte h left rotte h flip colors ssing red link up red-lck tree privte Node put(node h, Key key, Vlue vl) { if (h == null) return new Node(key, vl, D); int cmp = key.compreto(h.key); if (cmp < 0) h.left = put(h.left, key, vl); else if (cmp > 0) h.right = put(h.right, key, vl); else if (cmp == 0) h.vl = vl; if (ised(h.right) &&!ised(h.left)) h = rotteleft(h); if (ised(h.left) && ised(h.left.left)) h = rotteight(h); if (ised(h.left) && ised(h.right)) flipolors(h); insert t ottom (nd color red) len left lnce 4-node split 4-node } return h; only few extr lines of code provides ner-perfect lnce 31

26 2-3 serch trees red-lck BTs B-trees 39

27 File system model ge. ontiguous lock of dt (e.g., file or 4,096-yte chunk). roe. First ccess to pge (e.g., from disk to memory). slow fst roperty. Time required for proe is much lrger thn time to ccess dt within pge. ost model. Numer of proes. Gol. ccess dt using minimum numer of proes. 40

28 B-trees (Byer-creight, 1972) B-tree. Generlize 2-3 trees y llowing up to - 1 key-link pirs per node. t lest 2 key-link pirs t root. t lest / 2 key-link pirs in other nodes. xternl nodes contin client keys. Internl nodes contin copies of keys to guide serch. choose s lrge s possile so tht links fit in pge, e.g., = 1024 * K 2-node sentinel key internl 3-node externl 3-node * D ech red key is copy of min key in sutree externl 5-node (full) K Q U externl 4-node * B D F I J K N O Q T U W X Y client keys (lck) re in externl nodes ntomy of B-tree set ( = 6) ll nodes except the root re 3-, 4- or 5-nodes 41

29 erching in B-tree trt t root. Find intervl for serch key nd tke corresponding link. erch termintes in externl node. serching for follow this link ecuse is * nd K * K * D K Q U follow this link ecuse is D nd * B serch for in this externl node D F I J K N O Q T erching in B-tree set ( = 6) U W X 42

30 Insertion in B-tree erch for new key. Insert t ottom. plit nodes with key-link pirs on the wy up the tree. inserting * K Q U * B F I J K N O Q T U W X * K Q U * B F I J K N O Q T U W X new key () cuses overflow nd split * K Q U new key () cuses overflow nd split * B F I J K N O Q T U W X * K * root split cuses new root to e creted K Q U * B F I J K N O Q T U W X Inserting new key into B-tree set 43

31 Blnce in B-tree roposition. serch or n insertion in B-tree of order with N keys requires log -1 N nd log /2 N proes. f. ll internl nodes (esides root) hve / 2 nd - 1 links. In prctice. Numer of proes is t most 4. = 1024; N = 62 illion log /2 N 4 Optimiztion. lwys keep root pge in memory. 44

32 Building lrge B tree full pge, out to split externl nodes (line segment of length proportionl to numer of keys in tht node) 45 Building lrge B-tree

33 Blnced trees in the wild ed-lck trees re widely used s system symol tles. Jv: jv.util.treep, jv.util.treeet. ++ TL: mp, multimp, multiset. Linux kernel: completely fir scheduler, linux/rtree.h. B-tree vrints. B+ tree, B*tree, B# tree, B-trees (nd vrints) re widely used for file systems nd dtses. Windows: F. c: F, F+. Linux: eiserf, XF, xt3f, JF. Dtses: OL, DB2, ING, QL, ostgreql. 46

Balanced Trees. 2-3 trees red-black trees B-trees. 2-3 trees red-black trees B-trees smaller than. 2-node. 3-node E J S X A C.

Balanced Trees. 2-3 trees red-black trees B-trees. 2-3 trees red-black trees B-trees smaller than. 2-node. 3-node E J S X A C. ymol tle review Blned Trees implementtion gurntee verge se serh insert delete serh hit insert delete ordered itertion? opertions on keys sequentil serh (linked list) N N N N/2 N N/2 no equls() 2-3 trees

More information

implementation sequential search (unordered list) binary search (ordered array) BST N N N log N log N N compareto()

implementation sequential search (unordered list) binary search (ordered array) BST N N N log N log N N compareto() OBT DGWIK KVIN WYN lgorithms OBT DGWIK KVIN WYN ymol tle review lgorithms F O U T D I T I O N http://lgs4.s.prineton.edu 3.3 BND T 2 3 serh trees red lk BTs B-trees implementtion sequentil serh (unordered

More information

Algorithms. Algorithms 3.3 BALANCED SEARCH TREES. 2 3 search trees red black BSTs B-trees (see book or videos) ROBERT SEDGEWICK KEVIN WAYNE

Algorithms. Algorithms 3.3 BALANCED SEARCH TREES. 2 3 search trees red black BSTs B-trees (see book or videos) ROBERT SEDGEWICK KEVIN WAYNE lgorithms OBT DGWICK KVIN WYN 3.3 BLNCD C T lgorithms F O U T D I T I O N 2 3 search trees red black BTs B-trees (see book or videos) OBT DGWICK KVIN WYN http://algs4.cs.princeton.edu Last updated on 10/17/17

More information

Algorithms. Algorithms 3.3 BALANCED SEARCH TREES. 2 3 search trees red black BSTs ROBERT SEDGEWICK KEVIN WAYNE.

Algorithms. Algorithms 3.3 BALANCED SEARCH TREES. 2 3 search trees red black BSTs ROBERT SEDGEWICK KEVIN WAYNE. lgorithms OBT DGWICK KVIN WYN 3.3 BLNCD C T 2 3 search trees red black BTs lgorithms F O U T D I T I O N OBT DGWICK KVIN WYN http://algs4.cs.princeton.edu Last updated on 10/11/16 9:22 M BT: ordered symbol

More information

4.3 Balanced Trees. let us assume that we can manipulate them conveniently and see how they can be put together to form trees.

4.3 Balanced Trees. let us assume that we can manipulate them conveniently and see how they can be put together to form trees. 428 T FOU 4.3 Blned Trees T BT GOIT IN T VIOU setion work well for wide vriety of pplitions, ut they hve poor worst-se performne. s we hve noted, files lredy in order, files in reverse order, files with

More information

CSCI 104. Rafael Ferreira da Silva. Slides adapted from: Mark Redekopp and David Kempe

CSCI 104. Rafael Ferreira da Silva. Slides adapted from: Mark Redekopp and David Kempe CSCI 0 fel Ferreir d Silv rfsilv@isi.edu Slides dpted from: Mrk edekopp nd Dvid Kempe LOG STUCTUED MEGE TEES Series Summtion eview Let n = + + + + k $ = #%& #. Wht is n? n = k+ - Wht is log () + log ()

More information

COMP 423 lecture 11 Jan. 28, 2008

COMP 423 lecture 11 Jan. 28, 2008 COMP 423 lecture 11 Jn. 28, 2008 Up to now, we hve looked t how some symols in n lphet occur more frequently thn others nd how we cn sve its y using code such tht the codewords for more frequently occuring

More information

Presentation Martin Randers

Presentation Martin Randers Presenttion Mrtin Rnders Outline Introduction Algorithms Implementtion nd experiments Memory consumption Summry Introduction Introduction Evolution of species cn e modelled in trees Trees consist of nodes

More information

Orthogonal line segment intersection

Orthogonal line segment intersection Computtionl Geometry [csci 3250] Line segment intersection The prolem (wht) Computtionl Geometry [csci 3250] Orthogonl line segment intersection Applictions (why) Algorithms (how) A specil cse: Orthogonl

More information

2 Computing all Intersections of a Set of Segments Line Segment Intersection

2 Computing all Intersections of a Set of Segments Line Segment Intersection 15-451/651: Design & Anlysis of Algorithms Novemer 14, 2016 Lecture #21 Sweep-Line nd Segment Intersection lst chnged: Novemer 8, 2017 1 Preliminries The sweep-line prdigm is very powerful lgorithmic design

More information

box Boxes and Arrows 3 true 7.59 'X' An object is drawn as a box that contains its data members, for example:

box Boxes and Arrows 3 true 7.59 'X' An object is drawn as a box that contains its data members, for example: Boxes nd Arrows There re two kinds of vriles in Jv: those tht store primitive vlues nd those tht store references. Primitive vlues re vlues of type long, int, short, chr, yte, oolen, doule, nd flot. References

More information

cisc1110 fall 2010 lecture VI.2 call by value function parameters another call by value example:

cisc1110 fall 2010 lecture VI.2 call by value function parameters another call by value example: cisc1110 fll 2010 lecture VI.2 cll y vlue function prmeters more on functions more on cll y vlue nd cll y reference pssing strings to functions returning strings from functions vrile scope glol vriles

More information

ITEC2620 Introduction to Data Structures

ITEC2620 Introduction to Data Structures ITEC0 Introduction to Dt Structures Lecture 7 Queues, Priority Queues Queues I A queue is First-In, First-Out = FIFO uffer e.g. line-ups People enter from the ck of the line People re served (exit) from

More information

From Dependencies to Evaluation Strategies

From Dependencies to Evaluation Strategies From Dependencies to Evlution Strtegies Possile strtegies: 1 let the user define the evlution order 2 utomtic strtegy sed on the dependencies: use locl dependencies to determine which ttriutes to compute

More information

EXPONENTIAL & POWER GRAPHS

EXPONENTIAL & POWER GRAPHS Eponentil & Power Grphs EXPONENTIAL & POWER GRAPHS www.mthletics.com.u Eponentil EXPONENTIAL & Power & Grphs POWER GRAPHS These re grphs which result from equtions tht re not liner or qudrtic. The eponentil

More information

The Greedy Method. The Greedy Method

The Greedy Method. The Greedy Method Lists nd Itertors /8/26 Presenttion for use with the textook, Algorithm Design nd Applictions, y M. T. Goodrich nd R. Tmssi, Wiley, 25 The Greedy Method The Greedy Method The greedy method is generl lgorithm

More information

Deletion The Two Child Case 10 Delete(5) Deletion The Two Child Case. Balanced BST. Finally

Deletion The Two Child Case 10 Delete(5) Deletion The Two Child Case. Balanced BST. Finally Deletion Te Two Cild Cse Delete() Deletion Te Two Cild Cse Ide: Replce te deleted node wit vlue gurnteed to e etween te two cild sutrees! Options: succ from rigt sutree: findmin(t.rigt) pred from left

More information

What do all those bits mean now? Number Systems and Arithmetic. Introduction to Binary Numbers. Questions About Numbers

What do all those bits mean now? Number Systems and Arithmetic. Introduction to Binary Numbers. Questions About Numbers Wht do ll those bits men now? bits (...) Number Systems nd Arithmetic or Computers go to elementry school instruction R-formt I-formt... integer dt number text chrs... floting point signed unsigned single

More information

Agenda & Reading. Class Exercise. COMPSCI 105 SS 2012 Principles of Computer Science. Arrays

Agenda & Reading. Class Exercise. COMPSCI 105 SS 2012 Principles of Computer Science. Arrays COMPSCI 5 SS Principles of Computer Science Arrys & Multidimensionl Arrys Agend & Reding Agend Arrys Creting & Using Primitive & Reference Types Assignments & Equlity Pss y Vlue & Pss y Reference Copying

More information

CS201 Discussion 10 DRAWTREE + TRIES

CS201 Discussion 10 DRAWTREE + TRIES CS201 Discussion 10 DRAWTREE + TRIES DrwTree First instinct: recursion As very generic structure, we could tckle this problem s follows: drw(): Find the root drw(root) drw(root): Write the line for the

More information

Algorithm Design (5) Text Search

Algorithm Design (5) Text Search Algorithm Design (5) Text Serch Tkshi Chikym School of Engineering The University of Tokyo Text Serch Find sustring tht mtches the given key string in text dt of lrge mount Key string: chr x[m] Text Dt:

More information

Questions About Numbers. Number Systems and Arithmetic. Introduction to Binary Numbers. Negative Numbers?

Questions About Numbers. Number Systems and Arithmetic. Introduction to Binary Numbers. Negative Numbers? Questions About Numbers Number Systems nd Arithmetic or Computers go to elementry school How do you represent negtive numbers? frctions? relly lrge numbers? relly smll numbers? How do you do rithmetic?

More information

UNIT 11. Query Optimization

UNIT 11. Query Optimization UNIT Query Optimiztion Contents Introduction to Query Optimiztion 2 The Optimiztion Process: An Overview 3 Optimiztion in System R 4 Optimiztion in INGRES 5 Implementing the Join Opertors Wei-Png Yng,

More information

Allocator Basics. Dynamic Memory Allocation in the Heap (malloc and free) Allocator Goals: malloc/free. Internal Fragmentation

Allocator Basics. Dynamic Memory Allocation in the Heap (malloc and free) Allocator Goals: malloc/free. Internal Fragmentation Alloctor Bsics Dynmic Memory Alloction in the Hep (mlloc nd free) Pges too corse-grined for llocting individul objects. Insted: flexible-sized, word-ligned blocks. Allocted block (4 words) Free block (3

More information

Tries. Yufei Tao KAIST. April 9, Y. Tao, April 9, 2013 Tries

Tries. Yufei Tao KAIST. April 9, Y. Tao, April 9, 2013 Tries Tries Yufei To KAIST April 9, 2013 Y. To, April 9, 2013 Tries In this lecture, we will discuss the following exct mtching prolem on strings. Prolem Let S e set of strings, ech of which hs unique integer

More information

Announcements. CS 188: Artificial Intelligence Fall Recap: Search. Today. Example: Pancake Problem. Example: Pancake Problem

Announcements. CS 188: Artificial Intelligence Fall Recap: Search. Today. Example: Pancake Problem. Example: Pancake Problem Announcements Project : erch It s live! Due 9/. trt erly nd sk questions. It s longer thn most! Need prtner? Come up fter clss or try Pizz ections: cn go to ny, ut hve priority in your own C 88: Artificil

More information

What are suffix trees?

What are suffix trees? Suffix Trees 1 Wht re suffix trees? Allow lgorithm designers to store very lrge mount of informtion out strings while still keeping within liner spce Allow users to serch for new strings in the originl

More information

In the last lecture, we discussed how valid tokens may be specified by regular expressions.

In the last lecture, we discussed how valid tokens may be specified by regular expressions. LECTURE 5 Scnning SYNTAX ANALYSIS We know from our previous lectures tht the process of verifying the syntx of the progrm is performed in two stges: Scnning: Identifying nd verifying tokens in progrm.

More information

Today. CS 188: Artificial Intelligence Fall Recap: Search. Example: Pancake Problem. Example: Pancake Problem. General Tree Search.

Today. CS 188: Artificial Intelligence Fall Recap: Search. Example: Pancake Problem. Example: Pancake Problem. General Tree Search. CS 88: Artificil Intelligence Fll 00 Lecture : A* Serch 9//00 A* Serch rph Serch Tody Heuristic Design Dn Klein UC Berkeley Multiple slides from Sturt Russell or Andrew Moore Recp: Serch Exmple: Pncke

More information

Union-Find Problem. Using Arrays And Chains. A Set As A Tree. Result Of A Find Operation

Union-Find Problem. Using Arrays And Chains. A Set As A Tree. Result Of A Find Operation Union-Find Problem Given set {,,, n} of n elements. Initilly ech element is in different set. ƒ {}, {},, {n} An intermixed sequence of union nd find opertions is performed. A union opertion combines two

More information

If you are at the university, either physically or via the VPN, you can download the chapters of this book as PDFs.

If you are at the university, either physically or via the VPN, you can download the chapters of this book as PDFs. Lecture 5 Wlks, Trils, Pths nd Connectedness Reding: Some of the mteril in this lecture comes from Section 1.2 of Dieter Jungnickel (2008), Grphs, Networks nd Algorithms, 3rd edition, which is ville online

More information

Lecture 10 Evolutionary Computation: Evolution strategies and genetic programming

Lecture 10 Evolutionary Computation: Evolution strategies and genetic programming Lecture 10 Evolutionry Computtion: Evolution strtegies nd genetic progrmming Evolution strtegies Genetic progrmming Summry Negnevitsky, Person Eduction, 2011 1 Evolution Strtegies Another pproch to simulting

More information

Computer Arithmetic Logical, Integer Addition & Subtraction Chapter

Computer Arithmetic Logical, Integer Addition & Subtraction Chapter Computer Arithmetic Logicl, Integer Addition & Sutrction Chpter 3.-3.3 3.3 EEC7 FQ 25 MIPS Integer Representtion -it signed integers,, e.g., for numeric opertions 2 s s complement: one representtion for

More information

Ma/CS 6b Class 1: Graph Recap

Ma/CS 6b Class 1: Graph Recap M/CS 6 Clss 1: Grph Recp By Adm Sheffer Course Detils Adm Sheffer. Office hour: Tuesdys 4pm. dmsh@cltech.edu TA: Victor Kstkin. Office hour: Tuesdys 7pm. 1:00 Mondy, Wednesdy, nd Fridy. http://www.mth.cltech.edu/~2014-15/2term/m006/

More information

10.5 Graphing Quadratic Functions

10.5 Graphing Quadratic Functions 0.5 Grphing Qudrtic Functions Now tht we cn solve qudrtic equtions, we wnt to lern how to grph the function ssocited with the qudrtic eqution. We cll this the qudrtic function. Grphs of Qudrtic Functions

More information

6.3 Volumes. Just as area is always positive, so is volume and our attitudes towards finding it.

6.3 Volumes. Just as area is always positive, so is volume and our attitudes towards finding it. 6.3 Volumes Just s re is lwys positive, so is volume nd our ttitudes towrds finding it. Let s review how to find the volume of regulr geometric prism, tht is, 3-dimensionl oject with two regulr fces seprted

More information

Intermediate Information Structures

Intermediate Information Structures CPSC 335 Intermedite Informtion Structures LECTURE 13 Suffix Trees Jon Rokne Computer Science University of Clgry Cnd Modified from CMSC 423 - Todd Trengen UMD upd Preprocessing Strings We will look t

More information

Lexical Analysis. Amitabha Sanyal. (www.cse.iitb.ac.in/ as) Department of Computer Science and Engineering, Indian Institute of Technology, Bombay

Lexical Analysis. Amitabha Sanyal. (www.cse.iitb.ac.in/ as) Department of Computer Science and Engineering, Indian Institute of Technology, Bombay Lexicl Anlysis Amith Snyl (www.cse.iit.c.in/ s) Deprtment of Computer Science nd Engineering, Indin Institute of Technology, Bomy Septemer 27 College of Engineering, Pune Lexicl Anlysis: 2/6 Recp The input

More information

AI Adjacent Fields. This slide deck courtesy of Dan Klein at UC Berkeley

AI Adjacent Fields. This slide deck courtesy of Dan Klein at UC Berkeley AI Adjcent Fields Philosophy: Logic, methods of resoning Mind s physicl system Foundtions of lerning, lnguge, rtionlity Mthemtics Forml representtion nd proof Algorithms, computtion, (un)decidility, (in)trctility

More information

Solving Problems by Searching. CS 486/686: Introduction to Artificial Intelligence Winter 2016

Solving Problems by Searching. CS 486/686: Introduction to Artificial Intelligence Winter 2016 Solving Prolems y Serching CS 486/686: Introduction to Artificil Intelligence Winter 2016 1 Introduction Serch ws one of the first topics studied in AI - Newell nd Simon (1961) Generl Prolem Solver Centrl

More information

1.5 Extrema and the Mean Value Theorem

1.5 Extrema and the Mean Value Theorem .5 Extrem nd the Men Vlue Theorem.5. Mximum nd Minimum Vlues Definition.5. (Glol Mximum). Let f : D! R e function with domin D. Then f hs n glol mximum vlue t point c, iff(c) f(x) for ll x D. The vlue

More information

CSc 453. Compilers and Systems Software. 4 : Lexical Analysis II. Department of Computer Science University of Arizona

CSc 453. Compilers and Systems Software. 4 : Lexical Analysis II. Department of Computer Science University of Arizona CSc 453 Compilers nd Systems Softwre 4 : Lexicl Anlysis II Deprtment of Computer Science University of Arizon collerg@gmil.com Copyright c 2009 Christin Collerg Implementing Automt NFAs nd DFAs cn e hrd-coded

More information

Uninformed Search. Hal Daumé III. Computer Science University of Maryland CS 421: Introduction to Artificial Intelligence 31 Jan 2012

Uninformed Search. Hal Daumé III. Computer Science University of Maryland CS 421: Introduction to Artificial Intelligence 31 Jan 2012 1 Hl Dumé III (me@hl3.nme) Uninformed Serch Hl Dumé III Comuter Science University of Mrylnd me@hl3.nme CS 421: Introduction to Artificil Intelligence 31 Jn 2012 Mny slides courtesy of Dn Klein, Sturt

More information

Hyperbolas. Definition of Hyperbola

Hyperbolas. Definition of Hyperbola CHAT Pre-Clculus Hyperols The third type of conic is clled hyperol. For n ellipse, the sum of the distnces from the foci nd point on the ellipse is fixed numer. For hyperol, the difference of the distnces

More information

What do all those bits mean now? Number Systems and Arithmetic. Introduction to Binary Numbers. Questions About Numbers

What do all those bits mean now? Number Systems and Arithmetic. Introduction to Binary Numbers. Questions About Numbers Wht do ll those bits men now? bits (...) Number Systems nd Arithmetic or Computers go to elementry school instruction R-formt I-formt... integer dt number text chrs... floting point signed unsigned single

More information

Slides for Data Mining by I. H. Witten and E. Frank

Slides for Data Mining by I. H. Witten and E. Frank Slides for Dt Mining y I. H. Witten nd E. Frnk Simplicity first Simple lgorithms often work very well! There re mny kinds of simple structure, eg: One ttriute does ll the work All ttriutes contriute eqully

More information

Implementing Automata. CSc 453. Compilers and Systems Software. 4 : Lexical Analysis II. Department of Computer Science University of Arizona

Implementing Automata. CSc 453. Compilers and Systems Software. 4 : Lexical Analysis II. Department of Computer Science University of Arizona Implementing utomt Sc 5 ompilers nd Systems Softwre : Lexicl nlysis II Deprtment of omputer Science University of rizon collerg@gmil.com opyright c 009 hristin ollerg NFs nd DFs cn e hrd-coded using this

More information

Suffix Tries. Slides adapted from the course by Ben Langmead

Suffix Tries. Slides adapted from the course by Ben Langmead Suffix Tries Slides dpted from the course y Ben Lngmed en.lngmed@gmil.com Indexing with suffixes Until now, our indexes hve een sed on extrcting sustrings from T A very different pproch is to extrct suffixes

More information

PARALLEL AND DISTRIBUTED COMPUTING

PARALLEL AND DISTRIBUTED COMPUTING PARALLEL AND DISTRIBUTED COMPUTING 2009/2010 1 st Semester Teste Jnury 9, 2010 Durtion: 2h00 - No extr mteril llowed. This includes notes, scrtch pper, clcultor, etc. - Give your nswers in the ville spce

More information

Systems I. Logic Design I. Topics Digital logic Logic gates Simple combinational logic circuits

Systems I. Logic Design I. Topics Digital logic Logic gates Simple combinational logic circuits Systems I Logic Design I Topics Digitl logic Logic gtes Simple comintionl logic circuits Simple C sttement.. C = + ; Wht pieces of hrdwre do you think you might need? Storge - for vlues,, C Computtion

More information

ΕΠΛ323 - Θεωρία και Πρακτική Μεταγλωττιστών

ΕΠΛ323 - Θεωρία και Πρακτική Μεταγλωττιστών ΕΠΛ323 - Θωρία και Πρακτική Μταγλωττιστών Lecture 3 Lexicl Anlysis Elis Athnsopoulos elisthn@cs.ucy.c.cy Recognition of Tokens if expressions nd reltionl opertors if è if then è then else è else relop

More information

Product of polynomials. Introduction to Programming (in C++) Numerical algorithms. Product of polynomials. Product of polynomials

Product of polynomials. Introduction to Programming (in C++) Numerical algorithms. Product of polynomials. Product of polynomials Product of polynomils Introduction to Progrmming (in C++) Numericl lgorithms Jordi Cortdell, Ricrd Gvldà, Fernndo Orejs Dept. of Computer Science, UPC Given two polynomils on one vrile nd rel coefficients,

More information

Position Heaps: A Simple and Dynamic Text Indexing Data Structure

Position Heaps: A Simple and Dynamic Text Indexing Data Structure Position Heps: A Simple nd Dynmic Text Indexing Dt Structure Andrzej Ehrenfeucht, Ross M. McConnell, Niss Osheim, Sung-Whn Woo Dept. of Computer Science, 40 UCB, University of Colordo t Boulder, Boulder,

More information

UT1553B BCRT True Dual-port Memory Interface

UT1553B BCRT True Dual-port Memory Interface UTMC APPICATION NOTE UT553B BCRT True Dul-port Memory Interfce INTRODUCTION The UTMC UT553B BCRT is monolithic CMOS integrted circuit tht provides comprehensive MI-STD- 553B Bus Controller nd Remote Terminl

More information

EECS 281: Homework #4 Due: Thursday, October 7, 2004

EECS 281: Homework #4 Due: Thursday, October 7, 2004 EECS 28: Homework #4 Due: Thursdy, October 7, 24 Nme: Emil:. Convert the 24-bit number x44243 to mime bse64: QUJD First, set is to brek 8-bit blocks into 6-bit blocks, nd then convert: x44243 b b 6 2 9

More information

CIS 1068 Program Design and Abstraction Spring2015 Midterm Exam 1. Name SOLUTION

CIS 1068 Program Design and Abstraction Spring2015 Midterm Exam 1. Name SOLUTION CIS 1068 Progrm Design nd Astrction Spring2015 Midterm Exm 1 Nme SOLUTION Pge Points Score 2 15 3 8 4 18 5 10 6 7 7 7 8 14 9 11 10 10 Totl 100 1 P ge 1. Progrm Trces (41 points, 50 minutes) Answer the

More information

Functor (1A) Young Won Lim 8/2/17

Functor (1A) Young Won Lim 8/2/17 Copyright (c) 2016-2017 Young W. Lim. Permission is grnted to copy, distribute nd/or modify this document under the terms of the GNU Free Documenttion License, Version 1.2 or ny lter version published

More information

CSEP 573 Artificial Intelligence Winter 2016

CSEP 573 Artificial Intelligence Winter 2016 CSEP 573 Artificil Intelligence Winter 2016 Luke Zettlemoyer Problem Spces nd Serch slides from Dn Klein, Sturt Russell, Andrew Moore, Dn Weld, Pieter Abbeel, Ali Frhdi Outline Agents tht Pln Ahed Serch

More information

Finite Automata. Lecture 4 Sections Robb T. Koether. Hampden-Sydney College. Wed, Jan 21, 2015

Finite Automata. Lecture 4 Sections Robb T. Koether. Hampden-Sydney College. Wed, Jan 21, 2015 Finite Automt Lecture 4 Sections 3.6-3.7 Ro T. Koether Hmpden-Sydney College Wed, Jn 21, 2015 Ro T. Koether (Hmpden-Sydney College) Finite Automt Wed, Jn 21, 2015 1 / 23 1 Nondeterministic Finite Automt

More information

Solving Problems by Searching. CS 486/686: Introduction to Artificial Intelligence

Solving Problems by Searching. CS 486/686: Introduction to Artificial Intelligence Solving Prolems y Serching CS 486/686: Introduction to Artificil Intelligence 1 Introduction Serch ws one of the first topics studied in AI - Newell nd Simon (1961) Generl Prolem Solver Centrl component

More information

Stack. A list whose end points are pointed by top and bottom

Stack. A list whose end points are pointed by top and bottom 4. Stck Stck A list whose end points re pointed by top nd bottom Insertion nd deletion tke plce t the top (cf: Wht is the difference between Stck nd Arry?) Bottom is constnt, but top grows nd shrinks!

More information

Functor (1A) Young Won Lim 10/5/17

Functor (1A) Young Won Lim 10/5/17 Copyright (c) 2016-2017 Young W. Lim. Permission is grnted to copy, distribute nd/or modify this document under the terms of the GNU Free Documenttion License, Version 1.2 or ny lter version published

More information

Suffix trees, suffix arrays, BWT

Suffix trees, suffix arrays, BWT ALGORITHMES POUR LA BIO-INFORMATIQUE ET LA VISUALISATION COURS 3 Rluc Uricru Suffix trees, suffix rrys, BWT Bsed on: Suffix trees nd suffix rrys presenttion y Him Kpln Suffix trees course y Pco Gomez Liner-Time

More information

Discussion 1 Recap. COP4600 Discussion 2 OS concepts, System call, and Assignment 1. Questions. Questions. Outline. Outline 10/24/2010

Discussion 1 Recap. COP4600 Discussion 2 OS concepts, System call, and Assignment 1. Questions. Questions. Outline. Outline 10/24/2010 COP4600 Discussion 2 OS concepts, System cll, nd Assignment 1 TA: Hufeng Jin hj0@cise.ufl.edu Discussion 1 Recp Introduction to C C Bsic Types (chr, int, long, flot, doule, ) C Preprocessors (#include,

More information

Topics in Analytic Geometry

Topics in Analytic Geometry Nme Chpter 10 Topics in Anltic Geometr Section 10.1 Lines Objective: In this lesson ou lerned how to find the inclintion of line, the ngle between two lines, nd the distnce between point nd line. Importnt

More information

MA1008. Calculus and Linear Algebra for Engineers. Course Notes for Section B. Stephen Wills. Department of Mathematics. University College Cork

MA1008. Calculus and Linear Algebra for Engineers. Course Notes for Section B. Stephen Wills. Department of Mathematics. University College Cork MA1008 Clculus nd Liner Algebr for Engineers Course Notes for Section B Stephen Wills Deprtment of Mthemtics University College Cork s.wills@ucc.ie http://euclid.ucc.ie/pges/stff/wills/teching/m1008/ma1008.html

More information

ASTs, Regex, Parsing, and Pretty Printing

ASTs, Regex, Parsing, and Pretty Printing ASTs, Regex, Prsing, nd Pretty Printing CS 2112 Fll 2016 1 Algeric Expressions To strt, consider integer rithmetic. Suppose we hve the following 1. The lphet we will use is the digits {0, 1, 2, 3, 4, 5,

More information

Network Layer: Routing Classifications; Shortest Path Routing

Network Layer: Routing Classifications; Shortest Path Routing igitl ommuniction in the Modern World : Routing lssifictions; Shortest Pth Routing s min prolem: To get efficiently from one point to the other in dynmic environment http://.cs.huji.c.il/~com com@cs.huji.c.il

More information

CS321 Languages and Compiler Design I. Winter 2012 Lecture 5

CS321 Languages and Compiler Design I. Winter 2012 Lecture 5 CS321 Lnguges nd Compiler Design I Winter 2012 Lecture 5 1 FINITE AUTOMATA A non-deterministic finite utomton (NFA) consists of: An input lphet Σ, e.g. Σ =,. A set of sttes S, e.g. S = {1, 3, 5, 7, 11,

More information

Announcements. CS 188: Artificial Intelligence Fall Recap: Search. Today. General Tree Search. Uniform Cost. Lecture 3: A* Search 9/4/2007

Announcements. CS 188: Artificial Intelligence Fall Recap: Search. Today. General Tree Search. Uniform Cost. Lecture 3: A* Search 9/4/2007 CS 88: Artificil Intelligence Fll 2007 Lecture : A* Serch 9/4/2007 Dn Klein UC Berkeley Mny slides over the course dpted from either Sturt Russell or Andrew Moore Announcements Sections: New section 06:

More information

MIPS I/O and Interrupt

MIPS I/O and Interrupt MIPS I/O nd Interrupt Review Floting point instructions re crried out on seprte chip clled coprocessor 1 You hve to move dt to/from coprocessor 1 to do most common opertions such s printing, clling functions,

More information

CS311H: Discrete Mathematics. Graph Theory IV. A Non-planar Graph. Regions of a Planar Graph. Euler s Formula. Instructor: Işıl Dillig

CS311H: Discrete Mathematics. Graph Theory IV. A Non-planar Graph. Regions of a Planar Graph. Euler s Formula. Instructor: Işıl Dillig CS311H: Discrete Mthemtics Grph Theory IV Instructor: Işıl Dillig Instructor: Işıl Dillig, CS311H: Discrete Mthemtics Grph Theory IV 1/25 A Non-plnr Grph Regions of Plnr Grph The plnr representtion of

More information

Tree Structured Symmetrical Systems of Linear Equations and their Graphical Solution

Tree Structured Symmetrical Systems of Linear Equations and their Graphical Solution Proceedings of the World Congress on Engineering nd Computer Science 4 Vol I WCECS 4, -4 October, 4, Sn Frncisco, USA Tree Structured Symmetricl Systems of Liner Equtions nd their Grphicl Solution Jime

More information

CS 241. Fall 2017 Midterm Review Solutions. October 24, Bits and Bytes 1. 3 MIPS Assembler 6. 4 Regular Languages 7.

CS 241. Fall 2017 Midterm Review Solutions. October 24, Bits and Bytes 1. 3 MIPS Assembler 6. 4 Regular Languages 7. CS 241 Fll 2017 Midterm Review Solutions Octoer 24, 2017 Contents 1 Bits nd Bytes 1 2 MIPS Assemly Lnguge Progrmming 2 3 MIPS Assemler 6 4 Regulr Lnguges 7 5 Scnning 9 1 Bits nd Bytes 1. Give two s complement

More information

Transparent neutral-element elimination in MPI reduction operations

Transparent neutral-element elimination in MPI reduction operations Trnsprent neutrl-element elimintion in MPI reduction opertions Jesper Lrsson Träff Deprtment of Scientific Computing University of Vienn Disclimer Exploiting repetition nd sprsity in input for reducing

More information

Ma/CS 6b Class 1: Graph Recap

Ma/CS 6b Class 1: Graph Recap M/CS 6 Clss 1: Grph Recp By Adm Sheffer Course Detils Instructor: Adm Sheffer. TA: Cosmin Pohot. 1pm Mondys, Wednesdys, nd Fridys. http://mth.cltech.edu/~2015-16/2term/m006/ Min ook: Introduction to Grph

More information

Distributed Systems Principles and Paradigms

Distributed Systems Principles and Paradigms Distriuted Systems Principles nd Prdigms Chpter 11 (version April 7, 2008) Mrten vn Steen Vrije Universiteit Amsterdm, Fculty of Science Dept. Mthemtics nd Computer Science Room R4.20. Tel: (020) 598 7784

More information

Fig.25: the Role of LEX

Fig.25: the Role of LEX The Lnguge for Specifying Lexicl Anlyzer We shll now study how to uild lexicl nlyzer from specifiction of tokens in the form of list of regulr expressions The discussion centers round the design of n existing

More information

Alignment of Long Sequences. BMI/CS Spring 2012 Colin Dewey

Alignment of Long Sequences. BMI/CS Spring 2012 Colin Dewey Alignment of Long Sequences BMI/CS 776 www.biostt.wisc.edu/bmi776/ Spring 2012 Colin Dewey cdewey@biostt.wisc.edu Gols for Lecture the key concepts to understnd re the following how lrge-scle lignment

More information

I/O Efficient Dynamic Data Structures for Longest Prefix Queries

I/O Efficient Dynamic Data Structures for Longest Prefix Queries I/O Efficient Dynmic Dt Structures for Longest Prefix Queries Moshe Hershcovitch 1 nd Him Kpln 2 1 Fculty of Electricl Engineering, moshik1@gmil.com 2 School of Computer Science, himk@cs.tu.c.il, Tel Aviv

More information

Digital Design. Chapter 6: Optimizations and Tradeoffs

Digital Design. Chapter 6: Optimizations and Tradeoffs Digitl Design Chpter 6: Optimiztions nd Trdeoffs Slides to ccompny the tetbook Digitl Design, with RTL Design, VHDL, nd Verilog, 2nd Edition, by Frnk Vhid, John Wiley nd Sons Publishers, 2. http://www.ddvhid.com

More information

COMPUTER SCIENCE 123. Foundations of Computer Science. 6. Tuples

COMPUTER SCIENCE 123. Foundations of Computer Science. 6. Tuples COMPUTER SCIENCE 123 Foundtions of Computer Science 6. Tuples Summry: This lecture introduces tuples in Hskell. Reference: Thompson Sections 5.1 2 R.L. While, 2000 3 Tuples Most dt comes with structure

More information

Lecture Overview. Knowledge-based systems in Bioinformatics, 1MB602. Procedural abstraction. The sum procedure. Integration as a procedure

Lecture Overview. Knowledge-based systems in Bioinformatics, 1MB602. Procedural abstraction. The sum procedure. Integration as a procedure Lecture Overview Knowledge-bsed systems in Bioinformtics, MB6 Scheme lecture Procedurl bstrction Higher order procedures Procedures s rguments Procedures s returned vlues Locl vribles Dt bstrction Compound

More information

Stack Manipulation. Other Issues. How about larger constants? Frame Pointer. PowerPC. Alternative Architectures

Stack Manipulation. Other Issues. How about larger constants? Frame Pointer. PowerPC. Alternative Architectures Other Issues Stck Mnipultion support for procedures (Refer to section 3.6), stcks, frmes, recursion mnipulting strings nd pointers linkers, loders, memory lyout Interrupts, exceptions, system clls nd conventions

More information

Outline. Introduction Suffix Trees (ST) Building STs in linear time: Ukkonen s algorithm Applications of ST

Outline. Introduction Suffix Trees (ST) Building STs in linear time: Ukkonen s algorithm Applications of ST Suffi Trees Outline Introduction Suffi Trees (ST) Building STs in liner time: Ukkonen s lgorithm Applictions of ST 2 3 Introduction Sustrings String is ny sequence of chrcters. Sustring of string S is

More information

Fall 2018 Midterm 1 October 11, ˆ You may not ask questions about the exam except for language clarifications.

Fall 2018 Midterm 1 October 11, ˆ You may not ask questions about the exam except for language clarifications. 15-112 Fll 2018 Midterm 1 October 11, 2018 Nme: Andrew ID: Recittion Section: ˆ You my not use ny books, notes, extr pper, or electronic devices during this exm. There should be nothing on your desk or

More information

Dr. D.M. Akbar Hussain

Dr. D.M. Akbar Hussain Dr. D.M. Akr Hussin Lexicl Anlysis. Bsic Ide: Red the source code nd generte tokens, it is similr wht humns will do to red in; just tking on the input nd reking it down in pieces. Ech token is sequence

More information

Pointers and Arrays. More Pointer Examples. Pointers CS 217

Pointers and Arrays. More Pointer Examples. Pointers CS 217 Pointers nd Arrs CS 21 1 2 Pointers More Pointer Emples Wht is pointer A vrile whose vlue is the ddress of nother vrile p is pointer to vrile v Opertions &: ddress of (reference) *: indirection (dereference)

More information

Lexical analysis, scanners. Construction of a scanner

Lexical analysis, scanners. Construction of a scanner Lexicl nlysis scnners (NB. Pges 4-5 re for those who need to refresh their knowledge of DFAs nd NFAs. These re not presented during the lectures) Construction of scnner Tools: stte utomt nd trnsition digrms.

More information

Premaster Course Algorithms 1 Chapter 6: Shortest Paths. Christian Scheideler SS 2018

Premaster Course Algorithms 1 Chapter 6: Shortest Paths. Christian Scheideler SS 2018 Premster Course Algorithms Chpter 6: Shortest Pths Christin Scheieler SS 8 Bsic Grph Algorithms Overview: Shortest pths in DAGs Dijkstr s lgorithm Bellmn-For lgorithm Johnson s metho SS 8 Chpter 6 Shortest

More information

CSCI 3130: Formal Languages and Automata Theory Lecture 12 The Chinese University of Hong Kong, Fall 2011

CSCI 3130: Formal Languages and Automata Theory Lecture 12 The Chinese University of Hong Kong, Fall 2011 CSCI 3130: Forml Lnguges nd utomt Theory Lecture 12 The Chinese University of Hong Kong, Fll 2011 ndrej Bogdnov In progrmming lnguges, uilding prse trees is significnt tsk ecuse prse trees tell us the

More information

Theory of Computation CSE 105

Theory of Computation CSE 105 $ $ $ Theory of Computtion CSE 105 Regulr Lnguges Study Guide nd Homework I Homework I: Solutions to the following problems should be turned in clss on July 1, 1999. Instructions: Write your nswers clerly

More information

Section 10.4 Hyperbolas

Section 10.4 Hyperbolas 66 Section 10.4 Hyperbols Objective : Definition of hyperbol & hyperbols centered t (0, 0). The third type of conic we will study is the hyperbol. It is defined in the sme mnner tht we defined the prbol

More information

Very sad code. Abstraction, List, & Cons. CS61A Lecture 7. Happier Code. Goals. Constructors. Constructors 6/29/2011. Selectors.

Very sad code. Abstraction, List, & Cons. CS61A Lecture 7. Happier Code. Goals. Constructors. Constructors 6/29/2011. Selectors. 6/9/ Abstrction, List, & Cons CS6A Lecture 7-6-9 Colleen Lewis Very sd code (define (totl hnd) (if (empty? hnd) (+ (butlst (lst hnd)) (totl (butlst hnd))))) STk> (totl (h c d)) 7 STk> (totl (h ks d)) ;;;EEEK!

More information

UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences Computer Science Division. Balanced Searching: Tries, Treaps

UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences Computer Science Division. Balanced Searching: Tries, Treaps UNIVERSITY OF CALIFORNIA Deprtment of Electricl Engineering nd Computer Sciences Computer Science Division CS6B Fll 999 P. N. Hilfinger Blnced Serching: Tries, Treps Blnce We ve seen tht inry serch trees

More information

Summer Review Packet For Algebra 2 CP/Honors

Summer Review Packet For Algebra 2 CP/Honors Summer Review Pcket For Alger CP/Honors Nme Current Course Mth Techer Introduction Alger uilds on topics studied from oth Alger nd Geometr. Certin topics re sufficientl involved tht the cll for some review

More information

The Reciprocal Function Family. Objectives To graph reciprocal functions To graph translations of reciprocal functions

The Reciprocal Function Family. Objectives To graph reciprocal functions To graph translations of reciprocal functions - The Reciprocl Function Fmil Objectives To grph reciprocl functions To grph trnsltions of reciprocl functions Content Stndrds F.BF.3 Identif the effect on the grph of replcing f () b f() k, kf(), f(k),

More information

Mid-term exam. Scores. Fall term 2012 KAIST EE209 Programming Structures for EE. Thursday Oct 25, Student's name: Student ID:

Mid-term exam. Scores. Fall term 2012 KAIST EE209 Programming Structures for EE. Thursday Oct 25, Student's name: Student ID: Fll term 2012 KAIST EE209 Progrmming Structures for EE Mid-term exm Thursdy Oct 25, 2012 Student's nme: Student ID: The exm is closed book nd notes. Red the questions crefully nd focus your nswers on wht

More information

ZZ - Advanced Math Review 2017

ZZ - Advanced Math Review 2017 ZZ - Advnced Mth Review Mtrix Multipliction Given! nd! find the sum of the elements of the product BA First, rewrite the mtrices in the correct order to multiply The product is BA hs order x since B is

More information

ECEN 468 Advanced Logic Design Lecture 36: RTL Optimization

ECEN 468 Advanced Logic Design Lecture 36: RTL Optimization ECEN 468 Advnced Logic Design Lecture 36: RTL Optimiztion ECEN 468 Lecture 36 RTL Design Optimiztions nd Trdeoffs 6.5 While creting dtpth during RTL design, there re severl optimiztions nd trdeoffs, involving

More information