Fitting (LMedS, RANSAC)

Size: px
Start display at page:

Download "Fitting (LMedS, RANSAC)"

Transcription

1 Fitting (LMedS, RANSAC) Thursday, 23/03/2017 Antonis Argyros LMedS and RANSAC What if we have very many outliers? 2 1

2 Least Median of Squares ri : Residuals Least Squares n 2 r i i=1 Minimize Best fit of ALL observations Minimize LMedS 2 median{ ri} i=1... n Best fit of THE MAJORITY of observations ``Rousseeuw PJ and Leroy AM ``Robust Regression and Outlier Detection, John Wiley and Sons Inc.., New York, Least Median of Squares: algorithm Algorithm: 1. Set to r min to infinity 2. Sample (randomly) the number s of points required to fit the model 3. Solve for model parameters h cur using samples 4. For all observations (points) compute the residuals r i (i.e., distance of observations compared to what is predicted by the model) 5. Find the median residual r cur 6. If r cur < r min then r min := r cur h best = h cur endif Repeat 2-6 until the best model is found with high confidence * Return (h best ) * r min is below a threshold or an upper bound of repetitions have been performed 4 2

3 The behavior of LMedS Least squares Least Squares LMedS no outliers (outlier) (outlier) 5 How to choose parameters? Number of sampled points s Minimum number needed to fit the model Number of samples N Choose N so that, with probability p (e.g. p=0.99), at least one set of s random sample is free from outliers (outlier ratio: e) s ( ( e) ) 1 p= 1 1 s ( ) ( ) ( ) N = log 1 p / log 1 1 e N proportion of outliers e s 5% 10% 20% 25% 30% 40% 50% modified from M. Pollefeys 3

4 Breakdown point of an estimator Breakdown point of an estimator: Amount (percentage) of outliers that can make the solution arbitrarily bad. Least squares method: Breakdown point tends to 0% since a single outlier can make the solution arbitrarily bad!... non-robust estimation algorithm! Least Median of Squares method: Breakdown point = 50% Median residual is not affected by 50%- of outliers robust estimation technique 7 RANSAC RANdom SAmple Consensus δ { } π : I P, O such that: f (P, β ) <δ min π O f ( P, β ) = β Model parameters T 1 T ( P P) P M. A. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Comm. of the ACM, Vol 24, pp , Source: Savarese 4

5 RANSAC Algorithm: 1. Sample (randomly) the number of points required to fit the model 2. Solve for model parameters using samples 3. Score by the fraction of inliers within a preset threshold of the model Repeat 1-3 until the best model is found with high confidence RANSAC Line fitting example Algorithm: 1. Sample (randomly) the number of points required to fit the model (#=2) 2. Solve for model parameters using samples 3. Score by the fraction of inliers within a preset threshold of the model Repeat 1-3 until the best model is found with high confidence Illustration by Savarese 5

6 RANSAC Line fitting example Algorithm: 1. Sample (randomly) the number of points required to fit the model (#=2) 2. Solve for model parameters using samples 3. Score by the fraction of inliers within a preset threshold of the model Repeat 1-3 until the best model is found with high confidence RANSAC Line fitting example N I = 6 δ Algorithm: 1. Sample (randomly) the number of points required to fit the model (#=2) 2. Solve for model parameters using samples 3. Score by the fraction of inliers within a preset threshold of the model Repeat 1-3 until the best model is found with high confidence 6

7 RANSAC Algorithm: δ N I = Sample (randomly) the number of points required to fit the model (#=2) 2. Solve for model parameters using samples 3. Score by the fraction of inliers within a preset threshold of the model Repeat 1-3 until the best model is found with high confidence How to choose parameters? Number of samples N Choose N so that, with probability p (e.g. p=0.99), at least one set of s random samples is free from outliers (outlier ratio: e) Number of sampled points s Minimum number needed to fit the model Distance threshold δ Choose δ so that a good point with noise is likely (e.g., prob=0.95) s ( ( e) ) 1 p= 1 1 s ( ) ( ) ( ) N = log 1 p / log 1 1 e N proportion of outliers e s 5% 10% 20% 25% 30% 40% 50% modified from M. Pollefeys 7

8 RANSAC conclusions Pros Applicable for larger number of objective function parameters than Hough transform Simple and general - Applicable to many different problems Robust to outliers - Works well in practice Cons Lots of parameters to tune Can t always get a good initialization of the model based on the minimum number of samples Sometimes too many iterations are required Can fail for extremely low inlier ratios We can often do better than brute-force sampling LMedS vs RANSAC Question: What is the difference between LMedS and RANSAC; LMedS: Seeks for the narrowest stripe that contains 50% of the points. RANSAC: Seeks for the most densely populated stripe of a user-defined size 16 8

9 Particle Swarm Optimization (PSO) Based on social sciences Swarm intelligence: collective behavior of distributed systems Populations of simple entities that communicate locally among themselves and with their environment Simple, local behavioral rules, random to a small extend Lack of central control Intelligent global behavior, that remains visible only to the eyes of the external observer Particles: Possible solutions of a problem Particle behavior: Investigate the parameter space to find optimal solution Move according to: Inertia Cognitive component Social component J.Kennedy and R.Eberhart. Particle swarm optimization. IEEE CNN, Canonical PSO An objective function F( x i ) R evaluates hypotheses Each particle has a position, a velocity and a history x v t t i : : {,, } m t t i p : best hypothesis for the whole population (up to time t) g P = x v p current position at time t current velocity at time t p : best hypothesis for the i particle (up to time t) Applies iterative updates known as generations PSO ends when some user defined criterion is met 18 9

10 Update equations In every generation the following are estimated and ( 1 1 1( 1) 2 2( 1) ) v = K v + c r p x + c r p x t t i t g t x = x + v t t 1 t where K is a constant constriction factor defined as 2 K =, ψ = c1 + c2 2 2 ψ ψ 4ψ c : cognitive component c2 : social component r, r : random samples U[0, 1] p, p are updated accordingly after computing the obj. funct. 19 i g PSO for line fitting Assume particles randomly distributed in the space of line parameters (means that each particle represents a line equation) Each particle evaluates how good it is (a RANSAC-type of evaluation would fit) Each particle moves in the swarm based on the PSO scheme Convergence leads to the estimation to the best line 20 10

11 3D hand tracking based on RGB-D images Observations O: 3D structure of the skin colored regions in each RGBD frame Model: One hand (37 geometric primitives, 20 intrinsic + 6 extrinsic = 26 DoFs = h) Hypothesis testing (E): Rank each hypothesis h based on its compatibility E with the observations O Formulate an optimization problem to minimize the discrepancies between the hypothesis h and the observations PSO O * h = arg min E( h, O) { } Hypothesis formulation and optimization: Particle Swarm Optimization on a 27D parameter space h 3D hand tracking based on RGB-D images Physical plausibility: Respect anatomical constraints (hand dimensions, kinematic constraints of joints, penalize interpenetration of hand parts) I. Oikonomidis, N. Kyriazis, A.A. Argyros, Efficient model based 3D tracking of hand articulations using Kinect, BMVC 11 FORTH 3D Hand Tracking Library: 1st place award, CHALEARN Gesture Recognition Demonstration Competition, ICPR 2012, Tsukuba, Japan, Nov

12 Joint Tracking (JT) Hand + single rigid object, multicamera setup Hand + another hand, RGBD camera I. Oikonomidis, N. Kyriazis, A.A. Argyros, Full DOF tracking of a hand interacting with an object by modeling occlusions and physical constraints, ICCV 2011 I. Oikonomidis, N. Kyriazis, A.A. Argyros, Tracking the articulated motion of two strongly interacting hands, CVPR 2012 Experiments: disassembly task 2 articulated hands, 2x27 params = 54 parameters 15 rigid objects, 15x7 params = 105 parameters Problem dimensionality: 159-D parameter space N. Kyriazis and A.A. Argyros, "Scalable 3D Tracking of Multiple Interacting Objects", CVPR 2014 Antonis Argyros, Computer Science Department, Univ. of Crete Institute of Computer Science, FORTH argyros@ics.forth.gr, 12

13 Tracking a scene by tracking the actor N. Kyriazis, A. A. Argyros, Physically plausible 3D scene tracking: The single actor hypothesis, ICCV 2013, Current state Release of the 3D Hand Tracker library: ( that now offers: Depth based hand segmentation. No need for skin color. Fine grained access to the tracking pipeline steps through a Python API. ( Support for two hands and hand-object tracking. Improved performance (30+ fps) on modern GPUs. Fixes of bugs that caused problems with some NVidia drivers and GPUs. 13

14 Different problems, same framework Head pose estimation Full body tracking P. Padeleris, X. Zabulis and A.A. Argyros, Head pose estimation on depth data based on Particle Swarm Optimization, CVPRW-HAU3D 2012 D.Michel, C. Panagiotakis, A.A. Argyros, Tracking the articulated motion of the human body based on two RGBD cameras, MVA 2014 Simultaneous localization, mapping and moving object detection P. Panteleris, A.A. Argyros Vision-based SLAM and moving objects tracking for the perceptual support of a smart walker platform, Workshop on Assistive Computer Vision and Robotics (ACVR 2014), in conjunction with ECCV 2014, Zurich, Switzerland, Sep. 12,

15 PSO vs RANSAC PSO: Model-driven / top-down: Assume particles (=model parameters), evaluate them and modify them Convergence to solution is based on swarm intelligence. Focus on models RANSAC: Data-driven / bottom-up: Convergence to solution by randomly testing data samples Focus on data Fitting multiple lines Voting strategies Hough transform RANSAC Other approaches Incremental line fitting K-lines 15

16 Incremental line fitting Examine edge points in their order along an edge chain Fit line to consecutive points: While line fitting residual is small enough, continue adding points to the current line and refitting When residual exceeds a threshold, break off current line and start a new one with the rest of unassigned points Incremental line fitting 16

17 Incremental line fitting Incremental line fitting 17

18 Incremental line fitting Incremental fitting pros and cons Pros Exploits locality Adaptively determines the number of lines Cons Needs sequential ordering of features Can t cope with occlusion Sensitive to noise and choice of threshold 18

19 K-Lines Initialize k lines Option 1: Randomly initialize k sets of parameters Option 2: Randomly partition points into k sets and fit lines to them Iterate until convergence: Assign each point to the nearest line Refit parameters for each line K-Lines example 1 initialization 19

20 K-Lines example 1 iteration 1: assignment to nearest line K-Lines example 1 iteration 1: refitting 20

21 K-Lines example 2 initialization K-Lines example 2 iteration 1: assignment to nearest line 21

22 K-Lines example 2 iteration 1: refitting K-Lines example 2 iteration 2: assignment to nearest line 22

23 K-Lines example 2 iteration 2: refitting K-Lines example 3 initialization 23

24 K-Lines example 3 iteration 2: assignment to nearest line K-Lines example 3 iteration 1: refitting 24

25 K-Lines pros and cons Pros Guaranteed to reduce line fitting residual at each iteration Can cope with occlusion Cons Need to know k Can get stuck in local minima Sensitive to initialization 25

Model Fitting, RANSAC. Jana Kosecka

Model Fitting, RANSAC. Jana Kosecka Model Fitting, RANSAC Jana Kosecka Fitting: Overview If we know which points belong to the line, how do we find the optimal line parameters? Least squares What if there are outliers? Robust fitting, RANSAC

More information

10/03/11. Model Fitting. Computer Vision CS 143, Brown. James Hays. Slides from Silvio Savarese, Svetlana Lazebnik, and Derek Hoiem

10/03/11. Model Fitting. Computer Vision CS 143, Brown. James Hays. Slides from Silvio Savarese, Svetlana Lazebnik, and Derek Hoiem 10/03/11 Model Fitting Computer Vision CS 143, Brown James Hays Slides from Silvio Savarese, Svetlana Lazebnik, and Derek Hoiem Fitting: find the parameters of a model that best fit the data Alignment:

More information

Fitting. Fitting. Slides S. Lazebnik Harris Corners Pkwy, Charlotte, NC

Fitting. Fitting. Slides S. Lazebnik Harris Corners Pkwy, Charlotte, NC Fitting We ve learned how to detect edges, corners, blobs. Now what? We would like to form a higher-level, more compact representation of the features in the image by grouping multiple features according

More information

Tracking hands and hand-object interactions

Tracking hands and hand-object interactions Tracking hands and hand-object interactions Antonis Argyros Computer Science Department, University of Crete (CSD- UoC) and Institute of Computer Science, Foundation for Research and Technology Hellas

More information

Homography estimation

Homography estimation RANSAC continued Homography estimation x w? ~x img H~x w Homography estimation? x img ~x w = H 1 ~x img Homography estimation (0,0) (1,0) (6.4,2.8) (8.0,2.9) (5.6, 4.0) (7.8, 4.2) (0,1) (1,1) Ah =0s.tkhk

More information

Lecture 8 Fitting and Matching

Lecture 8 Fitting and Matching Lecture 8 Fitting and Matching Problem formulation Least square methods RANSAC Hough transforms Multi-model fitting Fitting helps matching! Reading: [HZ] Chapter: 4 Estimation 2D projective transformation

More information

Lecture 9 Fitting and Matching

Lecture 9 Fitting and Matching Lecture 9 Fitting and Matching Problem formulation Least square methods RANSAC Hough transforms Multi- model fitting Fitting helps matching! Reading: [HZ] Chapter: 4 Estimation 2D projective transformation

More information

Fitting. Instructor: Jason Corso (jjcorso)! web.eecs.umich.edu/~jjcorso/t/598f14!! EECS Fall 2014! Foundations of Computer Vision!

Fitting. Instructor: Jason Corso (jjcorso)! web.eecs.umich.edu/~jjcorso/t/598f14!! EECS Fall 2014! Foundations of Computer Vision! Fitting EECS 598-08 Fall 2014! Foundations of Computer Vision!! Instructor: Jason Corso (jjcorso)! web.eecs.umich.edu/~jjcorso/t/598f14!! Readings: FP 10; SZ 4.3, 5.1! Date: 10/8/14!! Materials on these

More information

RANSAC: RANdom Sampling And Consensus

RANSAC: RANdom Sampling And Consensus CS231-M RANSAC: RANdom Sampling And Consensus Roland Angst rangst@stanford.edu www.stanford.edu/~rangst CS231-M 2014-04-30 1 The Need for RANSAC Why do I need RANSAC? I know robust statistics! Robust Statistics

More information

EECS 442 Computer vision. Fitting methods

EECS 442 Computer vision. Fitting methods EECS 442 Computer vision Fitting methods - Problem formulation - Least square methods - RANSAC - Hough transforms - Multi-model fitting - Fitting helps matching! Reading: [HZ] Chapters: 4, 11 [FP] Chapters:

More information

CS 664 Image Matching and Robust Fitting. Daniel Huttenlocher

CS 664 Image Matching and Robust Fitting. Daniel Huttenlocher CS 664 Image Matching and Robust Fitting Daniel Huttenlocher Matching and Fitting Recognition and matching are closely related to fitting problems Parametric fitting can serve as more restricted domain

More information

Vision par ordinateur

Vision par ordinateur Epipolar geometry π Vision par ordinateur Underlying structure in set of matches for rigid scenes l T 1 l 2 C1 m1 l1 e1 M L2 L1 e2 Géométrie épipolaire Fundamental matrix (x rank 2 matrix) m2 C2 l2 Frédéric

More information

Dense Tracking and Mapping for Autonomous Quadrocopters. Jürgen Sturm

Dense Tracking and Mapping for Autonomous Quadrocopters. Jürgen Sturm Computer Vision Group Prof. Daniel Cremers Dense Tracking and Mapping for Autonomous Quadrocopters Jürgen Sturm Joint work with Frank Steinbrücker, Jakob Engel, Christian Kerl, Erik Bylow, and Daniel Cremers

More information

Towards the automatic definition of the objective function for model-based 3D hand tracking

Towards the automatic definition of the objective function for model-based 3D hand tracking Towards the automatic definition of the objective function for model-based 3D hand tracking Konstantinos Paliouras and Antonis A. Argyros Institute of Computer Science - FORTH and Computer Science Department

More information

Leow Wee Kheng CS4243 Computer Vision and Pattern Recognition. Robust Methods. CS4243 Robust Methods 1

Leow Wee Kheng CS4243 Computer Vision and Pattern Recognition. Robust Methods. CS4243 Robust Methods 1 Leow Wee Kheng CS4243 Computer Vision and Pattern Recognition Robust Methods CS4243 Robust Methods 1 Consider this data set Fitting a line to blue points give blue line. Outliers cause fitting error (red

More information

Srikumar Ramalingam. Review. 3D Reconstruction. Pose Estimation Revisited. School of Computing University of Utah

Srikumar Ramalingam. Review. 3D Reconstruction. Pose Estimation Revisited. School of Computing University of Utah School of Computing University of Utah Presentation Outline 1 2 3 Forward Projection (Reminder) u v 1 KR ( I t ) X m Y m Z m 1 Backward Projection (Reminder) Q K 1 q Presentation Outline 1 2 3 Sample Problem

More information

Stereo and Epipolar geometry

Stereo and Epipolar geometry Previously Image Primitives (feature points, lines, contours) Today: Stereo and Epipolar geometry How to match primitives between two (multiple) views) Goals: 3D reconstruction, recognition Jana Kosecka

More information

Image correspondences and structure from motion

Image correspondences and structure from motion Image correspondences and structure from motion http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 20 Course announcements Homework 5 posted.

More information

Hough Transform and RANSAC

Hough Transform and RANSAC CS4501: Introduction to Computer Vision Hough Transform and RANSAC Various slides from previous courses by: D.A. Forsyth (Berkeley / UIUC), I. Kokkinos (Ecole Centrale / UCL). S. Lazebnik (UNC / UIUC),

More information

Perception IV: Place Recognition, Line Extraction

Perception IV: Place Recognition, Line Extraction Perception IV: Place Recognition, Line Extraction Davide Scaramuzza University of Zurich Margarita Chli, Paul Furgale, Marco Hutter, Roland Siegwart 1 Outline of Today s lecture Place recognition using

More information

RANSAC and some HOUGH transform

RANSAC and some HOUGH transform RANSAC and some HOUGH transform Thank you for the slides. They come mostly from the following source Dan Huttenlocher Cornell U Matching and Fitting Recognition and matching are closely related to fitting

More information

Gesture Recognition: Hand Pose Estimation. Adrian Spurr Ubiquitous Computing Seminar FS

Gesture Recognition: Hand Pose Estimation. Adrian Spurr Ubiquitous Computing Seminar FS Gesture Recognition: Hand Pose Estimation Adrian Spurr Ubiquitous Computing Seminar FS2014 27.05.2014 1 What is hand pose estimation? Input Computer-usable form 2 Augmented Reality Gaming Robot Control

More information

Full DOF tracking of a hand interacting with an object by modeling occlusions and physical constraints

Full DOF tracking of a hand interacting with an object by modeling occlusions and physical constraints Full DOF tracking of a hand interacting with an object by modeling occlusions and physical constraints Iason Oikonomidis, Nikolaos Kyriazis, Antonis A. Argyros Institute of Computer Science - FORTH and

More information

Instance-level recognition part 2

Instance-level recognition part 2 Visual Recognition and Machine Learning Summer School Paris 2011 Instance-level recognition part 2 Josef Sivic http://www.di.ens.fr/~josef INRIA, WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d Informatique,

More information

arxiv: v1 [cs.cv] 28 Sep 2018

arxiv: v1 [cs.cv] 28 Sep 2018 Camera Pose Estimation from Sequence of Calibrated Images arxiv:1809.11066v1 [cs.cv] 28 Sep 2018 Jacek Komorowski 1 and Przemyslaw Rokita 2 1 Maria Curie-Sklodowska University, Institute of Computer Science,

More information

Miniature faking. In close-up photo, the depth of field is limited.

Miniature faking. In close-up photo, the depth of field is limited. Miniature faking In close-up photo, the depth of field is limited. http://en.wikipedia.org/wiki/file:jodhpur_tilt_shift.jpg Miniature faking Miniature faking http://en.wikipedia.org/wiki/file:oregon_state_beavers_tilt-shift_miniature_greg_keene.jpg

More information

Generalized RANSAC framework for relaxed correspondence problems

Generalized RANSAC framework for relaxed correspondence problems Generalized RANSAC framework for relaxed correspondence problems Wei Zhang and Jana Košecká Department of Computer Science George Mason University Fairfax, VA 22030 {wzhang2,kosecka}@cs.gmu.edu Abstract

More information

RANSAC RANdom SAmple Consensus

RANSAC RANdom SAmple Consensus Talk Outline importance for computer vision principle line fitting epipolar geometry estimation RANSAC RANdom SAmple Consensus Tomáš Svoboda, svoboda@cmp.felk.cvut.cz courtesy of Ondřej Chum, Jiří Matas

More information

Uncertainties: Representation and Propagation & Line Extraction from Range data

Uncertainties: Representation and Propagation & Line Extraction from Range data 41 Uncertainties: Representation and Propagation & Line Extraction from Range data 42 Uncertainty Representation Section 4.1.3 of the book Sensing in the real world is always uncertain How can uncertainty

More information

Instance-level recognition II.

Instance-level recognition II. Reconnaissance d objets et vision artificielle 2010 Instance-level recognition II. Josef Sivic http://www.di.ens.fr/~josef INRIA, WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d Informatique, Ecole Normale

More information

A Systems View of Large- Scale 3D Reconstruction

A Systems View of Large- Scale 3D Reconstruction Lecture 23: A Systems View of Large- Scale 3D Reconstruction Visual Computing Systems Goals and motivation Construct a detailed 3D model of the world from unstructured photographs (e.g., Flickr, Facebook)

More information

Learning-based Localization

Learning-based Localization Learning-based Localization Eric Brachmann ECCV 2018 Tutorial on Visual Localization - Feature-based vs. Learned Approaches Torsten Sattler, Eric Brachmann Roadmap Machine Learning Basics [10min] Convolutional

More information

Nonparametric estimation of multiple structures with outliers

Nonparametric estimation of multiple structures with outliers Nonparametric estimation of multiple structures with outliers Wei Zhang and Jana Kosecka Department of Computer Science, George Mason University, 44 University Dr. Fairfax, VA 223 USA {wzhang2,kosecka}@cs.gmu.edu

More information

Automatic estimation of the inlier threshold in robust multiple structures fitting.

Automatic estimation of the inlier threshold in robust multiple structures fitting. Automatic estimation of the inlier threshold in robust multiple structures fitting. Roberto Toldo and Andrea Fusiello Dipartimento di Informatica, Università di Verona Strada Le Grazie, 3734 Verona, Italy

More information

Srikumar Ramalingam. Review. 3D Reconstruction. Pose Estimation Revisited. School of Computing University of Utah

Srikumar Ramalingam. Review. 3D Reconstruction. Pose Estimation Revisited. School of Computing University of Utah School of Computing University of Utah Presentation Outline 1 2 3 Forward Projection (Reminder) u v 1 KR ( I t ) X m Y m Z m 1 Backward Projection (Reminder) Q K 1 q Q K 1 u v 1 What is pose estimation?

More information

Gesture Recognition: Hand Pose Estimation

Gesture Recognition: Hand Pose Estimation Gesture Recognition: Hand Pose Estimation Ubiquitous computing seminar FS2014 Student report Adrian Spurr ETH Zurich spurra@student.ethz.ch ABSTRACT In this report, different vision-based approaches to

More information

Photo by Carl Warner

Photo by Carl Warner Photo b Carl Warner Photo b Carl Warner Photo b Carl Warner Fitting and Alignment Szeliski 6. Computer Vision CS 43, Brown James Has Acknowledgment: Man slides from Derek Hoiem and Grauman&Leibe 2008 AAAI

More information

INFO0948 Fitting and Shape Matching

INFO0948 Fitting and Shape Matching INFO0948 Fitting and Shape Matching Renaud Detry University of Liège, Belgium Updated March 31, 2015 1 / 33 These slides are based on the following book: D. Forsyth and J. Ponce. Computer vision: a modern

More information

Perception. Autonomous Mobile Robots. Sensors Vision Uncertainties, Line extraction from laser scans. Autonomous Systems Lab. Zürich.

Perception. Autonomous Mobile Robots. Sensors Vision Uncertainties, Line extraction from laser scans. Autonomous Systems Lab. Zürich. Autonomous Mobile Robots Localization "Position" Global Map Cognition Environment Model Local Map Path Perception Real World Environment Motion Control Perception Sensors Vision Uncertainties, Line extraction

More information

CS 558: Computer Vision 4 th Set of Notes

CS 558: Computer Vision 4 th Set of Notes 1 CS 558: Computer Vision 4 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Overview Keypoint matching Hessian

More information

An Evaluation of the Performance of RANSAC Algorithms for Stereo Camera Calibration

An Evaluation of the Performance of RANSAC Algorithms for Stereo Camera Calibration Tina Memo No. 2000-009 Presented at BMVC 2000 An Evaluation of the Performance of RANSAC Algorithms for Stereo Camera Calibration A. J. Lacey, N. Pinitkarn and N. A. Thacker Last updated 21 / 02 / 2002

More information

Detection and Fine 3D Pose Estimation of Texture-less Objects in RGB-D Images

Detection and Fine 3D Pose Estimation of Texture-less Objects in RGB-D Images Detection and Pose Estimation of Texture-less Objects in RGB-D Images Tomáš Hodaň1, Xenophon Zabulis2, Manolis Lourakis2, Šťěpán Obdržálek1, Jiří Matas1 1 Center for Machine Perception, CTU in Prague,

More information

Nonparametric estimation of multiple structures with outliers

Nonparametric estimation of multiple structures with outliers Nonparametric estimation of multiple structures with outliers Wei Zhang and Jana Kosecka George Mason University, 44 University Dr. Fairfax, VA 223 USA Abstract. Common problem encountered in the analysis

More information

Feature Matching and Robust Fitting

Feature Matching and Robust Fitting Feature Matching and Robust Fitting Computer Vision CS 143, Brown Read Szeliski 4.1 James Hays Acknowledgment: Many slides from Derek Hoiem and Grauman&Leibe 2008 AAAI Tutorial Project 2 questions? This

More information

Multi-stable Perception. Necker Cube

Multi-stable Perception. Necker Cube Multi-stable Perception Necker Cube Spinning dancer illusion, Nobuuki Kaahara Fitting and Alignment Computer Vision Szeliski 6.1 James Has Acknowledgment: Man slides from Derek Hoiem, Lana Lazebnik, and

More information

CS231A Midterm Review. Friday 5/6/2016

CS231A Midterm Review. Friday 5/6/2016 CS231A Midterm Review Friday 5/6/2016 Outline General Logistics Camera Models Non-perspective cameras Calibration Single View Metrology Epipolar Geometry Structure from Motion Active Stereo and Volumetric

More information

Colored Point Cloud Registration Revisited Supplementary Material

Colored Point Cloud Registration Revisited Supplementary Material Colored Point Cloud Registration Revisited Supplementary Material Jaesik Park Qian-Yi Zhou Vladlen Koltun Intel Labs A. RGB-D Image Alignment Section introduced a joint photometric and geometric objective

More information

frame No. Rotation error (j) "err.j.rrfm" "err.j.orig" The angle between two vector (deg.) frame No.

frame No. Rotation error (j) err.j.rrfm err.j.orig The angle between two vector (deg.) frame No. A Robust Recursive Factorization Method for Recovering Structure and Motion from Live Video Frames Takeshi Kuratay, Jun Fujikiy, Masakatsu Kourogiz, Katsuhiko Sakauey yelectrotechnical Laboratory, {{4

More information

Outdoor Scene Reconstruction from Multiple Image Sequences Captured by a Hand-held Video Camera

Outdoor Scene Reconstruction from Multiple Image Sequences Captured by a Hand-held Video Camera Outdoor Scene Reconstruction from Multiple Image Sequences Captured by a Hand-held Video Camera Tomokazu Sato, Masayuki Kanbara and Naokazu Yokoya Graduate School of Information Science, Nara Institute

More information

Scalable 3D Tracking of Multiple Interacting Objects

Scalable 3D Tracking of Multiple Interacting Objects Scalable 3D Tracking of Multiple Interacting Objects Nikolaos Kyriazis, Antonis Argyros Institute of Computer Science, FORTH and Computer Science Department, University of Crete {kyriazis, argyros}@ics.forth.gr

More information

Motion Tracking and Event Understanding in Video Sequences

Motion Tracking and Event Understanding in Video Sequences Motion Tracking and Event Understanding in Video Sequences Isaac Cohen Elaine Kang, Jinman Kang Institute for Robotics and Intelligent Systems University of Southern California Los Angeles, CA Objectives!

More information

DETECTION AND ROBUST ESTIMATION OF CYLINDER FEATURES IN POINT CLOUDS INTRODUCTION

DETECTION AND ROBUST ESTIMATION OF CYLINDER FEATURES IN POINT CLOUDS INTRODUCTION DETECTION AND ROBUST ESTIMATION OF CYLINDER FEATURES IN POINT CLOUDS Yun-Ting Su James Bethel Geomatics Engineering School of Civil Engineering Purdue University 550 Stadium Mall Drive, West Lafayette,

More information

Methods for Representing and Recognizing 3D objects

Methods for Representing and Recognizing 3D objects Methods for Representing and Recognizing 3D objects part 1 Silvio Savarese University of Michigan at Ann Arbor Object: Building, 45º pose, 8-10 meters away Object: Person, back; 1-2 meters away Object:

More information

Observations. Basic iteration Line estimated from 2 inliers

Observations. Basic iteration Line estimated from 2 inliers Line estimated from 2 inliers 3 Observations We need (in this case!) a minimum of 2 points to determine a line Given such a line l, we can determine how well any other point y fits the line l For example:

More information

6-DOF Model Based Tracking via Object Coordinate Regression Supplemental Note

6-DOF Model Based Tracking via Object Coordinate Regression Supplemental Note 6-DOF Model Based Tracking via Object Coordinate Regression Supplemental Note Alexander Krull, Frank Michel, Eric Brachmann, Stefan Gumhold, Stephan Ihrke, Carsten Rother TU Dresden, Dresden, Germany The

More information

Object Detection by 3D Aspectlets and Occlusion Reasoning

Object Detection by 3D Aspectlets and Occlusion Reasoning Object Detection by 3D Aspectlets and Occlusion Reasoning Yu Xiang University of Michigan Silvio Savarese Stanford University In the 4th International IEEE Workshop on 3D Representation and Recognition

More information

Human Body Recognition and Tracking: How the Kinect Works. Kinect RGB-D Camera. What the Kinect Does. How Kinect Works: Overview

Human Body Recognition and Tracking: How the Kinect Works. Kinect RGB-D Camera. What the Kinect Does. How Kinect Works: Overview Human Body Recognition and Tracking: How the Kinect Works Kinect RGB-D Camera Microsoft Kinect (Nov. 2010) Color video camera + laser-projected IR dot pattern + IR camera $120 (April 2012) Kinect 1.5 due

More information

Homographies and RANSAC

Homographies and RANSAC Homographies and RANSAC Computer vision 6.869 Bill Freeman and Antonio Torralba March 30, 2011 Homographies and RANSAC Homographies RANSAC Building panoramas Phototourism 2 Depth-based ambiguity of position

More information

3D Environment Reconstruction

3D Environment Reconstruction 3D Environment Reconstruction Using Modified Color ICP Algorithm by Fusion of a Camera and a 3D Laser Range Finder The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems October 11-15,

More information

Feature Detectors and Descriptors: Corners, Lines, etc.

Feature Detectors and Descriptors: Corners, Lines, etc. Feature Detectors and Descriptors: Corners, Lines, etc. Edges vs. Corners Edges = maxima in intensity gradient Edges vs. Corners Corners = lots of variation in direction of gradient in a small neighborhood

More information

On Robust Regression in Photogrammetric Point Clouds

On Robust Regression in Photogrammetric Point Clouds On Robust Regression in Photogrammetric Point Clouds Konrad Schindler and Horst Bischof Institute of Computer Graphics and Vision Graz University of Technology, Austria {schindl,bischof}@icg.tu-graz.ac.at

More information

Deep Incremental Scene Understanding. Federico Tombari & Christian Rupprecht Technical University of Munich, Germany

Deep Incremental Scene Understanding. Federico Tombari & Christian Rupprecht Technical University of Munich, Germany Deep Incremental Scene Understanding Federico Tombari & Christian Rupprecht Technical University of Munich, Germany C. Couprie et al. "Toward Real-time Indoor Semantic Segmentation Using Depth Information"

More information

Clustering in Registration of 3D Point Clouds

Clustering in Registration of 3D Point Clouds Sergey Arkhangelskiy 1 Ilya Muchnik 2 1 Google Moscow 2 Rutgers University, New Jersey, USA International Workshop Clusters, orders, trees: Methods and applications in honor of Professor Boris Mirkin December

More information

Factorization with Missing and Noisy Data

Factorization with Missing and Noisy Data Factorization with Missing and Noisy Data Carme Julià, Angel Sappa, Felipe Lumbreras, Joan Serrat, and Antonio López Computer Vision Center and Computer Science Department, Universitat Autònoma de Barcelona,

More information

FOREGROUND DETECTION ON DEPTH MAPS USING SKELETAL REPRESENTATION OF OBJECT SILHOUETTES

FOREGROUND DETECTION ON DEPTH MAPS USING SKELETAL REPRESENTATION OF OBJECT SILHOUETTES FOREGROUND DETECTION ON DEPTH MAPS USING SKELETAL REPRESENTATION OF OBJECT SILHOUETTES D. Beloborodov a, L. Mestetskiy a a Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University,

More information

Model Fitting. Introduction to Computer Vision CSE 152 Lecture 11

Model Fitting. Introduction to Computer Vision CSE 152 Lecture 11 Model Fitting CSE 152 Lecture 11 Announcements Homework 3 is due May 9, 11:59 PM Reading: Chapter 10: Grouping and Model Fitting What to do with edges? Segment linked edge chains into curve features (e.g.,

More information

Robust Regression. Robust Data Mining Techniques By Boonyakorn Jantaranuson

Robust Regression. Robust Data Mining Techniques By Boonyakorn Jantaranuson Robust Regression Robust Data Mining Techniques By Boonyakorn Jantaranuson Outline Introduction OLS and important terminology Least Median of Squares (LMedS) M-estimator Penalized least squares What is

More information

Nonrigid Surface Modelling. and Fast Recovery. Department of Computer Science and Engineering. Committee: Prof. Leo J. Jia and Prof. K. H.

Nonrigid Surface Modelling. and Fast Recovery. Department of Computer Science and Engineering. Committee: Prof. Leo J. Jia and Prof. K. H. Nonrigid Surface Modelling and Fast Recovery Zhu Jianke Supervisor: Prof. Michael R. Lyu Committee: Prof. Leo J. Jia and Prof. K. H. Wong Department of Computer Science and Engineering May 11, 2007 1 2

More information

Real-Time Vision-Based State Estimation and (Dense) Mapping

Real-Time Vision-Based State Estimation and (Dense) Mapping Real-Time Vision-Based State Estimation and (Dense) Mapping Stefan Leutenegger IROS 2016 Workshop on State Estimation and Terrain Perception for All Terrain Mobile Robots The Perception-Action Cycle in

More information

Learning 6D Object Pose Estimation and Tracking

Learning 6D Object Pose Estimation and Tracking Learning 6D Object Pose Estimation and Tracking Carsten Rother presented by: Alexander Krull 21/12/2015 6D Pose Estimation Input: RGBD-image Known 3D model Output: 6D rigid body transform of object 21/12/2015

More information

Purposive Sample Consensus: A Paradigm for Model Fitting with Application to Visual Odometry

Purposive Sample Consensus: A Paradigm for Model Fitting with Application to Visual Odometry Purposive Sample Consensus: A Paradigm for Model Fitting with Application to Visual Odometry Jianguo Wang and Xiang Luo Abstract RANSAC (random sample consensus) is a robust algorithm for model fitting

More information

Image Features: Local Descriptors. Sanja Fidler CSC420: Intro to Image Understanding 1/ 58

Image Features: Local Descriptors. Sanja Fidler CSC420: Intro to Image Understanding 1/ 58 Image Features: Local Descriptors Sanja Fidler CSC420: Intro to Image Understanding 1/ 58 [Source: K. Grauman] Sanja Fidler CSC420: Intro to Image Understanding 2/ 58 Local Features Detection: Identify

More information

Object Recognition with Invariant Features

Object Recognition with Invariant Features Object Recognition with Invariant Features Definition: Identify objects or scenes and determine their pose and model parameters Applications Industrial automation and inspection Mobile robots, toys, user

More information

Real Time Head Model Creation and Head Pose Estimation On Consumer Depth Cameras

Real Time Head Model Creation and Head Pose Estimation On Consumer Depth Cameras Real Time Head Model Creation and Head Pose Estimation On Consumer Depth Cameras Manuel Martin Fraunhofer IOSB Fraunhoferstr. 1 76131 Karlsruhe, Germany Florian van de Camp Fraunhofer IOSB Fraunhoferstr.

More information

arxiv: v1 [cs.cv] 28 Sep 2018

arxiv: v1 [cs.cv] 28 Sep 2018 Extrinsic camera calibration method and its performance evaluation Jacek Komorowski 1 and Przemyslaw Rokita 2 arxiv:1809.11073v1 [cs.cv] 28 Sep 2018 1 Maria Curie Sklodowska University Lublin, Poland jacek.komorowski@gmail.com

More information

Variational Methods II

Variational Methods II Mathematical Foundations of Computer Graphics and Vision Variational Methods II Luca Ballan Institute of Visual Computing Last Lecture If we have a topological vector space with an inner product and functionals

More information

Parameter estimation. Christiano Gava Gabriele Bleser

Parameter estimation. Christiano Gava Gabriele Bleser Parameter estimation Christiano Gava Christiano.Gava@dfki.de Gabriele Bleser gabriele.bleser@dfki.de Introduction Previous lectures: P-matrix 2D projective transformations Estimation (direct linear transform)

More information

Tracking. Hao Guan( 管皓 ) School of Computer Science Fudan University

Tracking. Hao Guan( 管皓 ) School of Computer Science Fudan University Tracking Hao Guan( 管皓 ) School of Computer Science Fudan University 2014-09-29 Multimedia Video Audio Use your eyes Video Tracking Use your ears Audio Tracking Tracking Video Tracking Definition Given

More information

Robot Motion Planning

Robot Motion Planning Robot Motion Planning James Bruce Computer Science Department Carnegie Mellon University April 7, 2004 Agent Planning An agent is a situated entity which can choose and execute actions within in an environment.

More information

Real-time Incremental J-linkage for Robust Multiple Structures Estimation

Real-time Incremental J-linkage for Robust Multiple Structures Estimation Real-time Incremental J-linkage for Robust Multiple Structures Estimation Roberto Toldo and Andrea Fusiello Department of Computer Science - University of Verona Strada le grazie 15, Verona - Italy {roberto.toldo

More information

ROBUST LINE-BASED CALIBRATION OF LENS DISTORTION FROM A SINGLE VIEW

ROBUST LINE-BASED CALIBRATION OF LENS DISTORTION FROM A SINGLE VIEW ROBUST LINE-BASED CALIBRATION OF LENS DISTORTION FROM A SINGLE VIEW Thorsten Thormählen, Hellward Broszio, Ingolf Wassermann thormae@tnt.uni-hannover.de University of Hannover, Information Technology Laboratory,

More information

Efficient Model-based 3D Tracking of Hand Articulations using Kinect

Efficient Model-based 3D Tracking of Hand Articulations using Kinect OIKONOMIDIS ET AL.: TRACKING HAND ARTICULATIONS USING KINECT 1 Efficient Model-based 3D Tracking of Hand Articulations using Kinect Iason Oikonomidis 1,2 http://www.ics.forth.gr/~oikonom Nikolaos Kyriazis

More information

Robust Geometry Estimation from two Images

Robust Geometry Estimation from two Images Robust Geometry Estimation from two Images Carsten Rother 09/12/2016 Computer Vision I: Image Formation Process Roadmap for next four lectures Computer Vision I: Image Formation Process 09/12/2016 2 Appearance-based

More information

MDPE: A Very Robust Estimator for Model Fitting and Range Image Segmentation

MDPE: A Very Robust Estimator for Model Fitting and Range Image Segmentation International Journal of Computer Vision 59(2), 139 166, 24 c 24 Kluwer Academic Publishers. Manufactured in The Netherlands. MDPE: A Very Robust Estimator for Model Fitting and Range Image Segmentation

More information

Vision-based SLAM and moving objects tracking for the perceptual support of a smart walker platform

Vision-based SLAM and moving objects tracking for the perceptual support of a smart walker platform Vision-based SLAM and moving objects tracking for the perceptual support of a smart walker platform Paschalis Panteleris and Antonis A. Argyros Institute of Computer Science (ICS) Foundation for Research

More information

An Improved Evolutionary Algorithm for Fundamental Matrix Estimation

An Improved Evolutionary Algorithm for Fundamental Matrix Estimation 03 0th IEEE International Conference on Advanced Video and Signal Based Surveillance An Improved Evolutionary Algorithm for Fundamental Matrix Estimation Yi Li, Senem Velipasalar and M. Cenk Gursoy Department

More information

Real Time Person Detection and Tracking by Mobile Robots using RGB-D Images

Real Time Person Detection and Tracking by Mobile Robots using RGB-D Images Real Time Person Detection and Tracking by Mobile Robots using RGB-D Images Duc My Vo, Lixing Jiang and Andreas Zell Abstract Detecting and tracking humans are key problems for human-robot interaction.

More information

Computer Vision and Image Understanding 78, 1 7 (2000) doi: /cviu , available online at on INTRODUCTION

Computer Vision and Image Understanding 78, 1 7 (2000) doi: /cviu , available online at  on INTRODUCTION Computer Vision and Image Understanding 78, 1 7 (2000) doi:10.1006/cviu.1999.0833, available online at http://www.idealibrary.com on INTRODUCTION Robust Computer Vision: An Interdisciplinary Challenge

More information

3D Motion from Image Derivatives Using the Least Trimmed Square Regression

3D Motion from Image Derivatives Using the Least Trimmed Square Regression 3D Motion from Image Derivatives Using the Least Trimmed Square Regression Fadi Dornaika and Angel D. Sappa Computer Vision Center Edifici O, Campus UAB 08193 Bellaterra, Barcelona, Spain {dornaika, sappa}@cvc.uab.es

More information

Instance-level recognition

Instance-level recognition Instance-level recognition 1) Local invariant features 2) Matching and recognition with local features 3) Efficient visual search 4) Very large scale indexing Matching of descriptors Matching and 3D reconstruction

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 FDH 204 Lecture 14 130307 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Stereo Dense Motion Estimation Translational

More information

Face Alignment Robust to Occlusion

Face Alignment Robust to Occlusion Face Alignment Robust to Occlusion Anonymous Abstract In this paper we present a new approach to robustly align facial features to a face image even when the face is partially occluded Previous methods

More information

Representing Moving Images with Layers. J. Y. Wang and E. H. Adelson MIT Media Lab

Representing Moving Images with Layers. J. Y. Wang and E. H. Adelson MIT Media Lab Representing Moving Images with Layers J. Y. Wang and E. H. Adelson MIT Media Lab Goal Represent moving images with sets of overlapping layers Layers are ordered in depth and occlude each other Velocity

More information

Multi-stable Perception. Necker Cube

Multi-stable Perception. Necker Cube Multi-stable Perception Necker Cube Spinning dancer illusion, Nobuyuki Kayahara Multiple view geometry Stereo vision Epipolar geometry Lowe Hartley and Zisserman Depth map extraction Essential matrix

More information

Geometric Registration for Deformable Shapes 3.3 Advanced Global Matching

Geometric Registration for Deformable Shapes 3.3 Advanced Global Matching Geometric Registration for Deformable Shapes 3.3 Advanced Global Matching Correlated Correspondences [ASP*04] A Complete Registration System [HAW*08] In this session Advanced Global Matching Some practical

More information

Deep Learning for Virtual Shopping. Dr. Jürgen Sturm Group Leader RGB-D

Deep Learning for Virtual Shopping. Dr. Jürgen Sturm Group Leader RGB-D Deep Learning for Virtual Shopping Dr. Jürgen Sturm Group Leader RGB-D metaio GmbH Augmented Reality with the Metaio SDK: IKEA Catalogue App Metaio: Augmented Reality Metaio SDK for ios, Android and Windows

More information

Week 2: Two-View Geometry. Padua Summer 08 Frank Dellaert

Week 2: Two-View Geometry. Padua Summer 08 Frank Dellaert Week 2: Two-View Geometry Padua Summer 08 Frank Dellaert Mosaicking Outline 2D Transformation Hierarchy RANSAC Triangulation of 3D Points Cameras Triangulation via SVD Automatic Correspondence Essential

More information

REGISTRATION OF AIRBORNE LASER DATA WITH ONE AERIAL IMAGE

REGISTRATION OF AIRBORNE LASER DATA WITH ONE AERIAL IMAGE REGISTRATION OF AIRORNE LASER DATA WITH ONE AERIAL IMAGE Michel ROUX GET - Télécom-Paris - UMR 5141 LTCI - Département TSI 4 rue arrault, 75013 Paris - France michel.roux@enst.fr KEY WORDS: Airborne Laser

More information

Grasp Recognition using a 3D Articulated Model and Infrared Images

Grasp Recognition using a 3D Articulated Model and Infrared Images Grasp Recognition using a 3D Articulated Model and Infrared Images Koichi Ogawara Institute of Industrial Science, Univ. of Tokyo, Tokyo, Japan Jun Takamatsu Institute of Industrial Science, Univ. of Tokyo,

More information

A New Minimal Solution to the Relative Pose of a Calibrated Stereo Camera with Small Field of View Overlap

A New Minimal Solution to the Relative Pose of a Calibrated Stereo Camera with Small Field of View Overlap A New Minimal Solution to the Relative Pose of a Calibrated Stereo Camera with Small Field of View Overlap Brian Clipp 1, Christopher Zach 1, Jan-Michael Frahm 1 and Marc Pollefeys 2 1 Department of Computer

More information