Digital Image Processing

Size: px
Start display at page:

Download "Digital Image Processing"

Transcription

1 Digital Image Processing Third Edition Rafael C. Gonzalez University of Tennessee Richard E. Woods MedData Interactive PEARSON Prentice Hall Pearson Education International

2 Contents Preface xv Acknowledgments The Book Web Site xx About the Authors xxi I Introduction What Is Digital Image Processing? The Origins of Digital Image Processing Examples of Fields that Use Digital Image Processing Gamma-Ray Imaging X-Ray Imaging Imaging in the Ultraviolet Band Imaging in the Visible and Infrared Bands Imaging in the Microwave Band Imaging in the Radio Band Examples in which Other Imaging Modalities Are Used 1.4 Fundamental Steps in Digital Image Processing Components of an Image Processing System 28 Summary 31 References and Further Reading 31 L Digital Image Fundamentals Elements of Visual Perception Structure of the Human Eye Image Formation in the Eye Brightness Adaptation and Discrimination Light and the Electromagnetic Spectrum Image Sensing and Acquisition Image Acquisition Using a Single Sensor Image Acquisition Using Sensor Strips Image Acquisition Using Sensor Arrays A Simple Image Formation Model Image Sampling and Quantization Basic Concepts in Sampling and Quantization Representing Digital Images Spatial and Intensity Resolution Image Interpolation 65

3 vi Contents 2.5 Some Basic Relationships between Pixels Neighbors of a Pixel Adjacency, Connectivity, Regions, and Boundaries Distance Measures An Introduction to the Mathematical Tools Used in Digital Image Processing Array versus Matrix Operations Linear versus Nonlinear Operations Arithmetic Operations Set and Logical Operations Spatial Operations Vector and Matrix Operations Image Transforms Probabilistic Methods 96 Summary 98 References and Further Reading 98 Problems 99 J Intensity Transformations and Spatial Filtering Background The Basics of Intensity Transformations and Spatial Filtering About the Examples in This Chapter Some Basic Intensity Transformation Functions Image Negatives Log Transformations Power-Law (Gamma) Transformations Piecewise-Linear Transformation Functions Histogram Processing Histogram Equalization Histogram Matching (Specification) Local Histogram Processing Using Histogram Statistics for Image Enhancement Fundamentals of Spatial Filtering The Mechanics of Spatial Filtering Spatial Correlation and Convolution Vector Representation of Linear Filtering Generating Spatial Filter Masks Smoothing Spatial Filters Smoothing Linear Filters Order-Statistic (Nonlinear) Filters Sharpening Spatial Filters Foundation Using the Second Derivative for Image Sharpening The Laplacian 160

4 Contents vii Unsharp Masking and Highboost Filtering Using First-Order Derivatives for (Nonlinear) Image Sharpening The Gradient Combining Spatial Enhancement Methods Using Fuzzy Techniques for Intensity Transformations and Spatial Filtering Introduction Principles of Fuzzy Set Theory Using Fuzzy Sets Using Fuzzy Sets for Intensity Transformations Using Fuzzy Sets for Spatial Filtering 189 Summary 192 References and Further Reading 192 Problems Filtering in the Frequency Domain Background A Brief History of the Fourier Series and Transform About the Examples in this Chapter Preliminary Concepts Complex Numbers Fourier Series Impulses and Their Sifting Property The Fourier Transform of Functions of One Continuous Variable Convolution Sampling and the Fourier Transform of Sampled Functions Sampling The Fourier Transform of Sampled Functions The Sampling Theorem Aliasing Function Reconstruction (Recovery) from Sampled Data The Discrete Fourier Transform (DFT) of One Variable Obtaining the DFT from the Continuous Transform of a Sampled Function Relationship Between the Sampling and Frequency Intervals Extension to Functions of Two Variables The 2-D Impulse and Its Sifting Property The 2-D Continuous Fourier Transform Pair Two-Dimensional Sampling and the 2-D Sampling Theorem Aliasing in Images The 2-D Discrete Fourier Transform and Its Inverse 235

5 viii Contents 4.6 Some Properties of the 2-D Discrete Fourier Transform Relationships Between Spatial and Frequency Intervals Translation and Rotation Periodicity Symmetry Properties Fourier Spectrum and Phase Angle The 2-D Convolution Theorem Summary of 2-D Discrete Fourier Transform Properties The Basics of Filtering in the Frequency Domain Additional Characteristics of the Frequency Domain Frequency Domain Filtering Fundamentals Summary of Steps for Filtering in the Frequency Domain Correspondence Between Filtering in the Spatial and Frequency Domains Image Smoothing Using Frequency Domain Filters Ideal Lowpass Filters Butterworth Lowpass Filters Gaussian Lowpass Filters Additional Examples of Lowpass Filtering Image Sharpening Using Frequency Domain Filters Ideal Highpass Filters Butterworth Highpass Filters Gaussian Highpass Filters The Laplacian in the Frequency Domain Unsharp Masking, Highboost Filtering, and High-Frequency- Emphasis Filtering Homomorphic Filtering Selective Filtering Bandreject and Bandpass Filters Notch Filters Implementation Separability of the 2-D DFT Computing the IDFT Using a DFT Algorithm The Fast Fourier Transform (FFT) Some Comments on Filter Design 303 Summary 303 References and Further Reading 304 Problems 304 J Image Restoration and Reconstruction A Model of the Image Degradation/Restoration Process Noise Models Spatial and Frequency Properties of Noise Some Important Noise Probability Density Functions 314

6 5.2.3 Periodic Noise Estimation of Noise Parameters Restoration in the Presence of Noise Only Spatial Filtering Mean Filters Order-Statistic Filters Adaptive Filters Periodic Noise Reduction by Frequency Domain Filtering Bandreject Filters Bandpass Filters Notch Filters Optimum Notch Filtering Linear, Position-Invariant Degradations Estimating the Degradation Function Estimation by Image Observation Estimation by Experimentation Estimation by Modeling Inverse Filtering Minimum Mean Square Error (Wiener) Filtering Constrained Least Squares Filtering Geometric Mean Filter Image Reconstruction from Projections Introduction Principles of Computed Tomography (CT) Projections and the Radon Transform The Fourier-Slice Theorem Reconstruction Using Parallel-Beam Filtered Backprojections Reconstruction Using Fan-Beam Filtered Backprojections 381 Summary 387 References and Further Reading 388 Problems Color Image Processing Color Fundamentals Color Models The RGB Color Model The CMY and CMYK Color Models The HSI Color Model Pseudocolor Image Processing Intensity Slicing Intensity to Color Transformations Basics of Full-Color Image Processing Color Transformations Formulation Color Complements 430

7 X Contents Color Slicing Tone and Color Corrections Histogram Processing Smoothing and Sharpening Color Image Smoothing Color Image Sharpening Image Segmentation Based on Color Segmentation in HSI Color Space Segmentation in RGB Vector Space Color Edge Detection Noise in Color Images Color Image Compression 454 Summary 455 References and Further Reading 456 Problems 456 / Wavelets and Multiresolution Processing Background Image Pyramids Subband Coding The Haar Transform Multiresolution Expansions Series Expansions Scaling Functions Wavelet Functions Wavelet Transforms in One Dimension The Wavelet Series Expansions The Discrete Wavelet Transform The Continuous Wavelet Transform The Fast Wavelet Transform Wavelet Transforms in Two Dimensions Wavelet Packets 510 Summary 520 References and Further Reading 520 Problems 521 Image Compression Fundamentals Coding Redundancy Spatial and Temporal Redundancy Irrelevant Information Measuring Image Information Fidelity Criteria 534

8 Contents xi Image Compression Models Image Formats, Containers, and Compression Standards Some Basic Compression Methods Huffman Coding Golomb Coding Arithmetic Coding LZW Coding Run-Length Coding Symbol-Based Coding Bit-Plane Coding Block Transform Coding Predictive Coding Wavelet Coding Digital Image Watermarking 614 Summary 621 References and Further Reading 622 Problems Morphological Image Processing Preliminaries Erosion and Dilation Erosion Dilation Duality Opening and Closing The Hit-or-Miss Transformation Some Basic Morphological Algorithms Boundary Extraction Hole Filling Extraction of Connected Components Convex Hull Thinning Thickening Skeletons Pruning Morphological Reconstruction Summary of Morphological Operations on Binary Images Gray-Scale Morphology Erosion and Dilation Opening and Closing Some Basic Gray-Scale Morphological Algorithms Gray-Scale Morphological Reconstruction 676 Summary 679 References and Further Reading 679 Problems 680

9 xii Contents 1 Image Segmentation Fundamentals Point, Line, and Edge Detection Background Detection of Isolated Points Line Detection Edge Models Basic Edge Detection More Advanced Techniques for Edge Detection Edge Linking and Boundary Detection Thresholding Foundation Basic Global Thresholding Optimum Global Thresholding Using Otsu's Method Using Image Smoothing to Improve Global Thresholding Using Edges to Improve Global Thresholding Multiple Thresholds Variable Thresholding Multivariable Thresholding Region-Based Segmentation Region Growing Region Splitting and Merging Segmentation Using Morphological Watersheds Background Dam Construction Watershed Segmentation Algorithm The Use of Markers The Use of Motion in Segmentation Spatial Techniques Frequency Domain Techniques 782 Summary 785 References and Further Reading 785 Problems 787 I Representation and Description Representation Boundary (Border) Following Chain Codes Polygonal Approximations Using Minimum-Perimeter Polygons Other Polygonal Approximation Approaches Signatures 808

10 Contents xiii Boundary Segments Skeletons Boundary Descriptors Some Simple Descriptors Shape Numbers Fourier Descriptors Statistical Moments Regional Descriptors Some Simple Descriptors Topological Descriptors Texture Moment Invariants Use of Principal Components for Description Relational Descriptors 852 Summary 856 References and Further Reading 856 Problems 857 Object Recognition Patterns and Pattern Classes Recognition Based on Decision-Theoretic Methods Matching Optimum Statistical Classifiers Neural Networks Structural Methods Matching Shape Numbers String Matching 904 Summary 906 References and Further Reading 906 Problems 907 Appendix A 910 Bibliography 915 Index 943

Digital Image Processing

Digital Image Processing Digital Image Processing Using MATLAB Rafael C. Gonzalez University of Tennessee Richard E. Woods MedData Interactive Steven L. Eddins The MathWorks, Inc. Upper Saddle River, NJ 07458 Library of Congress

More information

Fundamentals of Digital Image Processing

Fundamentals of Digital Image Processing \L\.6 Gw.i Fundamentals of Digital Image Processing A Practical Approach with Examples in Matlab Chris Solomon School of Physical Sciences, University of Kent, Canterbury, UK Toby Breckon School of Engineering,

More information

Babu Madhav Institute of Information Technology Years Integrated M.Sc.(IT)(Semester - 7)

Babu Madhav Institute of Information Technology Years Integrated M.Sc.(IT)(Semester - 7) 5 Years Integrated M.Sc.(IT)(Semester - 7) 060010707 Digital Image Processing UNIT 1 Introduction to Image Processing Q: 1 Answer in short. 1. What is digital image? 1. Define pixel or picture element?

More information

IT Digital Image ProcessingVII Semester - Question Bank

IT Digital Image ProcessingVII Semester - Question Bank UNIT I DIGITAL IMAGE FUNDAMENTALS PART A Elements of Digital Image processing (DIP) systems 1. What is a pixel? 2. Define Digital Image 3. What are the steps involved in DIP? 4. List the categories of

More information

Image Processing, Analysis and Machine Vision

Image Processing, Analysis and Machine Vision Image Processing, Analysis and Machine Vision Milan Sonka PhD University of Iowa Iowa City, USA Vaclav Hlavac PhD Czech Technical University Prague, Czech Republic and Roger Boyle DPhil, MBCS, CEng University

More information

Final Review. Image Processing CSE 166 Lecture 18

Final Review. Image Processing CSE 166 Lecture 18 Final Review Image Processing CSE 166 Lecture 18 Topics covered Basis vectors Matrix based transforms Wavelet transform Image compression Image watermarking Morphological image processing Segmentation

More information

An Introduc+on to Mathema+cal Image Processing IAS, Park City Mathema2cs Ins2tute, Utah Undergraduate Summer School 2010

An Introduc+on to Mathema+cal Image Processing IAS, Park City Mathema2cs Ins2tute, Utah Undergraduate Summer School 2010 An Introduc+on to Mathema+cal Image Processing IAS, Park City Mathema2cs Ins2tute, Utah Undergraduate Summer School 2010 Luminita Vese Todd WiCman Department of Mathema2cs, UCLA lvese@math.ucla.edu wicman@math.ucla.edu

More information

CHAPTER 1 Introduction 1. CHAPTER 2 Images, Sampling and Frequency Domain Processing 37

CHAPTER 1 Introduction 1. CHAPTER 2 Images, Sampling and Frequency Domain Processing 37 Extended Contents List Preface... xi About the authors... xvii CHAPTER 1 Introduction 1 1.1 Overview... 1 1.2 Human and Computer Vision... 2 1.3 The Human Vision System... 4 1.3.1 The Eye... 5 1.3.2 The

More information

Review for Exam I, EE552 2/2009

Review for Exam I, EE552 2/2009 Gonale & Woods Review or Eam I, EE55 /009 Elements o Visual Perception Image Formation in the Ee and relation to a photographic camera). Brightness Adaption and Discrimination. Light and the Electromagnetic

More information

MEDICAL IMAGE ANALYSIS

MEDICAL IMAGE ANALYSIS SECOND EDITION MEDICAL IMAGE ANALYSIS ATAM P. DHAWAN g, A B IEEE Engineering in Medicine and Biology Society, Sponsor IEEE Press Series in Biomedical Engineering Metin Akay, Series Editor +IEEE IEEE PRESS

More information

Chapter 3: Intensity Transformations and Spatial Filtering

Chapter 3: Intensity Transformations and Spatial Filtering Chapter 3: Intensity Transformations and Spatial Filtering 3.1 Background 3.2 Some basic intensity transformation functions 3.3 Histogram processing 3.4 Fundamentals of spatial filtering 3.5 Smoothing

More information

Feature Extraction and Image Processing, 2 nd Edition. Contents. Preface

Feature Extraction and Image Processing, 2 nd Edition. Contents. Preface , 2 nd Edition Preface ix 1 Introduction 1 1.1 Overview 1 1.2 Human and Computer Vision 1 1.3 The Human Vision System 3 1.3.1 The Eye 4 1.3.2 The Neural System 7 1.3.3 Processing 7 1.4 Computer Vision

More information

COMPUTER AND ROBOT VISION

COMPUTER AND ROBOT VISION VOLUME COMPUTER AND ROBOT VISION Robert M. Haralick University of Washington Linda G. Shapiro University of Washington A^ ADDISON-WESLEY PUBLISHING COMPANY Reading, Massachusetts Menlo Park, California

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 WRI C225 Lecture 04 130131 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Histogram Equalization Image Filtering Linear

More information

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING DS7201 ADVANCED DIGITAL IMAGE PROCESSING II M.E (C.S) QUESTION BANK UNIT I 1. Write the differences between photopic and scotopic vision? 2. What

More information

3. (a) Prove any four properties of 2D Fourier Transform. (b) Determine the kernel coefficients of 2D Hadamard transforms for N=8.

3. (a) Prove any four properties of 2D Fourier Transform. (b) Determine the kernel coefficients of 2D Hadamard transforms for N=8. Set No.1 1. (a) What are the applications of Digital Image Processing? Explain how a digital image is formed? (b) Explain with a block diagram about various steps in Digital Image Processing. [6+10] 2.

More information

Topic 6 Representation and Description

Topic 6 Representation and Description Topic 6 Representation and Description Background Segmentation divides the image into regions Each region should be represented and described in a form suitable for further processing/decision-making Representation

More information

Review for the Final

Review for the Final Review for the Final CS 635 Review (Topics Covered) Image Compression Lossless Coding Compression Huffman Interpixel RLE Lossy Quantization Discrete Cosine Transform JPEG CS 635 Review (Topics Covered)

More information

CoE4TN4 Image Processing. Chapter 5 Image Restoration and Reconstruction

CoE4TN4 Image Processing. Chapter 5 Image Restoration and Reconstruction CoE4TN4 Image Processing Chapter 5 Image Restoration and Reconstruction Image Restoration Similar to image enhancement, the ultimate goal of restoration techniques is to improve an image Restoration: a

More information

The. Handbook ijthbdition. John C. Russ. North Carolina State University Materials Science and Engineering Department Raleigh, North Carolina

The. Handbook ijthbdition. John C. Russ. North Carolina State University Materials Science and Engineering Department Raleigh, North Carolina The IMAGE PROCESSING Handbook ijthbdition John C. Russ North Carolina State University Materials Science and Engineering Department Raleigh, North Carolina (cp ) Taylor &. Francis \V J Taylor SiFrancis

More information

PSD2B Digital Image Processing. Unit I -V

PSD2B Digital Image Processing. Unit I -V PSD2B Digital Image Processing Unit I -V Syllabus- Unit 1 Introduction Steps in Image Processing Image Acquisition Representation Sampling & Quantization Relationship between pixels Color Models Basics

More information

2: Image Display and Digital Images. EE547 Computer Vision: Lecture Slides. 2: Digital Images. 1. Introduction: EE547 Computer Vision

2: Image Display and Digital Images. EE547 Computer Vision: Lecture Slides. 2: Digital Images. 1. Introduction: EE547 Computer Vision EE547 Computer Vision: Lecture Slides Anthony P. Reeves November 24, 1998 Lecture 2: Image Display and Digital Images 2: Image Display and Digital Images Image Display: - True Color, Grey, Pseudo Color,

More information

Lecture 8 Object Descriptors

Lecture 8 Object Descriptors Lecture 8 Object Descriptors Azadeh Fakhrzadeh Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University 2 Reading instructions Chapter 11.1 11.4 in G-W Azadeh Fakhrzadeh

More information

Digital Image Processing (EI424)

Digital Image Processing (EI424) Scheme of evaluation Digital Image Processing (EI424) Eighth Semester,April,2017. IV/IV B.Tech (Regular) DEGREE EXAMINATIONS ELECTRONICS AND INSTRUMENTATION ENGINEERING April,2017 Digital Image Processing

More information

Digital Image Processing, 2nd ed. Digital Image Processing, 2nd ed. The principal objective of enhancement

Digital Image Processing, 2nd ed. Digital Image Processing, 2nd ed. The principal objective of enhancement Chapter 3 Image Enhancement in the Spatial Domain The principal objective of enhancement to process an image so that the result is more suitable than the original image for a specific application. Enhancement

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Jen-Hui Chuang Department of Computer Science National Chiao Tung University 2 3 Image Enhancement in the Spatial Domain 3.1 Background 3.4 Enhancement Using Arithmetic/Logic Operations

More information

CHAPTER 3 DIFFERENT DOMAINS OF WATERMARKING. domain. In spatial domain the watermark bits directly added to the pixels of the cover

CHAPTER 3 DIFFERENT DOMAINS OF WATERMARKING. domain. In spatial domain the watermark bits directly added to the pixels of the cover 38 CHAPTER 3 DIFFERENT DOMAINS OF WATERMARKING Digital image watermarking can be done in both spatial domain and transform domain. In spatial domain the watermark bits directly added to the pixels of the

More information

Image Enhancement: To improve the quality of images

Image Enhancement: To improve the quality of images Image Enhancement: To improve the quality of images Examples: Noise reduction (to improve SNR or subjective quality) Change contrast, brightness, color etc. Image smoothing Image sharpening Modify image

More information

Image Processing Fundamentals. Nicolas Vazquez Principal Software Engineer National Instruments

Image Processing Fundamentals. Nicolas Vazquez Principal Software Engineer National Instruments Image Processing Fundamentals Nicolas Vazquez Principal Software Engineer National Instruments Agenda Objectives and Motivations Enhancing Images Checking for Presence Locating Parts Measuring Features

More information

EEM 463 Introduction to Image Processing. Week 3: Intensity Transformations

EEM 463 Introduction to Image Processing. Week 3: Intensity Transformations EEM 463 Introduction to Image Processing Week 3: Intensity Transformations Fall 2013 Instructor: Hatice Çınar Akakın, Ph.D. haticecinarakakin@anadolu.edu.tr Anadolu University Enhancement Domains Spatial

More information

3.5 Filtering with the 2D Fourier Transform Basic Low Pass and High Pass Filtering using 2D DFT Other Low Pass Filters

3.5 Filtering with the 2D Fourier Transform Basic Low Pass and High Pass Filtering using 2D DFT Other Low Pass Filters Contents Part I Decomposition and Recovery. Images 1 Filter Banks... 3 1.1 Introduction... 3 1.2 Filter Banks and Multirate Systems... 4 1.2.1 Discrete Fourier Transforms... 5 1.2.2 Modulated Filter Banks...

More information

Vivekananda. Collegee of Engineering & Technology. Question and Answers on 10CS762 /10IS762 UNIT- 5 : IMAGE ENHANCEMENT.

Vivekananda. Collegee of Engineering & Technology. Question and Answers on 10CS762 /10IS762 UNIT- 5 : IMAGE ENHANCEMENT. Vivekananda Collegee of Engineering & Technology Question and Answers on 10CS762 /10IS762 UNIT- 5 : IMAGE ENHANCEMENT Dept. Prepared by Harivinod N Assistant Professor, of Computer Science and Engineering,

More information

Mathematical Morphology and Distance Transforms. Robin Strand

Mathematical Morphology and Distance Transforms. Robin Strand Mathematical Morphology and Distance Transforms Robin Strand robin.strand@it.uu.se Morphology Form and structure Mathematical framework used for: Pre-processing Noise filtering, shape simplification,...

More information

Digital Image Processing Chapter 11: Image Description and Representation

Digital Image Processing Chapter 11: Image Description and Representation Digital Image Processing Chapter 11: Image Description and Representation Image Representation and Description? Objective: To represent and describe information embedded in an image in other forms that

More information

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road UNIT I

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road UNIT I UNIT I IMAGE REPRESENTATION 1. (a)differentiate the features of gray scale and color image. (b)state and prove following properties of 2D DFT: (i) Conjugate symmetry (ii) Frequency translation 2. (a)derive

More information

Digital Image Processing Fundamentals

Digital Image Processing Fundamentals Ioannis Pitas Digital Image Processing Fundamentals Chapter 7 Shape Description Answers to the Chapter Questions Thessaloniki 1998 Chapter 7: Shape description 7.1 Introduction 1. Why is invariance to

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu ECG782: Multidimensional Digital Signal Processing Spring 2014 TTh 14:30-15:45 CBC C313 Lecture 03 Image Processing Basics 13/01/28 http://www.ee.unlv.edu/~b1morris/ecg782/

More information

Digital Image Processing COSC 6380/4393

Digital Image Processing COSC 6380/4393 Digital Image Processing COSC 6380/4393 Lecture 21 Nov 16 th, 2017 Pranav Mantini Ack: Shah. M Image Processing Geometric Transformation Point Operations Filtering (spatial, Frequency) Input Restoration/

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu ECG782: Multidimensional Digital Signal Processing Spatial Domain Filtering http://www.ee.unlv.edu/~b1morris/ecg782/ 2 Outline Background Intensity

More information

Biomedical Image Analysis. Mathematical Morphology

Biomedical Image Analysis. Mathematical Morphology Biomedical Image Analysis Mathematical Morphology Contents: Foundation of Mathematical Morphology Structuring Elements Applications BMIA 15 V. Roth & P. Cattin 265 Foundations of Mathematical Morphology

More information

C E N T E R A T H O U S T O N S C H O O L of H E A L T H I N F O R M A T I O N S C I E N C E S. Image Operations II

C E N T E R A T H O U S T O N S C H O O L of H E A L T H I N F O R M A T I O N S C I E N C E S. Image Operations II T H E U N I V E R S I T Y of T E X A S H E A L T H S C I E N C E C E N T E R A T H O U S T O N S C H O O L of H E A L T H I N F O R M A T I O N S C I E N C E S Image Operations II For students of HI 5323

More information

IMAGE ANALYSIS, CLASSIFICATION, and CHANGE DETECTION in REMOTE SENSING

IMAGE ANALYSIS, CLASSIFICATION, and CHANGE DETECTION in REMOTE SENSING SECOND EDITION IMAGE ANALYSIS, CLASSIFICATION, and CHANGE DETECTION in REMOTE SENSING ith Algorithms for ENVI/IDL Morton J. Canty с*' Q\ CRC Press Taylor &. Francis Group Boca Raton London New York CRC

More information

Chapter 11 Representation & Description

Chapter 11 Representation & Description Chain Codes Chain codes are used to represent a boundary by a connected sequence of straight-line segments of specified length and direction. The direction of each segment is coded by using a numbering

More information

Machine Vision: Theory, Algorithms, Practicalities

Machine Vision: Theory, Algorithms, Practicalities Machine Vision: Theory, Algorithms, Practicalities 2nd Edition E.R. DAVIES Department of Physics Royal Holloway University of London Egham, Surrey, UK ACADEMIC PRESS San Diego London Boston New York Sydney

More information

SYDE 575: Introduction to Image Processing

SYDE 575: Introduction to Image Processing SYDE 575: Introduction to Image Processing Image Enhancement and Restoration in Spatial Domain Chapter 3 Spatial Filtering Recall 2D discrete convolution g[m, n] = f [ m, n] h[ m, n] = f [i, j ] h[ m i,

More information

Image Enhancement in Spatial Domain. By Dr. Rajeev Srivastava

Image Enhancement in Spatial Domain. By Dr. Rajeev Srivastava Image Enhancement in Spatial Domain By Dr. Rajeev Srivastava CONTENTS Image Enhancement in Spatial Domain Spatial Domain Methods 1. Point Processing Functions A. Gray Level Transformation functions for

More information

CLASSIFICATION AND CHANGE DETECTION

CLASSIFICATION AND CHANGE DETECTION IMAGE ANALYSIS, CLASSIFICATION AND CHANGE DETECTION IN REMOTE SENSING With Algorithms for ENVI/IDL and Python THIRD EDITION Morton J. Canty CRC Press Taylor & Francis Group Boca Raton London NewYork CRC

More information

Morphological Image Processing

Morphological Image Processing Morphological Image Processing Morphology Identification, analysis, and description of the structure of the smallest unit of words Theory and technique for the analysis and processing of geometric structures

More information

Binary Image Processing. Introduction to Computer Vision CSE 152 Lecture 5

Binary Image Processing. Introduction to Computer Vision CSE 152 Lecture 5 Binary Image Processing CSE 152 Lecture 5 Announcements Homework 2 is due Apr 25, 11:59 PM Reading: Szeliski, Chapter 3 Image processing, Section 3.3 More neighborhood operators Binary System Summary 1.

More information

09/11/2017. Morphological image processing. Morphological image processing. Morphological image processing. Morphological image processing (binary)

09/11/2017. Morphological image processing. Morphological image processing. Morphological image processing. Morphological image processing (binary) Towards image analysis Goal: Describe the contents of an image, distinguishing meaningful information from irrelevant one. Perform suitable transformations of images so as to make explicit particular shape

More information

Image restoration. Lecture 14. Milan Gavrilovic Centre for Image Analysis Uppsala University

Image restoration. Lecture 14. Milan Gavrilovic Centre for Image Analysis Uppsala University Image restoration Lecture 14 Milan Gavrilovic milan@cb.uu.se Centre for Image Analysis Uppsala University Computer Assisted Image Analysis 2009-05-08 M. Gavrilovic (Uppsala University) L14 Image restoration

More information

EECS490: Digital Image Processing. Lecture #17

EECS490: Digital Image Processing. Lecture #17 Lecture #17 Morphology & set operations on images Structuring elements Erosion and dilation Opening and closing Morphological image processing, boundary extraction, region filling Connectivity: convex

More information

Examination in Image Processing

Examination in Image Processing Umeå University, TFE Ulrik Söderström 203-03-27 Examination in Image Processing Time for examination: 4.00 20.00 Please try to extend the answers as much as possible. Do not answer in a single sentence.

More information

Image Restoration Chapter 5. Prof. Vidya Manian Dept. of Electrical and Computer Engineering INEL 5327 ECE, UPRM

Image Restoration Chapter 5. Prof. Vidya Manian Dept. of Electrical and Computer Engineering INEL 5327 ECE, UPRM Image Processing Image Restoration Chapter 5 Prof. Vidya Manian Dept. of Electrical and Computer Engineering g 1 Overview A model of the Image Degradation/Restoration Process Noise Models Restoration in

More information

1158 Index. ConvNets. See Neural networks (Convolutional)

1158 Index. ConvNets. See Neural networks (Convolutional) Index A Accumulator cells, 800 Acquisition. See Image: acquisition Activation functions activation value, 1091 hyperbolic tangent, 1091 of perceptron, 1083 ReLU, 1091 sigmoid, 1090 Active contours definition,

More information

Albert M. Vossepoel. Center for Image Processing

Albert M. Vossepoel.   Center for Image Processing Albert M. Vossepoel www.ph.tn.tudelft.nl/~albert scene image formation sensor pre-processing image enhancement image restoration texture filtering segmentation user analysis classification CBP course:

More information

Unit - I Computer vision Fundamentals

Unit - I Computer vision Fundamentals Unit - I Computer vision Fundamentals It is an area which concentrates on mimicking human vision systems. As a scientific discipline, computer vision is concerned with the theory behind artificial systems

More information

Image Restoration and Reconstruction

Image Restoration and Reconstruction Image Restoration and Reconstruction Image restoration Objective process to improve an image Recover an image by using a priori knowledge of degradation phenomenon Exemplified by removal of blur by deblurring

More information

Introduction to Video and Image Processing

Introduction to Video and Image Processing Thomas В. Moeslund Introduction to Video and Image Processing Building Real Systems and Applications Springer Contents 1 Introduction 1 1.1 The Different Flavors of Video and Image Processing 2 1.2 General

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Image Restoration and Reconstruction (Noise Removal) Christophoros Nikou cnikou@cs.uoi.gr University of Ioannina - Department of Computer Science and Engineering 2 Image Restoration

More information

CHAPTER 6 DETECTION OF MASS USING NOVEL SEGMENTATION, GLCM AND NEURAL NETWORKS

CHAPTER 6 DETECTION OF MASS USING NOVEL SEGMENTATION, GLCM AND NEURAL NETWORKS 130 CHAPTER 6 DETECTION OF MASS USING NOVEL SEGMENTATION, GLCM AND NEURAL NETWORKS A mass is defined as a space-occupying lesion seen in more than one projection and it is described by its shapes and margin

More information

JNTUWORLD. 4. Prove that the average value of laplacian of the equation 2 h = ((r2 σ 2 )/σ 4 ))exp( r 2 /2σ 2 ) is zero. [16]

JNTUWORLD. 4. Prove that the average value of laplacian of the equation 2 h = ((r2 σ 2 )/σ 4 ))exp( r 2 /2σ 2 ) is zero. [16] Code No: 07A70401 R07 Set No. 2 1. (a) What are the basic properties of frequency domain with respect to the image processing. (b) Define the terms: i. Impulse function of strength a ii. Impulse function

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Part 9: Representation and Description AASS Learning Systems Lab, Dep. Teknik Room T1209 (Fr, 11-12 o'clock) achim.lilienthal@oru.se Course Book Chapter 11 2011-05-17 Contents

More information

Morphological Image Processing

Morphological Image Processing Morphological Image Processing Binary image processing In binary images, we conventionally take background as black (0) and foreground objects as white (1 or 255) Morphology Figure 4.1 objects on a conveyor

More information

A Wavelet Tour of Signal Processing The Sparse Way

A Wavelet Tour of Signal Processing The Sparse Way A Wavelet Tour of Signal Processing The Sparse Way Stephane Mallat with contributions from Gabriel Peyre AMSTERDAM BOSTON HEIDELBERG LONDON NEWYORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY»TOKYO

More information

11. Image Data Analytics. Jacobs University Visualization and Computer Graphics Lab

11. Image Data Analytics. Jacobs University Visualization and Computer Graphics Lab 11. Image Data Analytics Motivation Images (and even videos) have become a popular data format for storing information digitally. Data Analytics 377 Motivation Traditionally, scientific and medical imaging

More information

Image segmentation. Stefano Ferrari. Università degli Studi di Milano Methods for Image Processing. academic year

Image segmentation. Stefano Ferrari. Università degli Studi di Milano Methods for Image Processing. academic year Image segmentation Stefano Ferrari Università degli Studi di Milano stefano.ferrari@unimi.it Methods for Image Processing academic year 2017 2018 Segmentation by thresholding Thresholding is the simplest

More information

Lecture 18 Representation and description I. 2. Boundary descriptors

Lecture 18 Representation and description I. 2. Boundary descriptors Lecture 18 Representation and description I 1. Boundary representation 2. Boundary descriptors What is representation What is representation After segmentation, we obtain binary image with interested regions

More information

1. COURSE TITLE Multimedia Signal Processing I: visual signals Course number Course area Course type Course level. 1.5.

1. COURSE TITLE Multimedia Signal Processing I: visual signals Course number Course area Course type Course level. 1.5. 1. COURSE TITLE Multimedia Signal Processing I: visual signals 1.1. Course number 18768 1.2. Course area Computer Science Engineering 1.3. Course type Elective course 1.4. Course level Graduate 1.5. Year

More information

Image Restoration and Reconstruction

Image Restoration and Reconstruction Image Restoration and Reconstruction Image restoration Objective process to improve an image, as opposed to the subjective process of image enhancement Enhancement uses heuristics to improve the image

More information

Introduction to Medical Imaging (5XSA0)

Introduction to Medical Imaging (5XSA0) 1 Introduction to Medical Imaging (5XSA0) Visual feature extraction Color and texture analysis Sveta Zinger ( s.zinger@tue.nl ) Introduction (1) Features What are features? Feature a piece of information

More information

Chapter - 2 : IMAGE ENHANCEMENT

Chapter - 2 : IMAGE ENHANCEMENT Chapter - : IMAGE ENHANCEMENT The principal objective of enhancement technique is to process a given image so that the result is more suitable than the original image for a specific application Image Enhancement

More information

Ulrik Söderström 17 Jan Image Processing. Introduction

Ulrik Söderström 17 Jan Image Processing. Introduction Ulrik Söderström ulrik.soderstrom@tfe.umu.se 17 Jan 2017 Image Processing Introduction Image Processsing Typical goals: Improve images for human interpretation Image processing Processing of images for

More information

Keywords: Thresholding, Morphological operations, Image filtering, Adaptive histogram equalization, Ceramic tile.

Keywords: Thresholding, Morphological operations, Image filtering, Adaptive histogram equalization, Ceramic tile. Volume 3, Issue 7, July 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Blobs and Cracks

More information

Dietrich Paulus Joachim Hornegger. Pattern Recognition of Images and Speech in C++

Dietrich Paulus Joachim Hornegger. Pattern Recognition of Images and Speech in C++ Dietrich Paulus Joachim Hornegger Pattern Recognition of Images and Speech in C++ To Dorothea, Belinda, and Dominik In the text we use the following names which are protected, trademarks owned by a company

More information

Lecture 10: Image Descriptors and Representation

Lecture 10: Image Descriptors and Representation I2200: Digital Image processing Lecture 10: Image Descriptors and Representation Prof. YingLi Tian Nov. 15, 2017 Department of Electrical Engineering The City College of New York The City University of

More information

Digital Image Processing. Lecture 6

Digital Image Processing. Lecture 6 Digital Image Processing Lecture 6 (Enhancement in the Frequency domain) Bu-Ali Sina University Computer Engineering Dep. Fall 2016 Image Enhancement In The Frequency Domain Outline Jean Baptiste Joseph

More information

Noise Model. Important Noise Probability Density Functions (Cont.) Important Noise Probability Density Functions

Noise Model. Important Noise Probability Density Functions (Cont.) Important Noise Probability Density Functions Others -- Noise Removal Techniques -- Edge Detection Techniques -- Geometric Operations -- Color Image Processing -- Color Spaces Xiaojun Qi Noise Model The principal sources of noise in digital images

More information

Sharpening through spatial filtering

Sharpening through spatial filtering Sharpening through spatial filtering Stefano Ferrari Università degli Studi di Milano stefano.ferrari@unimi.it Methods for Image Processing academic year 2017 2018 Sharpening The term sharpening is referred

More information

ECEN 447 Digital Image Processing

ECEN 447 Digital Image Processing ECEN 447 Digital Image Processing Lecture 8: Segmentation and Description Ulisses Braga-Neto ECE Department Texas A&M University Image Segmentation and Description Image segmentation and description are

More information

The BIOMEDICAL ENGINEERING Series Series Editor Michael R. Neuman. Uriiwsity of Calßy ülgaiy, Nbeitai, Cart. (g) CRC PRESS

The BIOMEDICAL ENGINEERING Series Series Editor Michael R. Neuman. Uriiwsity of Calßy ülgaiy, Nbeitai, Cart. (g) CRC PRESS The BIOMEDICAL ENGINEERING Series Series Editor Michael R. Neuman Biomedical Image Analysis Uriiwsity of Calßy ülgaiy, Nbeitai, Cart (g) CRC PRESS Boca Raton London New York Washington, D.C. Contents Preface

More information

Lecture 4: Spatial Domain Transformations

Lecture 4: Spatial Domain Transformations # Lecture 4: Spatial Domain Transformations Saad J Bedros sbedros@umn.edu Reminder 2 nd Quiz on the manipulator Part is this Fri, April 7 205, :5 AM to :0 PM Open Book, Open Notes, Focus on the material

More information

CP467 Image Processing and Pattern Recognition

CP467 Image Processing and Pattern Recognition CP467 Image Processing and Pattern Recognition Instructor: Hongbing Fan Introduction About DIP & PR About this course Lecture 1: an overview of DIP DIP&PR show What is Digital Image? We use digital image

More information

CHAPTER 3 IMAGE ENHANCEMENT IN THE SPATIAL DOMAIN

CHAPTER 3 IMAGE ENHANCEMENT IN THE SPATIAL DOMAIN CHAPTER 3 IMAGE ENHANCEMENT IN THE SPATIAL DOMAIN CHAPTER 3: IMAGE ENHANCEMENT IN THE SPATIAL DOMAIN Principal objective: to process an image so that the result is more suitable than the original image

More information

EXAM SOLUTIONS. Image Processing and Computer Vision Course 2D1421 Monday, 13 th of March 2006,

EXAM SOLUTIONS. Image Processing and Computer Vision Course 2D1421 Monday, 13 th of March 2006, School of Computer Science and Communication, KTH Danica Kragic EXAM SOLUTIONS Image Processing and Computer Vision Course 2D1421 Monday, 13 th of March 2006, 14.00 19.00 Grade table 0-25 U 26-35 3 36-45

More information

Image Analysis. Morphological Image Analysis

Image Analysis. Morphological Image Analysis Image Analysis Morphological Image Analysis Christophoros Nikou cnikou@cs.uoi.gr Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008 University of Ioannina - Department

More information

Image Processing Notes

Image Processing Notes CSC 751 Image Processing Notes Document II October 7, 003 "Anyone who cannot cope with mathematics is not fully human. At best he is a tolerable subhuman who has learned to wear shoes, bathe, and not make

More information

CoE4TN4 Image Processing

CoE4TN4 Image Processing CoE4TN4 Image Processing Chapter 11 Image Representation & Description Image Representation & Description After an image is segmented into regions, the regions are represented and described in a form suitable

More information

C2: Medical Image Processing Linwei Wang

C2: Medical Image Processing Linwei Wang C2: Medical Image Processing 4005-759 Linwei Wang Content Enhancement Improve visual quality of the image When the image is too dark, too light, or has low contrast Highlight certain features of the image

More information

CS443: Digital Imaging and Multimedia Binary Image Analysis. Spring 2008 Ahmed Elgammal Dept. of Computer Science Rutgers University

CS443: Digital Imaging and Multimedia Binary Image Analysis. Spring 2008 Ahmed Elgammal Dept. of Computer Science Rutgers University CS443: Digital Imaging and Multimedia Binary Image Analysis Spring 2008 Ahmed Elgammal Dept. of Computer Science Rutgers University Outlines A Simple Machine Vision System Image segmentation by thresholding

More information

Biometrics Technology: Image Processing & Pattern Recognition (by Dr. Dickson Tong)

Biometrics Technology: Image Processing & Pattern Recognition (by Dr. Dickson Tong) Biometrics Technology: Image Processing & Pattern Recognition (by Dr. Dickson Tong) References: [1] http://homepages.inf.ed.ac.uk/rbf/hipr2/index.htm [2] http://www.cs.wisc.edu/~dyer/cs540/notes/vision.html

More information

Statistical Image Compression using Fast Fourier Coefficients

Statistical Image Compression using Fast Fourier Coefficients Statistical Image Compression using Fast Fourier Coefficients M. Kanaka Reddy Research Scholar Dept.of Statistics Osmania University Hyderabad-500007 V. V. Haragopal Professor Dept.of Statistics Osmania

More information

FACULTY OF INFORMATICS B.E. 4/4 (IT) I Semester (Old) Examination, July Subject : Digital Image Processing (Elective III) Estelar

FACULTY OF INFORMATICS B.E. 4/4 (IT) I Semester (Old) Examination, July Subject : Digital Image Processing (Elective III) Estelar B.E. 4/4 (IT) I Semester (Old) Examination, July 2014 Subject : Digital Image Processing (Elective III) Code No. 6231 / O / S 1 Discuss briefly about general purpose image processing system and its components.

More information

Sampling and Reconstruction

Sampling and Reconstruction Sampling and Reconstruction Sampling and Reconstruction Sampling and Spatial Resolution Spatial Aliasing Problem: Spatial aliasing is insufficient sampling of data along the space axis, which occurs because

More information

Contents I IMAGE FORMATION 1

Contents I IMAGE FORMATION 1 Contents I IMAGE FORMATION 1 1 Geometric Camera Models 3 1.1 Image Formation............................. 4 1.1.1 Pinhole Perspective....................... 4 1.1.2 Weak Perspective.........................

More information

VU Signal and Image Processing. Image Restoration. Torsten Möller + Hrvoje Bogunović + Raphael Sahann

VU Signal and Image Processing. Image Restoration. Torsten Möller + Hrvoje Bogunović + Raphael Sahann 052600 VU Signal and Image Processing Image Restoration Torsten Möller + Hrvoje Bogunović + Raphael Sahann torsten.moeller@univie.ac.at hrvoje.bogunovic@meduniwien.ac.at raphael.sahann@univie.ac.at vda.cs.univie.ac.at/teaching/sip/17s/

More information

Biomedical Image Analysis. Spatial Filtering

Biomedical Image Analysis. Spatial Filtering Biomedical Image Analysis Contents: Spatial Filtering The mechanics of Spatial Filtering Smoothing and sharpening filters BMIA 15 V. Roth & P. Cattin 1 The Mechanics of Spatial Filtering Spatial filter:

More information

MULTIDIMENSIONAL SIGNAL, IMAGE, AND VIDEO PROCESSING AND CODING

MULTIDIMENSIONAL SIGNAL, IMAGE, AND VIDEO PROCESSING AND CODING MULTIDIMENSIONAL SIGNAL, IMAGE, AND VIDEO PROCESSING AND CODING JOHN W. WOODS Rensselaer Polytechnic Institute Troy, New York»iBllfllfiii.. i. ELSEVIER AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD

More information

ELEC Dr Reji Mathew Electrical Engineering UNSW

ELEC Dr Reji Mathew Electrical Engineering UNSW ELEC 4622 Dr Reji Mathew Electrical Engineering UNSW Dynamic Range and Weber s Law HVS is capable of operating over an enormous dynamic range, However, sensitivity is far from uniform over this range Example:

More information

BME I5000: Biomedical Imaging

BME I5000: Biomedical Imaging 1 Lucas Parra, CCNY BME I5000: Biomedical Imaging Lecture 11 Point Spread Function, Inverse Filtering, Wiener Filtering, Sharpening,... Lucas C. Parra, parra@ccny.cuny.edu Blackboard: http://cityonline.ccny.cuny.edu/

More information