Deep Learning For Video Classification. Presented by Natalie Carlebach & Gil Sharon

Size: px
Start display at page:

Download "Deep Learning For Video Classification. Presented by Natalie Carlebach & Gil Sharon"

Transcription

1 Deep Learning For Video Classification Presented by Natalie Carlebach & Gil Sharon

2 Overview Of Presentation Motivation Challenges of video classification Common datasets 4 different methods presented in 3 papers: 1. 3D convolutions 2. Spatial + Optical flow fusion 3. Temporal pooling 4. LSTM Recap of a different elegant method Conclusions

3 Motivation 500 Hours of video uploaded to YouTube every minute Analyzing these videos is needed for search, recommendation, ranking etc. Action recognition, abnormal event detection, activity understanding

4 Challenges In Video Classification current ConvNets are not able to take full advantage of temporal information Several orders of magnitude more data compared with photos Variations in motion and viewpoint Datasets are noisy or small - videos are difficult to collect, annotate and store Complex Context compared to photos

5 Motivation of Temporal Information For example, what is happening in this video? A CNN would probably classify this as crying or shouting Temporal information is needed

6 Challenges In Video Classification current ConvNets are not able to take full advantage of temporal information Several orders of magnitude more data compared with photos Variations in motion and viewpoint Datasets are noisy or small - videos are difficult to collect, annotate and store Complex Context compared to photos

7 First paper 3D Convolution (C3D) October 2015

8 Motivation To combine temporal information with spatial information. 2D covnets are not enough. Proposal: spatiotemporal feature learning using deep 3D ConvNets.

9 2D Conv vs 3D Conv 2D conv on an image Input: image Output: image 2D conv on a video Input: volume (multiple frames as multiple channels) Output: image 3D conv on a video Input: volume Output: volume preserves temporal information of the input

10 3D Conv Kernels fixed the spatial kernels to 3x3 vary only the temporal depth of the 3D convolution kernels.

11 Network Settings Input: 16 frames non overlapping clips (were split from each video - resized to ) Output: class labels (belong to 101 different actions) All convolution kernels are d 3 3 (d temporal depth) Max pooling layer 2-5 : kernel are Max pooling layer 1: kernel is Input: 3x16x 112x 112

12 Training Technical Details Data set: UCF101 We train the networks from scratch using mini-batches of 30 clips. Learning Rate: initial learning rate of The learning rate is divided by 10 after every 4 epochs. Stopping criteria: after 16 epochs.

13 Datasets Action Recognition UCF101-13,000 videos of 101 human action categories Short clips, steady camera, less natural

14 Training Technical Details Data set: UCF101 We train the networks from scratch using mini-batches of 30 clips. Learning Rate: initial learning rate of The learning rate is divided by 10 after every 4 epochs. Stopping criteria: after 16 epochs.

15 Varying Network Architectures a) homogeneous temporal depth: d= 1,3,5,7 b) varying temporal depth: increasing: d = decreasing: d =

16 Varying Network Architectures homogeneous temporal depth: varying temporal depth: homogeneous temporal depth of 3 was chosen

17 Learning Spatiotemporal Features Dataset : Sport1M (long videos) Training: randomly extract five 2-second long clips from every training video C3D trained from scratch/ C3D pre- trained Testing: For video predictions, we average clip predictions of 10 clips

18 Datasets - Sports Video Classification Sport1M 1 million you tube videos, 487 sport categories Few minutes videos, in the wild, camera less steady, noisier labels

19 Learning Spatiotemporal Features Dataset : Sport1M (long videos) Training: randomly extract five 2-second long clips from every training video C3D trained from scratch/ C3D pre- trained Testing: For video predictions, we average clip predictions of 10 clips

20 Sport1M results The method is not state of the art. We note that the method of [29] uses long clips, thus its clip-level accuracy is not directly comparable to that of C3D and DeepVideo

21 C3D Video Descriptor A model is trained on Sport1M and kept constant 4096 dim video descriptor - averaging FC6 of this model, on 16 frames clips with stride 8, followed by L2 normalization. Multiclass Linear SVM is used on descriptor The descriptor is compared to other descriptors on several datasets

22 Visualization of C3D Descriptor We observe that C3D starts by focusing on appearance in the first few frames and tracks the salient motion in the subsequent frames

23 Results of Action Recognition on UCF101 Using C3D descriptor, results were state of the art only when combined with hand crafted video descriptor idt. Best among methods with RGB input only CNN RGB based only all possible feature combinations

24 C3D descriptor characteristics Compact- Results of UCF101 when reducing dimensions using PCA, better than other descriptors More generic - visualized by t-sne, compared with features extracted with 2D convolutions Fast 313 fps on GPU, 100 times faster than idt

25 Deconvolution Examples A feature map from Conv2 is learning moving edges and blobs

26 Deconvolution Examples A feature map from Conv3 is learning moving body parts

27 Deconvolution Examples A feature map from Conv5 is learning more complex movements like biking

28 Disadvantages of C3D C3D is limited temporal support of 16 consecutive frames. No optical flow is added to the CNN - Other works showed that adding it is improving the results. Other methods had better performance on each data set.

29 Second Paper April 2015, presented at CVPR2015

30 Motivation combining information over longer videos than previous methods Proposals Convolutional temporal feature pooling architecture LSTM cells connected to CNN convolutional output

31 Optical Flow d t (u, v): the displacement vector at the point (u, v) in frame t, which moves the point to the corresponding point in the following frame t + 1. (c) A close up of dense optical flow in the outlined area. The horizontal and vertical components of the vector field, d t x and d t y, can be seen as image channels (d), (e)

32 Optical Flow Stacking To represent the motion across a sequence of frames, we stack the flow channels d t x, d t y of L consecutive frames to form a total of 2L input channels

33 Motivation of Combination RGB - brush and hair, brush and teeth Optical Flow - hand moves periodically at some spatial location The combination discriminates the action

34 First Method Convolutional Temporal Feature Pooling Proposed approaches Temporal feature pooling performed on last convolutional layer of GoogLeNet.

35 First Method Implementation Details Datasets: Sport1m Cropping clips of 120 frames at 1 fps Feed forward of each frame through GoogLeNet Several methods for feature pooling between frames in the clip For prediction averaging clips with different starting points

36 Results: Convolutional Temporal Feature Pooling Data set: Sport1M Late pooling is the worst, doesn t preserve spatial information

37 Second Method - LSTM architecture Pooling is order invariant, LSTM usage is more natural for sequences

38 Video classification LSTM architecture 5 layers of LSTM, 512 cells each. Input is last convolutional layer of GoogLeNet from each frame Prediction is made after each frame In training, weight of loss is linearly growing from 0 to 1 through the video

39 Optical flow fusion implementation Processing videos in 1 Fps loses local motion information. Optical flow stream is added Each stream is fed forward in the same 2 methods as mentioned before Fusion is made only at the softmax layer

40 Results Sport1M results of different methods Optical flow fusion does not improve due to shaky videos State of the art performance on Sport1M

41 Results UCF101 results based on raw frames only UCF101 state of the art results (not anymore) when fusing optical flow

42 Disadvantages Of The 2 Methods Feature pooling is less generic for arbitrary length of a video LSTM is tested only on 30 frames, less global context Optical flow calculation is slow, and less elegant end-to-end training Fusion with optical flow is only at the softmax, not ideal information sharing

43 Third Paper Two Stream Fusion April 2016, presented at CVPR2016

44 Motivation Spatial + Optical flow fusion: registering appearance recognition (spatial cue) with optical flow recognition (temporal cue), at the pixel level Temporal fusion: how these cues evolve over time

45 Two Networks to Fuse Spatial fusion: Per frame Temporal fusion: Between frames

46 Challenges in the Fusion Process How to spatially fuse? Which channel in one network corresponds to a channel of the other network? Where to fuse the networks spatially? How to perform temporal fusion between frames?

47 Declarations Fusion Function: Feature Maps: Output Map: For simplicity, assume that W Width H height D number of channels of the respective feature maps

48 Possible Spatial Fusion Methods Sum Fusion: Max Fusion: Concatenation Fusion: Conv Fusion: Bilinear Fusion:

49 Where to Spatially Fuse? Two Examples (based on VGG): fusion after the 4th conv-layer. Only a single network tower is used from the point of fusion two layers (after conv5 and fc8) both network towers are kept Influence on the number of parameters

50 Spatial Fusion Methods - Comparison DataSet: UCF101 Model: 8 layers VGG-M

51 Spatial Fusion Methods - Comparison DataSet: UCF101 Model: 8 layers VGG-M How to spatially fuse? Conv Fusion Answers to our questions:

52 Where to Spatially Fuse? Dataset: UCF101 Model: 8 layers VGG-M

53 Where to Spatially Fuse? Dataset: UCF101 Model: 8 layers VGG-M Answers to our questions: Where to spatially fuse? At ReLU5 or at ReLU5+FC8 (but nearly doubles the parameters involved)

54 Temporal Fusion At Pool5 Spatiotemporal: Ignores time, spatial pooling only. Averaging the network predictions over time Stacking feature maps across frames, pools from local spatiotemporal neighborhood. No pooling across channels Additionally performs a convolution with a fusion kernel that spans the feature channels from both streams, space and time before 3D pooling. This is replacing the single frame Conv fusion. Kernel size:

55 Combining it all together Model: Vgg-16 Fusion Relu5 + after softmax (2 towers are kept). Spatiotemporal fusion+ 3D pooling in fused tower, 3D pooling in temporal tower L = 10 :Number of optical flow images around each frame T = 5 : Number of frames per video clip (for testing and training) τ Frame distance between sampled frames. Selected randomly [3,10] Prediction is averaged over both towers

56 Results

57 Disadvantages of this method Tested only on 5 frames per video. Not enough for context of longer videos Not tested on bigger and more general dataset of Sport1M Relies heavily on optical flow, may not work on many real life not stabilized videos As before, using optical flow is slow and not allowing end-to-end training

58 Summery & Conclusions 4 different approaches of video classification were shown Each method performed better on different tasks or datasets Optical flow improves the performance. Adding hand crafted features improved the results, hinting that there is still a room for improvement on CNN approaches

59 Disadvantages Of LSTM Methods [slide source: cs231n course, Fei-Fei Li & Andrej Karpathy & Justin Johnson lecture 14, slide 36]

60 Another Elegant Method

61 Brief Overview [slide source: cs231n course, Fei-Fei Li & Andrej Karpathy & Justin Johnson lecture 14, slide 31]

62 Brief Overview [slide source: cs231n course, Fei-Fei Li & Andrej Karpathy & Justin Johnson lecture 14, slide 33]

63 Brief Overview [slide source: cs231n course, Fei-Fei Li & Andrej Karpathy & Justin Johnson lecture 14, slide 37]

64 Questions?

Two-Stream Convolutional Networks for Action Recognition in Videos

Two-Stream Convolutional Networks for Action Recognition in Videos Two-Stream Convolutional Networks for Action Recognition in Videos Karen Simonyan Andrew Zisserman Cemil Zalluhoğlu Introduction Aim Extend deep Convolution Networks to action recognition in video. Motivation

More information

Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset. By Joa õ Carreira and Andrew Zisserman Presenter: Zhisheng Huang 03/02/2018

Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset. By Joa õ Carreira and Andrew Zisserman Presenter: Zhisheng Huang 03/02/2018 Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset By Joa õ Carreira and Andrew Zisserman Presenter: Zhisheng Huang 03/02/2018 Outline: Introduction Action classification architectures

More information

CS231N Section. Video Understanding 6/1/2018

CS231N Section. Video Understanding 6/1/2018 CS231N Section Video Understanding 6/1/2018 Outline Background / Motivation / History Video Datasets Models Pre-deep learning CNN + RNN 3D convolution Two-stream What we ve seen in class so far... Image

More information

Large-scale Video Classification with Convolutional Neural Networks

Large-scale Video Classification with Convolutional Neural Networks Large-scale Video Classification with Convolutional Neural Networks Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Sukthankar, Li Fei-Fei Note: Slide content mostly from : Bay Area

More information

Person Action Recognition/Detection

Person Action Recognition/Detection Person Action Recognition/Detection Fabrício Ceschin Visão Computacional Prof. David Menotti Departamento de Informática - Universidade Federal do Paraná 1 In object recognition: is there a chair in the

More information

Machine Learning 13. week

Machine Learning 13. week Machine Learning 13. week Deep Learning Convolutional Neural Network Recurrent Neural Network 1 Why Deep Learning is so Popular? 1. Increase in the amount of data Thanks to the Internet, huge amount of

More information

Long-term Temporal Convolutions for Action Recognition INRIA

Long-term Temporal Convolutions for Action Recognition INRIA Longterm Temporal Convolutions for Action Recognition Gul Varol Ivan Laptev INRIA Cordelia Schmid 2 Motivation Current CNN methods for action recognition learn representations for short intervals (116

More information

Know your data - many types of networks

Know your data - many types of networks Architectures Know your data - many types of networks Fixed length representation Variable length representation Online video sequences, or samples of different sizes Images Specific architectures for

More information

Machine Learning. Deep Learning. Eric Xing (and Pengtao Xie) , Fall Lecture 8, October 6, Eric CMU,

Machine Learning. Deep Learning. Eric Xing (and Pengtao Xie) , Fall Lecture 8, October 6, Eric CMU, Machine Learning 10-701, Fall 2015 Deep Learning Eric Xing (and Pengtao Xie) Lecture 8, October 6, 2015 Eric Xing @ CMU, 2015 1 A perennial challenge in computer vision: feature engineering SIFT Spin image

More information

Recurrent Neural Networks and Transfer Learning for Action Recognition

Recurrent Neural Networks and Transfer Learning for Action Recognition Recurrent Neural Networks and Transfer Learning for Action Recognition Andrew Giel Stanford University agiel@stanford.edu Ryan Diaz Stanford University ryandiaz@stanford.edu Abstract We have taken on the

More information

CNN Basics. Chongruo Wu

CNN Basics. Chongruo Wu CNN Basics Chongruo Wu Overview 1. 2. 3. Forward: compute the output of each layer Back propagation: compute gradient Updating: update the parameters with computed gradient Agenda 1. Forward Conv, Fully

More information

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun Presented by Tushar Bansal Objective 1. Get bounding box for all objects

More information

Lecture 37: ConvNets (Cont d) and Training

Lecture 37: ConvNets (Cont d) and Training Lecture 37: ConvNets (Cont d) and Training CS 4670/5670 Sean Bell [http://bbabenko.tumblr.com/post/83319141207/convolutional-learnings-things-i-learned-by] (Unrelated) Dog vs Food [Karen Zack, @teenybiscuit]

More information

Deep neural networks II

Deep neural networks II Deep neural networks II May 31 st, 2018 Yong Jae Lee UC Davis Many slides from Rob Fergus, Svetlana Lazebnik, Jia-Bin Huang, Derek Hoiem, Adriana Kovashka, Why (convolutional) neural networks? State of

More information

Convolutional Neural Networks. Computer Vision Jia-Bin Huang, Virginia Tech

Convolutional Neural Networks. Computer Vision Jia-Bin Huang, Virginia Tech Convolutional Neural Networks Computer Vision Jia-Bin Huang, Virginia Tech Today s class Overview Convolutional Neural Network (CNN) Training CNN Understanding and Visualizing CNN Image Categorization:

More information

Deep Learning. Visualizing and Understanding Convolutional Networks. Christopher Funk. Pennsylvania State University.

Deep Learning. Visualizing and Understanding Convolutional Networks. Christopher Funk. Pennsylvania State University. Visualizing and Understanding Convolutional Networks Christopher Pennsylvania State University February 23, 2015 Some Slide Information taken from Pierre Sermanet (Google) presentation on and Computer

More information

Introduction to Neural Networks

Introduction to Neural Networks Introduction to Neural Networks Jakob Verbeek 2017-2018 Biological motivation Neuron is basic computational unit of the brain about 10^11 neurons in human brain Simplified neuron model as linear threshold

More information

Classification of objects from Video Data (Group 30)

Classification of objects from Video Data (Group 30) Classification of objects from Video Data (Group 30) Sheallika Singh 12665 Vibhuti Mahajan 12792 Aahitagni Mukherjee 12001 M Arvind 12385 1 Motivation Video surveillance has been employed for a long time

More information

Deep Learning for Computer Vision II

Deep Learning for Computer Vision II IIIT Hyderabad Deep Learning for Computer Vision II C. V. Jawahar Paradigm Shift Feature Extraction (SIFT, HoG, ) Part Models / Encoding Classifier Sparrow Feature Learning Classifier Sparrow L 1 L 2 L

More information

Fuzzy Set Theory in Computer Vision: Example 3

Fuzzy Set Theory in Computer Vision: Example 3 Fuzzy Set Theory in Computer Vision: Example 3 Derek T. Anderson and James M. Keller FUZZ-IEEE, July 2017 Overview Purpose of these slides are to make you aware of a few of the different CNN architectures

More information

COMP9444 Neural Networks and Deep Learning 7. Image Processing. COMP9444 c Alan Blair, 2017

COMP9444 Neural Networks and Deep Learning 7. Image Processing. COMP9444 c Alan Blair, 2017 COMP9444 Neural Networks and Deep Learning 7. Image Processing COMP9444 17s2 Image Processing 1 Outline Image Datasets and Tasks Convolution in Detail AlexNet Weight Initialization Batch Normalization

More information

CS 2750: Machine Learning. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh April 13, 2016

CS 2750: Machine Learning. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh April 13, 2016 CS 2750: Machine Learning Neural Networks Prof. Adriana Kovashka University of Pittsburgh April 13, 2016 Plan for today Neural network definition and examples Training neural networks (backprop) Convolutional

More information

arxiv: v1 [cs.cv] 19 Jun 2018

arxiv: v1 [cs.cv] 19 Jun 2018 Multimodal feature fusion for CNN-based gait recognition: an empirical comparison F.M. Castro a,, M.J. Marín-Jiménez b, N. Guil a, N. Pérez de la Blanca c a Department of Computer Architecture, University

More information

EasyChair Preprint. Real-Time Action Recognition based on Enhanced Motion Vector Temporal Segment Network

EasyChair Preprint. Real-Time Action Recognition based on Enhanced Motion Vector Temporal Segment Network EasyChair Preprint 730 Real-Time Action Recognition based on Enhanced Motion Vector Temporal Segment Network Xue Bai, Enqing Chen and Haron Chweya Tinega EasyChair preprints are intended for rapid dissemination

More information

P-CNN: Pose-based CNN Features for Action Recognition. Iman Rezazadeh

P-CNN: Pose-based CNN Features for Action Recognition. Iman Rezazadeh P-CNN: Pose-based CNN Features for Action Recognition Iman Rezazadeh Introduction automatic understanding of dynamic scenes strong variations of people and scenes in motion and appearance Fine-grained

More information

Deep Convolutional Neural Networks. Nov. 20th, 2015 Bruce Draper

Deep Convolutional Neural Networks. Nov. 20th, 2015 Bruce Draper Deep Convolutional Neural Networks Nov. 20th, 2015 Bruce Draper Background: Fully-connected single layer neural networks Feed-forward classification Trained through back-propagation Example Computer Vision

More information

INTRODUCTION TO DEEP LEARNING

INTRODUCTION TO DEEP LEARNING INTRODUCTION TO DEEP LEARNING CONTENTS Introduction to deep learning Contents 1. Examples 2. Machine learning 3. Neural networks 4. Deep learning 5. Convolutional neural networks 6. Conclusion 7. Additional

More information

Body Joint guided 3D Deep Convolutional Descriptors for Action Recognition

Body Joint guided 3D Deep Convolutional Descriptors for Action Recognition 1 Body Joint guided 3D Deep Convolutional Descriptors for Action Recognition arxiv:1704.07160v2 [cs.cv] 25 Apr 2017 Congqi Cao, Yifan Zhang, Member, IEEE, Chunjie Zhang, Member, IEEE, and Hanqing Lu, Senior

More information

Activity Recognition in Temporally Untrimmed Videos

Activity Recognition in Temporally Untrimmed Videos Activity Recognition in Temporally Untrimmed Videos Bryan Anenberg Stanford University anenberg@stanford.edu Norman Yu Stanford University normanyu@stanford.edu Abstract We investigate strategies to apply

More information

NVIDIA FOR DEEP LEARNING. Bill Veenhuis

NVIDIA FOR DEEP LEARNING. Bill Veenhuis NVIDIA FOR DEEP LEARNING Bill Veenhuis bveenhuis@nvidia.com Nvidia is the world s leading ai platform ONE ARCHITECTURE CUDA 2 GPU: Perfect Companion for Accelerating Apps & A.I. CPU GPU 3 Intro to AI AGENDA

More information

Deep Learning in Visual Recognition. Thanks Da Zhang for the slides

Deep Learning in Visual Recognition. Thanks Da Zhang for the slides Deep Learning in Visual Recognition Thanks Da Zhang for the slides Deep Learning is Everywhere 2 Roadmap Introduction Convolutional Neural Network Application Image Classification Object Detection Object

More information

Learning Spatio-Temporal Features with 3D Residual Networks for Action Recognition

Learning Spatio-Temporal Features with 3D Residual Networks for Action Recognition Learning Spatio-Temporal Features with 3D Residual Networks for Action Recognition Kensho Hara, Hirokatsu Kataoka, Yutaka Satoh National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba,

More information

Using Machine Learning for Classification of Cancer Cells

Using Machine Learning for Classification of Cancer Cells Using Machine Learning for Classification of Cancer Cells Camille Biscarrat University of California, Berkeley I Introduction Cell screening is a commonly used technique in the development of new drugs.

More information

Computer Vision Lecture 16

Computer Vision Lecture 16 Computer Vision Lecture 16 Deep Learning for Object Categorization 14.01.2016 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Seminar registration period

More information

Structured Prediction using Convolutional Neural Networks

Structured Prediction using Convolutional Neural Networks Overview Structured Prediction using Convolutional Neural Networks Bohyung Han bhhan@postech.ac.kr Computer Vision Lab. Convolutional Neural Networks (CNNs) Structured predictions for low level computer

More information

THE goal of action detection is to detect every occurrence

THE goal of action detection is to detect every occurrence JOURNAL OF L A T E X CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1 An End-to-end 3D Convolutional Neural Network for Action Detection and Segmentation in Videos Rui Hou, Student Member, IEEE, Chen Chen, Member,

More information

A Deep Learning Approach to Vehicle Speed Estimation

A Deep Learning Approach to Vehicle Speed Estimation A Deep Learning Approach to Vehicle Speed Estimation Benjamin Penchas bpenchas@stanford.edu Tobin Bell tbell@stanford.edu Marco Monteiro marcorm@stanford.edu ABSTRACT Given car dashboard video footage,

More information

Multi-View 3D Object Detection Network for Autonomous Driving

Multi-View 3D Object Detection Network for Autonomous Driving Multi-View 3D Object Detection Network for Autonomous Driving Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, Tian Xia CVPR 2017 (Spotlight) Presented By: Jason Ku Overview Motivation Dataset Network Architecture

More information

Evaluation of Triple-Stream Convolutional Networks for Action Recognition

Evaluation of Triple-Stream Convolutional Networks for Action Recognition Evaluation of Triple-Stream Convolutional Networks for Action Recognition Dichao Liu, Yu Wang and Jien Kato Graduate School of Informatics Nagoya University Nagoya, Japan Email: {liu, ywang, jien} (at)

More information

Face Recognition A Deep Learning Approach

Face Recognition A Deep Learning Approach Face Recognition A Deep Learning Approach Lihi Shiloh Tal Perl Deep Learning Seminar 2 Outline What about Cat recognition? Classical face recognition Modern face recognition DeepFace FaceNet Comparison

More information

Multilayer and Multimodal Fusion of Deep Neural Networks for Video Classification

Multilayer and Multimodal Fusion of Deep Neural Networks for Video Classification Multilayer and Multimodal Fusion of Deep Neural Networks for Video Classification Xiaodong Yang, Pavlo Molchanov, Jan Kautz INTELLIGENT VIDEO ANALYTICS Surveillance event detection Human-computer interaction

More information

Deep Learning and Its Applications

Deep Learning and Its Applications Convolutional Neural Network and Its Application in Image Recognition Oct 28, 2016 Outline 1 A Motivating Example 2 The Convolutional Neural Network (CNN) Model 3 Training the CNN Model 4 Issues and Recent

More information

Video Gesture Recognition with RGB-D-S Data Based on 3D Convolutional Networks

Video Gesture Recognition with RGB-D-S Data Based on 3D Convolutional Networks Video Gesture Recognition with RGB-D-S Data Based on 3D Convolutional Networks August 16, 2016 1 Team details Team name FLiXT Team leader name Yunan Li Team leader address, phone number and email address:

More information

Deep Learning with Tensorflow AlexNet

Deep Learning with Tensorflow   AlexNet Machine Learning and Computer Vision Group Deep Learning with Tensorflow http://cvml.ist.ac.at/courses/dlwt_w17/ AlexNet Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton, "Imagenet classification

More information

Deep Learning for Computer Vision with MATLAB By Jon Cherrie

Deep Learning for Computer Vision with MATLAB By Jon Cherrie Deep Learning for Computer Vision with MATLAB By Jon Cherrie 2015 The MathWorks, Inc. 1 Deep learning is getting a lot of attention "Dahl and his colleagues won $22,000 with a deeplearning system. 'We

More information

Arbitrary Style Transfer in Real-Time with Adaptive Instance Normalization. Presented by: Karen Lucknavalai and Alexandr Kuznetsov

Arbitrary Style Transfer in Real-Time with Adaptive Instance Normalization. Presented by: Karen Lucknavalai and Alexandr Kuznetsov Arbitrary Style Transfer in Real-Time with Adaptive Instance Normalization Presented by: Karen Lucknavalai and Alexandr Kuznetsov Example Style Content Result Motivation Transforming content of an image

More information

SSD: Single Shot MultiBox Detector. Author: Wei Liu et al. Presenter: Siyu Jiang

SSD: Single Shot MultiBox Detector. Author: Wei Liu et al. Presenter: Siyu Jiang SSD: Single Shot MultiBox Detector Author: Wei Liu et al. Presenter: Siyu Jiang Outline 1. Motivations 2. Contributions 3. Methodology 4. Experiments 5. Conclusions 6. Extensions Motivation Motivation

More information

arxiv: v2 [cs.cv] 2 Apr 2018

arxiv: v2 [cs.cv] 2 Apr 2018 Depth of 3D CNNs Depth of 2D CNNs Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet? arxiv:1711.09577v2 [cs.cv] 2 Apr 2018 Kensho Hara, Hirokatsu Kataoka, Yutaka Satoh National Institute

More information

Semantic Segmentation

Semantic Segmentation Semantic Segmentation UCLA:https://goo.gl/images/I0VTi2 OUTLINE Semantic Segmentation Why? Paper to talk about: Fully Convolutional Networks for Semantic Segmentation. J. Long, E. Shelhamer, and T. Darrell,

More information

Disguised Face Identification (DFI) with Facial KeyPoints using Spatial Fusion Convolutional Network. Nathan Sun CIS601

Disguised Face Identification (DFI) with Facial KeyPoints using Spatial Fusion Convolutional Network. Nathan Sun CIS601 Disguised Face Identification (DFI) with Facial KeyPoints using Spatial Fusion Convolutional Network Nathan Sun CIS601 Introduction Face ID is complicated by alterations to an individual s appearance Beard,

More information

Martian lava field, NASA, Wikipedia

Martian lava field, NASA, Wikipedia Martian lava field, NASA, Wikipedia Old Man of the Mountain, Franconia, New Hampshire Pareidolia http://smrt.ccel.ca/203/2/6/pareidolia/ Reddit for more : ) https://www.reddit.com/r/pareidolia/top/ Pareidolia

More information

arxiv: v1 [cs.cv] 22 Nov 2017

arxiv: v1 [cs.cv] 22 Nov 2017 D Nets: New Architecture and Transfer Learning for Video Classification Ali Diba,4,, Mohsen Fayyaz,, Vivek Sharma, Amir Hossein Karami 4, Mohammad Mahdi Arzani 4, Rahman Yousefzadeh 4, Luc Van Gool,4 ESAT-PSI,

More information

MIXED PRECISION TRAINING: THEORY AND PRACTICE Paulius Micikevicius

MIXED PRECISION TRAINING: THEORY AND PRACTICE Paulius Micikevicius MIXED PRECISION TRAINING: THEORY AND PRACTICE Paulius Micikevicius What is Mixed Precision Training? Reduced precision tensor math with FP32 accumulation, FP16 storage Successfully used to train a variety

More information

Fuzzy Set Theory in Computer Vision: Example 3, Part II

Fuzzy Set Theory in Computer Vision: Example 3, Part II Fuzzy Set Theory in Computer Vision: Example 3, Part II Derek T. Anderson and James M. Keller FUZZ-IEEE, July 2017 Overview Resource; CS231n: Convolutional Neural Networks for Visual Recognition https://github.com/tuanavu/stanford-

More information

Convolutional Neural Networks + Neural Style Transfer. Justin Johnson 2/1/2017

Convolutional Neural Networks + Neural Style Transfer. Justin Johnson 2/1/2017 Convolutional Neural Networks + Neural Style Transfer Justin Johnson 2/1/2017 Outline Convolutional Neural Networks Convolution Pooling Feature Visualization Neural Style Transfer Feature Inversion Texture

More information

Storyline Reconstruction for Unordered Images

Storyline Reconstruction for Unordered Images Introduction: Storyline Reconstruction for Unordered Images Final Paper Sameedha Bairagi, Arpit Khandelwal, Venkatesh Raizaday Storyline reconstruction is a relatively new topic and has not been researched

More information

An Exploration of Computer Vision Techniques for Bird Species Classification

An Exploration of Computer Vision Techniques for Bird Species Classification An Exploration of Computer Vision Techniques for Bird Species Classification Anne L. Alter, Karen M. Wang December 15, 2017 Abstract Bird classification, a fine-grained categorization task, is a complex

More information

Supplementary Material: Unsupervised Domain Adaptation for Face Recognition in Unlabeled Videos

Supplementary Material: Unsupervised Domain Adaptation for Face Recognition in Unlabeled Videos Supplementary Material: Unsupervised Domain Adaptation for Face Recognition in Unlabeled Videos Kihyuk Sohn 1 Sifei Liu 2 Guangyu Zhong 3 Xiang Yu 1 Ming-Hsuan Yang 2 Manmohan Chandraker 1,4 1 NEC Labs

More information

Convolution Neural Networks for Chinese Handwriting Recognition

Convolution Neural Networks for Chinese Handwriting Recognition Convolution Neural Networks for Chinese Handwriting Recognition Xu Chen Stanford University 450 Serra Mall, Stanford, CA 94305 xchen91@stanford.edu Abstract Convolutional neural networks have been proven

More information

Weighted Convolutional Neural Network. Ensemble.

Weighted Convolutional Neural Network. Ensemble. Weighted Convolutional Neural Network Ensemble Xavier Frazão and Luís A. Alexandre Dept. of Informatics, Univ. Beira Interior and Instituto de Telecomunicações Covilhã, Portugal xavierfrazao@gmail.com

More information

Convolutional-Recursive Deep Learning for 3D Object Classification

Convolutional-Recursive Deep Learning for 3D Object Classification Convolutional-Recursive Deep Learning for 3D Object Classification Richard Socher, Brody Huval, Bharath Bhat, Christopher D. Manning, Andrew Y. Ng NIPS 2012 Iro Armeni, Manik Dhar Motivation Hand-designed

More information

Object Recognition II

Object Recognition II Object Recognition II Linda Shapiro EE/CSE 576 with CNN slides from Ross Girshick 1 Outline Object detection the task, evaluation, datasets Convolutional Neural Networks (CNNs) overview and history Region-based

More information

Intro to Deep Learning. Slides Credit: Andrej Karapathy, Derek Hoiem, Marc Aurelio, Yann LeCunn

Intro to Deep Learning. Slides Credit: Andrej Karapathy, Derek Hoiem, Marc Aurelio, Yann LeCunn Intro to Deep Learning Slides Credit: Andrej Karapathy, Derek Hoiem, Marc Aurelio, Yann LeCunn Why this class? Deep Features Have been able to harness the big data in the most efficient and effective

More information

arxiv: v2 [cs.cv] 31 May 2018

arxiv: v2 [cs.cv] 31 May 2018 Graph Edge Convolutional Neural Networks for Skeleton Based Action Recognition Xikun Zhang, Chang Xu, Xinmei Tian, and Dacheng Tao June 1, 2018 arxiv:1805.06184v2 [cs.cv] 31 May 2018 Abstract This paper

More information

Inception and Residual Networks. Hantao Zhang. Deep Learning with Python.

Inception and Residual Networks. Hantao Zhang. Deep Learning with Python. Inception and Residual Networks Hantao Zhang Deep Learning with Python https://en.wikipedia.org/wiki/residual_neural_network Deep Neural Network Progress from Large Scale Visual Recognition Challenge (ILSVRC)

More information

arxiv: v1 [cs.cv] 14 Jul 2017

arxiv: v1 [cs.cv] 14 Jul 2017 Temporal Modeling Approaches for Large-scale Youtube-8M Video Understanding Fu Li, Chuang Gan, Xiao Liu, Yunlong Bian, Xiang Long, Yandong Li, Zhichao Li, Jie Zhou, Shilei Wen Baidu IDL & Tsinghua University

More information

CENG 783. Special topics in. Deep Learning. AlchemyAPI. Week 11. Sinan Kalkan

CENG 783. Special topics in. Deep Learning. AlchemyAPI. Week 11. Sinan Kalkan CENG 783 Special topics in Deep Learning AlchemyAPI Week 11 Sinan Kalkan TRAINING A CNN Fig: http://www.robots.ox.ac.uk/~vgg/practicals/cnn/ Feed-forward pass Note that this is written in terms of the

More information

Multi-Glance Attention Models For Image Classification

Multi-Glance Attention Models For Image Classification Multi-Glance Attention Models For Image Classification Chinmay Duvedi Stanford University Stanford, CA cduvedi@stanford.edu Pararth Shah Stanford University Stanford, CA pararth@stanford.edu Abstract We

More information

Object Detection Based on Deep Learning

Object Detection Based on Deep Learning Object Detection Based on Deep Learning Yurii Pashchenko AI Ukraine 2016, Kharkiv, 2016 Image classification (mostly what you ve seen) http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-detection.pdf

More information

Convolu'onal Neural Networks

Convolu'onal Neural Networks Convolu'onal Neural Networks Dr. Kira Radinsky CTO SalesPredict Visi8ng Professor/Scien8st Technion Slides were adapted from Fei-Fei Li & Andrej Karpathy & Jus8n Johnson A bit of history: Hubel & Wiesel,

More information

A Torch Library for Action Recognition and Detection Using CNNs and LSTMs

A Torch Library for Action Recognition and Detection Using CNNs and LSTMs A Torch Library for Action Recognition and Detection Using CNNs and LSTMs Gary Thung and Helen Jiang Stanford University {gthung, helennn}@stanford.edu Abstract It is very common now to see deep neural

More information

Convolutional Neural Networks: Applications and a short timeline. 7th Deep Learning Meetup Kornel Kis Vienna,

Convolutional Neural Networks: Applications and a short timeline. 7th Deep Learning Meetup Kornel Kis Vienna, Convolutional Neural Networks: Applications and a short timeline 7th Deep Learning Meetup Kornel Kis Vienna, 1.12.2016. Introduction Currently a master student Master thesis at BME SmartLab Started deep

More information

VGR-Net: A View Invariant Gait Recognition Network

VGR-Net: A View Invariant Gait Recognition Network VGR-Net: A View Invariant Gait Recognition Network Human gait has many advantages over the conventional biometric traits (like fingerprint, ear, iris etc.) such as its non-invasive nature and comprehensible

More information

Temporal Activity Detection in Untrimmed Videos with Recurrent Neural Networks

Temporal Activity Detection in Untrimmed Videos with Recurrent Neural Networks Temporal Activity Detection in Untrimmed Videos with Recurrent Neural Networks Alberto Montes al.montes.gomez@gmail.com Santiago Pascual TALP Research Center santiago.pascual@tsc.upc.edu Amaia Salvador

More information

Spatial Localization and Detection. Lecture 8-1

Spatial Localization and Detection. Lecture 8-1 Lecture 8: Spatial Localization and Detection Lecture 8-1 Administrative - Project Proposals were due on Saturday Homework 2 due Friday 2/5 Homework 1 grades out this week Midterm will be in-class on Wednesday

More information

LSTM and its variants for visual recognition. Xiaodan Liang Sun Yat-sen University

LSTM and its variants for visual recognition. Xiaodan Liang Sun Yat-sen University LSTM and its variants for visual recognition Xiaodan Liang xdliang328@gmail.com Sun Yat-sen University Outline Context Modelling with CNN LSTM and its Variants LSTM Architecture Variants Application in

More information

Class 9 Action Recognition

Class 9 Action Recognition Class 9 Action Recognition Liangliang Cao, April 4, 2013 EECS 6890 Topics in Information Processing Spring 2013, Columbia University http://rogerioferis.com/visualrecognitionandsearch Visual Recognition

More information

Convolutional Neural Networks

Convolutional Neural Networks NPFL114, Lecture 4 Convolutional Neural Networks Milan Straka March 25, 2019 Charles University in Prague Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics unless otherwise

More information

AdaDepth: Unsupervised Content Congruent Adaptation for Depth Estimation

AdaDepth: Unsupervised Content Congruent Adaptation for Depth Estimation AdaDepth: Unsupervised Content Congruent Adaptation for Depth Estimation Introduction Supplementary material In the supplementary material, we present additional qualitative results of the proposed AdaDepth

More information

Mask R-CNN. presented by Jiageng Zhang, Jingyao Zhan, Yunhan Ma

Mask R-CNN. presented by Jiageng Zhang, Jingyao Zhan, Yunhan Ma Mask R-CNN presented by Jiageng Zhang, Jingyao Zhan, Yunhan Ma Mask R-CNN Background Related Work Architecture Experiment Mask R-CNN Background Related Work Architecture Experiment Background From left

More information

Advanced Video Analysis & Imaging

Advanced Video Analysis & Imaging Advanced Video Analysis & Imaging (5LSH0), Module 09B Machine Learning with Convolutional Neural Networks (CNNs) - Workout Farhad G. Zanjani, Clint Sebastian, Egor Bondarev, Peter H.N. de With ( p.h.n.de.with@tue.nl

More information

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Si Chen The George Washington University sichen@gwmail.gwu.edu Meera Hahn Emory University mhahn7@emory.edu Mentor: Afshin

More information

Image and Video Understanding

Image and Video Understanding Image and Video Understanding 2VO 70.095 WS Christoph Feichtenhofer, Axel Pinz Slide credits: Many thanks to all the great computer vision researchers on which this presentation relies on. Most material

More information

Keras: Handwritten Digit Recognition using MNIST Dataset

Keras: Handwritten Digit Recognition using MNIST Dataset Keras: Handwritten Digit Recognition using MNIST Dataset IIT PATNA January 31, 2018 1 / 30 OUTLINE 1 Keras: Introduction 2 Installing Keras 3 Keras: Building, Testing, Improving A Simple Network 2 / 30

More information

Fully Convolutional Networks for Semantic Segmentation

Fully Convolutional Networks for Semantic Segmentation Fully Convolutional Networks for Semantic Segmentation Jonathan Long* Evan Shelhamer* Trevor Darrell UC Berkeley Chaim Ginzburg for Deep Learning seminar 1 Semantic Segmentation Define a pixel-wise labeling

More information

ActiveStereoNet: End-to-End Self-Supervised Learning for Active Stereo Systems (Supplementary Materials)

ActiveStereoNet: End-to-End Self-Supervised Learning for Active Stereo Systems (Supplementary Materials) ActiveStereoNet: End-to-End Self-Supervised Learning for Active Stereo Systems (Supplementary Materials) Yinda Zhang 1,2, Sameh Khamis 1, Christoph Rhemann 1, Julien Valentin 1, Adarsh Kowdle 1, Vladimir

More information

Perceptron: This is convolution!

Perceptron: This is convolution! Perceptron: This is convolution! v v v Shared weights v Filter = local perceptron. Also called kernel. By pooling responses at different locations, we gain robustness to the exact spatial location of image

More information

Computer Vision Lecture 16

Computer Vision Lecture 16 Announcements Computer Vision Lecture 16 Deep Learning Applications 11.01.2017 Seminar registration period starts on Friday We will offer a lab course in the summer semester Deep Robot Learning Topic:

More information

Computer Vision Lecture 16

Computer Vision Lecture 16 Computer Vision Lecture 16 Deep Learning Applications 11.01.2017 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Seminar registration period starts

More information

CS 1674: Intro to Computer Vision. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh November 16, 2016

CS 1674: Intro to Computer Vision. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh November 16, 2016 CS 1674: Intro to Computer Vision Neural Networks Prof. Adriana Kovashka University of Pittsburgh November 16, 2016 Announcements Please watch the videos I sent you, if you haven t yet (that s your reading)

More information

CS 1674: Intro to Computer Vision. Object Recognition. Prof. Adriana Kovashka University of Pittsburgh April 3, 5, 2018

CS 1674: Intro to Computer Vision. Object Recognition. Prof. Adriana Kovashka University of Pittsburgh April 3, 5, 2018 CS 1674: Intro to Computer Vision Object Recognition Prof. Adriana Kovashka University of Pittsburgh April 3, 5, 2018 Different Flavors of Object Recognition Semantic Segmentation Classification + Localization

More information

CSE 559A: Computer Vision

CSE 559A: Computer Vision CSE 559A: Computer Vision Fall 2018: T-R: 11:30-1pm @ Lopata 101 Instructor: Ayan Chakrabarti (ayan@wustl.edu). Course Staff: Zhihao Xia, Charlie Wu, Han Liu http://www.cse.wustl.edu/~ayan/courses/cse559a/

More information

Recognition of Animal Skin Texture Attributes in the Wild. Amey Dharwadker (aap2174) Kai Zhang (kz2213)

Recognition of Animal Skin Texture Attributes in the Wild. Amey Dharwadker (aap2174) Kai Zhang (kz2213) Recognition of Animal Skin Texture Attributes in the Wild Amey Dharwadker (aap2174) Kai Zhang (kz2213) Motivation Patterns and textures are have an important role in object description and understanding

More information

Inception Network Overview. David White CS793

Inception Network Overview. David White CS793 Inception Network Overview David White CS793 So, Leonardo DiCaprio dreams about dreaming... https://m.media-amazon.com/images/m/mv5bmjaxmzy3njcxnf5bml5banbnxkftztcwnti5otm0mw@@._v1_sy1000_cr0,0,675,1 000_AL_.jpg

More information

RGBD Occlusion Detection via Deep Convolutional Neural Networks

RGBD Occlusion Detection via Deep Convolutional Neural Networks 1 RGBD Occlusion Detection via Deep Convolutional Neural Networks Soumik Sarkar 1,2, Vivek Venugopalan 1, Kishore Reddy 1, Michael Giering 1, Julian Ryde 3, Navdeep Jaitly 4,5 1 United Technologies Research

More information

CAP 6412 Advanced Computer Vision

CAP 6412 Advanced Computer Vision CAP 6412 Advanced Computer Vision http://www.cs.ucf.edu/~bgong/cap6412.html Boqing Gong April 21st, 2016 Today Administrivia Free parameters in an approach, model, or algorithm? Egocentric videos by Aisha

More information

Camera-based Vehicle Velocity Estimation using Spatiotemporal Depth and Motion Features

Camera-based Vehicle Velocity Estimation using Spatiotemporal Depth and Motion Features Camera-based Vehicle Velocity Estimation using Spatiotemporal Depth and Motion Features Moritz Kampelmuehler* kampelmuehler@student.tugraz.at Michael Mueller* michael.g.mueller@student.tugraz.at Christoph

More information

Hello Edge: Keyword Spotting on Microcontrollers

Hello Edge: Keyword Spotting on Microcontrollers Hello Edge: Keyword Spotting on Microcontrollers Yundong Zhang, Naveen Suda, Liangzhen Lai and Vikas Chandra ARM Research, Stanford University arxiv.org, 2017 Presented by Mohammad Mofrad University of

More information

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Shaoqing Ren Kaiming He Ross Girshick Jian Sun Present by: Yixin Yang Mingdong Wang 1 Object Detection 2 1 Applications Basic

More information

Deep Face Recognition. Nathan Sun

Deep Face Recognition. Nathan Sun Deep Face Recognition Nathan Sun Why Facial Recognition? Picture ID or video tracking Higher Security for Facial Recognition Software Immensely useful to police in tracking suspects Your face will be an

More information