A Simple, Greedy Approximation Algorithm for MAX SAT

Size: px
Start display at page:

Download "A Simple, Greedy Approximation Algorithm for MAX SAT"

Transcription

1 A Simple, Greedy Approximation Algorithm for MAX SAT David P. Williamson Joint work with Matthias Poloczek (Frankfurt, Cornell) and Anke van Zuylen (William & Mary)

2 Greedy algorithms Greedy Greed, for algorithms lack of a work. better word, Alan is Hoffman, good. Greed IBM is right. Greed works. Gordon Gekko, Wall Street

3 Another reason When I interviewed at Watson, half of my talk was about maximum satisfiability, the other half about the max cut SDP result. I thought, Oh no, I have to talk about Hardness of approximation in front of Madhu Sudan, Randomized rounding in front of Prabhakar Raghavan, And eigenvalue bounds in front of Alan Hoffman. Today I revisit the first part of that talk.

4 Maximum Satisfiability Input: n Boolean variables x 1,, x n m clauses C 1,, C m with weights w j 0 each clause is a disjunction of literals, e.g. C 1 = x 1 x 2 x 3 Goal: truth assignment to the variables that maximizes the weight of the satisfied clauses

5 Approximation Algorithms An α-approximation algorithm runs in polynomial time and returns a solution of at least α times the optimal. For a randomized algorithm, we ask that the expected value is at least α times the optimal.

6 A ½-approximation algorithm Set each x i to true with probability ½. Then if l j is the number of literals in clause j

7 What about a deterministic algorithm? Use the method of conditional expectations (Erdős and Selfridge 73, Spencer 87) If E W x 1 true E W x 1 false then set x 1 true, otherwise false. Similarly, if X i 1 is event of how first i 1 variables are set, then if E W X i 1, x i true E W X i 1, x i false, set x i true. Show inductively that E[W X i ] E W 1 2 OPT.

8 An LP relaxation

9 Randomized rounding Pick any function fsuch that 1 4 x f x f(y i ), where y is an optimal LP solution. 4 x 1. Set x i true with probability

10 Analysis

11 Integrality gap The result is tight since LP solution z 1 = z 2 = z 3 = z 4 = 1 and y 1 = y 2 = 1 feasible for instance above, but OPT = 3. 2

12 Current status NP-hard to approximate better than (Håstad 01) Combinatorial approximation algorithms Johnson s algorithm (1974): Simple ½-approximation algorithm (Greedy version of the randomized algorithm) Improved analysis of Johnson s algorithm: 2 / 3 -approx. guarantee [Chen-Friesen-Zheng 99, Engebretsen 04] Randomizing variable order improves guarantee slightly [Costello-Shapira-Tetali 11] Algorithms using Linear or Semidefinite Programming Yannakakis 94, Goemans-W 94: ¾-approximation algorithms Best guarantee [Avidor-Berkovitch-Zwick 05] Question [W 98]: Is it possible to obtain a 3/4-approximation algorithm without solving a linear program?

13 (Selected) recent results Poloczek-Schnitger 11: randomized Johnson combinatorial ¾- approximation algorithm Van Zuylen 11: Simplification of randomized Johnson probabilities and analysis Derandomization using Linear Programming Buchbinder, Feldman, Naor, and Schwartz 12: Another ¾-approximation algorithm for MAX SAT as a special case of submodular function maximization We show MAX SAT alg is equivalent to van Zuylen 11.

14 (Selected) recent results Poloczek-Schnitger 11 Van Zuylen 11 Buchbinder, Feldman, Naor and Schwartz 12 Common properties: iteratively set the variables in an online fashion, the probability of setting x i to true depends on clauses containing x i or x i that are still undecided.

15 Today Give textbook version of Buchbinder et al. s algorithm with an even simpler analysis

16 Buchbinder et al. s approach Keep two bounds on the solution Lower bound LB = weight of clauses already satisfied Upper bound UB = weight of clauses not yet unsatisfied Greedy can focus on two things: maximize LB, maximize UB, but either choice has bad examples Key idea: make choices to increase B = ½ (LB+UB)

17 LB 0 (= 0) B 0 = ½(LB 0 +UB 0 ) UB 0 (= w j )

18 Weight of undecided clauses satisfied by x 1 = true Weight of undecided clauses unsatisfied by x 1 = true LB 0 LB 1 B 0 = ½(LB 0 +UB 0 ) UB 1 UB 0 Set x 1 to true

19 Weight of undecided clauses satisfied by x 1 = true B 1 Weight of undecided clauses unsatisfied by x 1 = true LB 0 LB 1 B 0 UB 1 UB 0 Set x 1 to true

20 Weight of undecided clauses satisfied by x 1 = true B 1 Weight of undecided clauses unsatisfied by x 1 = true LB 0 LB 1 LB 1 B 0 UB 1 UB 1 UB 0 Set x 1 to true or Set x 1 to false

21 Weight of undecided clauses satisfied by x 1 = true B 1 B 1 Weight of undecided clauses unsatisfied by x 1 = true LB 0 LB 1 LB 1 B 0 UB 1 UB 1 UB 0 Set x 1 to true or Set x 1 to false Guaranteed that (B 1 -B 0 )+(B 1 -B 0 ) 0 t 1 f 1

22 Weight of undecided clauses satisfied by x i = true Remark: This is the algorithm proposed independently by BFNS 12 and vz 11 B i B i Weight of undecided clauses unsatisfied by x i = true B i-1 LB i-1 LB i LB i UB i UB i UB i-1 Algorithm: if t i < 0, set x i to false if f < 0, set x i i to true else, set x i to true with probability t i t i +f i (B i -B i-1 )+(B i -B i-1 ) 0 t i f i

23 Example Initalize: LB = 0 UB = 6 Step 1: Clause Weight x 1 2 x 1 x 2 1 x 2 x 3 3 t 1 = 1 2 LB + UB = ( 2) = 1 2 f 1 = 1 2 LB + UB = = 1 Set x 1 to false

24 Example Step 2: Clause Weight x 1 2 x 1 x 2 1 x 2 x 3 3 t 2 = 1 2 LB + UB = = 1 2 f 2 = 1 2 LB + UB = ( 1) = 1 Set x 2 to true with probability 1/3 and to false with probability 2/3

25 Example Clause x 1 2 x 1 x 2 1 x 2 x 3 3 Algorithm s solution: x 1 = false x 2 = true w.p. 1/3 and false w.p. 2/3 x 3 = true Expected weight of satisfied clauses: Weight

26 Different Languages Bill, Baruch, and I would say: Alan would say: Let G be a graph... Let A be a matrix... And we would be talking about the same thing!

27 Relating Algorithm to Optimum Let x 1, x 2,, x n be an optimal truth assignment Let OPT i = weight of clauses satisfied if setting x 1,, x i as the algorithm does, and x i+1 =,, x n = x n x i+1 Key Lemma: E B i B i 1 E[OPT i 1 OPT i ]

28 Let x 1, x 2,, x n an optimal truth assignment OPT Let OPT i = weight of clauses B 1 satisfied if setting OPT 1 x 1,, x n as the algorithm does, and x i+1 =,, x n = x n LB 0 B 0 UB 0 x i+1 Key Lemma: E B i B i 1 E[OPT i 1 OPT i ]

29 Let an optimal truth assignment OPT n = B n = weight of ALG s solution OPT Let = weight of clauses satisfied B 1 if setting OPT as the 1 algorithm does, and LB 0 B 0 UB 0 Key Lemma: B 0 ½ OPT ½ (OPT-B 0 ) Conclusion: expected weight of ALG s solution is E B n B OPT B 0 = 1 2 OPT + B OPT

30 Relating Algorithm to Optimum Weight of undecided clauses satisfied by x i = true B i B i Weight of undecided clauses unsatisfied by x i = true B i-1 LB i-1 LB i LB i UB i UB i UB i-1 Suppose x i = true If algorithm sets x i to true, B i B i 1 = t i OPT i 1 OPT i = 0 If algorithm sets x i to false, B i B i 1 = f i Want to show: OPT i 1 OPT i LB i LB i 1 + UB i UB i 1 = 2 B i B i 1 = 2t i Key Lemma: E B i B i 1 E[OPT i 1 OPT i ]

31 Relating Algorithm to Optimum Want to show: Key Lemma: E B i B i 1 E[OPT i 1 OPT i ] Know: If algorithm sets x i to true, B i B i 1 = t i OPT i 1 OPT i = 0 If algorithm sets x i to false, B i B i 1 = f i OPT i 1 OPT i 2t i Case 1: f i < 0 (algorithm sets x i to true): E B i B i 1 = t i > 0 = E OPT i 1 OPT i Case 2: t i < 0 (algorithm sets x i to false): E B i B i 1 = f i > 0 > 2t i E OPT i 1 OPT i

32 Relating Algorithm to Optimum Want to show: Key Lemma: E B i B i 1 E[OPT i 1 OPT i ] Know: If algorithm sets x i to true, B i B i 1 = t i OPT i 1 OPT i = 0 If algorithm sets x i to false, Equal to B i B i 1 = f (t i i f OPT i ) 2 +2t i 1 i f OPT i i 2t i Case 3: t i 0, f i 0 (algorithm sets x i to true w.p. t i ti +f i ): E B i B i 1 = t i t i t i +f i + f i E OPT i 1 OPT i 0 f i = 1 t i +f i t i t i + f i + 2t i (t t i +f i2 + f i2 ) i f i = 1 (2t t i + f i t i + f i f i ) i

33 Hi David, After seeing your , the very next thing I did this morning was to read a paper I'd earmarked from the end of the day yesterday: Walter Gander, Gene H. Golub, Urs von Matt "A constrained eigenvalue problem" Linear Algebra and its Applications, vol , March April 1989, Pages "Special Issue Dedicated to Alan J. Hoffman On The Occasion Of His 65th Birthday" The table of contents of that special issue: Citations for papers in this issue:.. Johan Ugander

34 Question Is there a simple combinatorial deterministic ¾-approximation algorithm?

35 Deterministic variant?? Greedily maximizing B i is not good enough: Clause Weight x 1 1 x1 x 2 2+ x 2 1 x 2 x x n 1 1 x n 1 x n 2+ Optimal assignment sets all variables to true OPT = (n-1)(3+ ) Greedily increasing B i sets variables x 1,, x n 1 to false GREEDY= (n-1)(2+ )

36 A negative result Poloczek 11: No deterministic priority algorithm can be a ¾ -approximation algorithm, using scheme introduced by Borodin, Nielsen, and Rackoff 03. Algorithm makes one pass over the variables and sets them. Only looks at weights of clauses in which current variable appears positively and negatively (not at the other variables in such clauses). Restricted in information used to choose next variable to set.

37 But It is possible with a two-pass algorithm (Joint work with Ola Svensson). First pass: Set variables x i fractionally (i.e. probability that x i true), so that E W 3 OPT. 4 Second pass: Use method of conditional expectations to get deterministic solution of value at least as much.

38 Buchbinder et al. s approach expected Keep two bounds on the fractional solution Lower bound LB = weight of clauses already satisfied Upper bound UB = weight of clauses not yet unsatisfied expected Greedy can focus on two things: maximize LB, maximize UB, but either choice has bad examples expected Key idea: make choices to increase B = ½ (LB+UB)

39 As before Let t i be (expected) increase in bound B i 1 if we set x i true; f i be (expected) increase in bound if we set x i false. Algorithm: For i 1 to n if t i < 0, set x i to 0 if f < 0, set x i i to 1 else, set x i to t i t i +f i For i 1 to n If E W X i 1, x i true E W X i 1, x i false, set x i true Else set x i false

40 Analysis Proof that after the first pass E W 3 OPT 4 is identical to before. Proof that final solution output has value at least E W 3 4 conditional expectation. OPT is via method of

41 Conclusion We show this two-pass idea works for other problems as well (e.g. deterministic ½- approximation algorithm for MAX DICUT). Can we characterize the problems for which it does work?

42 Thank you for your attention and Happy Birthday Alan!

A Simple ¾-Approximation Algorithm for MAX SAT

A Simple ¾-Approximation Algorithm for MAX SAT A Simple ¾-Approximation Algorithm for MAX SAT David P. Williamson Joint work with Matthias Poloczek (Cornell), Georg Schnitger (Frankfurt), and Anke van Zuylen (William & Mary) Maximum Satisfiability

More information

GREEDY ALGORITHMS FOR THE MAXIMUM SATISFIABILITY PROBLEM: SIMPLE ALGORITHMS AND INAPPROXIMABILITY BOUNDS

GREEDY ALGORITHMS FOR THE MAXIMUM SATISFIABILITY PROBLEM: SIMPLE ALGORITHMS AND INAPPROXIMABILITY BOUNDS SIAM J. COMPUT. Vol. 46, No. 3, pp. 109 1061 c 017 Society for Industrial and Applied Mathematics GREEDY ALGORITHMS FOR THE MAXIMUM SATISFIABILITY PROBLEM: SIMPLE ALGORITHMS AND INAPPROXIMABILITY BOUNDS

More information

6 Randomized rounding of semidefinite programs

6 Randomized rounding of semidefinite programs 6 Randomized rounding of semidefinite programs We now turn to a new tool which gives substantially improved performance guarantees for some problems We now show how nonlinear programming relaxations can

More information

Lecture 1. 2 Motivation: Fast. Reliable. Cheap. Choose two.

Lecture 1. 2 Motivation: Fast. Reliable. Cheap. Choose two. Approximation Algorithms and Hardness of Approximation February 19, 2013 Lecture 1 Lecturer: Ola Svensson Scribes: Alantha Newman 1 Class Information 4 credits Lecturers: Ola Svensson (ola.svensson@epfl.ch)

More information

CSC Linear Programming and Combinatorial Optimization Lecture 12: Semidefinite Programming(SDP) Relaxation

CSC Linear Programming and Combinatorial Optimization Lecture 12: Semidefinite Programming(SDP) Relaxation CSC411 - Linear Programming and Combinatorial Optimization Lecture 1: Semidefinite Programming(SDP) Relaxation Notes taken by Xinwei Gui May 1, 007 Summary: This lecture introduces the semidefinite programming(sdp)

More information

A List Heuristic for Vertex Cover

A List Heuristic for Vertex Cover A List Heuristic for Vertex Cover Happy Birthday Vasek! David Avis McGill University Tomokazu Imamura Kyoto University Operations Research Letters (to appear) Online: http://cgm.cs.mcgill.ca/ avis revised:

More information

Approximation Algorithms

Approximation Algorithms 15-251: Great Ideas in Theoretical Computer Science Spring 2019, Lecture 14 March 5, 2019 Approximation Algorithms 1 2 SAT 3SAT Clique Hamiltonian- Cycle given a Boolean formula F, is it satisfiable? same,

More information

CSC2420 Fall 2012: Algorithm Design, Analysis and Theory An introductory (i.e. foundational) level graduate course.

CSC2420 Fall 2012: Algorithm Design, Analysis and Theory An introductory (i.e. foundational) level graduate course. CSC2420 Fall 2012: Algorithm Design, Analysis and Theory An introductory (i.e. foundational) level graduate course. Allan Borodin November 8, 2012; Lecture 9 1 / 24 Brief Announcements 1 Game theory reading

More information

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18 601.433/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18 22.1 Introduction We spent the last two lectures proving that for certain problems, we can

More information

15-451/651: Design & Analysis of Algorithms November 4, 2015 Lecture #18 last changed: November 22, 2015

15-451/651: Design & Analysis of Algorithms November 4, 2015 Lecture #18 last changed: November 22, 2015 15-451/651: Design & Analysis of Algorithms November 4, 2015 Lecture #18 last changed: November 22, 2015 While we have good algorithms for many optimization problems, the previous lecture showed that many

More information

Randomized rounding of semidefinite programs and primal-dual method for integer linear programming. Reza Moosavi Dr. Saeedeh Parsaeefard Dec.

Randomized rounding of semidefinite programs and primal-dual method for integer linear programming. Reza Moosavi Dr. Saeedeh Parsaeefard Dec. Randomized rounding of semidefinite programs and primal-dual method for integer linear programming Dr. Saeedeh Parsaeefard 1 2 3 4 Semidefinite Programming () 1 Integer Programming integer programming

More information

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/18/14

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/18/14 600.363 Introduction to Algorithms / 600.463 Algorithms I Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/18/14 23.1 Introduction We spent last week proving that for certain problems,

More information

Approximation Algorithms

Approximation Algorithms 18.433 Combinatorial Optimization Approximation Algorithms November 20,25 Lecturer: Santosh Vempala 1 Approximation Algorithms Any known algorithm that finds the solution to an NP-hard optimization problem

More information

Iterative Methods in Combinatorial Optimization. R. Ravi Carnegie Bosch Professor Tepper School of Business Carnegie Mellon University

Iterative Methods in Combinatorial Optimization. R. Ravi Carnegie Bosch Professor Tepper School of Business Carnegie Mellon University Iterative Methods in Combinatorial Optimization R. Ravi Carnegie Bosch Professor Tepper School of Business Carnegie Mellon University ravi@cmu.edu Combinatorial Optimization Easy Problems : polynomial

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Prof. Tapio Elomaa tapio.elomaa@tut.fi Course Basics A new 4 credit unit course Part of Theoretical Computer Science courses at the Department of Mathematics There will be 4 hours

More information

/ Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang

/ Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang 600.469 / 600.669 Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang 9.1 Linear Programming Suppose we are trying to approximate a minimization

More information

Vertex Cover Approximations

Vertex Cover Approximations CS124 Lecture 20 Heuristics can be useful in practice, but sometimes we would like to have guarantees. Approximation algorithms give guarantees. It is worth keeping in mind that sometimes approximation

More information

arxiv:cs/ v1 [cs.cc] 28 Apr 2003

arxiv:cs/ v1 [cs.cc] 28 Apr 2003 ICM 2002 Vol. III 1 3 arxiv:cs/0304039v1 [cs.cc] 28 Apr 2003 Approximation Thresholds for Combinatorial Optimization Problems Uriel Feige Abstract An NP-hard combinatorial optimization problem Π is said

More information

Coverage Approximation Algorithms

Coverage Approximation Algorithms DATA MINING LECTURE 12 Coverage Approximation Algorithms Example Promotion campaign on a social network We have a social network as a graph. People are more likely to buy a product if they have a friend

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Prof. Tapio Elomaa tapio.elomaa@tut.fi Course Basics A 4 credit unit course Part of Theoretical Computer Science courses at the Laboratory of Mathematics There will be 4 hours

More information

Lecture 9. Semidefinite programming is linear programming where variables are entries in a positive semidefinite matrix.

Lecture 9. Semidefinite programming is linear programming where variables are entries in a positive semidefinite matrix. CSE525: Randomized Algorithms and Probabilistic Analysis Lecture 9 Lecturer: Anna Karlin Scribe: Sonya Alexandrova and Keith Jia 1 Introduction to semidefinite programming Semidefinite programming is linear

More information

Rounding procedures in Semidefinite Programming

Rounding procedures in Semidefinite Programming Rounding procedures in Semidefinite Programming Philippe Meurdesoif Université Bordeaux 1 & INRIA-Bordeaux CIMINLP, March 19, 2009. 1 Presentation 2 Roundings for MaxCut problems 3 Randomized roundings

More information

Copyright 2000, Kevin Wayne 1

Copyright 2000, Kevin Wayne 1 Guessing Game: NP-Complete? 1. LONGEST-PATH: Given a graph G = (V, E), does there exists a simple path of length at least k edges? YES. SHORTEST-PATH: Given a graph G = (V, E), does there exists a simple

More information

2SAT Andreas Klappenecker

2SAT Andreas Klappenecker 2SAT Andreas Klappenecker The Problem Can we make the following boolean formula true? ( x y) ( y z) (z y)! Terminology A boolean variable is a variable that can be assigned the values true (T) or false

More information

Lecture 7: Asymmetric K-Center

Lecture 7: Asymmetric K-Center Advanced Approximation Algorithms (CMU 18-854B, Spring 008) Lecture 7: Asymmetric K-Center February 5, 007 Lecturer: Anupam Gupta Scribe: Jeremiah Blocki In this lecture, we will consider the K-center

More information

Primal-Dual Methods for Approximation Algorithms

Primal-Dual Methods for Approximation Algorithms Primal-Dual Methods for Approximation Algorithms Nadia Hardy, April 2004 The following is based on: Approximation Algorithms for NP-Hard Problems. D.Hochbaum, ed. Chapter 4: The primal-dual method for

More information

Complexity Classes and Polynomial-time Reductions

Complexity Classes and Polynomial-time Reductions COMPSCI 330: Design and Analysis of Algorithms April 19, 2016 Complexity Classes and Polynomial-time Reductions Lecturer: Debmalya Panigrahi Scribe: Tianqi Song 1 Overview In this lecture, we introduce

More information

Distributed Submodular Maximization in Massive Datasets. Alina Ene. Joint work with Rafael Barbosa, Huy L. Nguyen, Justin Ward

Distributed Submodular Maximization in Massive Datasets. Alina Ene. Joint work with Rafael Barbosa, Huy L. Nguyen, Justin Ward Distributed Submodular Maximization in Massive Datasets Alina Ene Joint work with Rafael Barbosa, Huy L. Nguyen, Justin Ward Combinatorial Optimization Given A set of objects V A function f on subsets

More information

Massively Parallel Seesaw Search for MAX-SAT

Massively Parallel Seesaw Search for MAX-SAT Massively Parallel Seesaw Search for MAX-SAT Harshad Paradkar Rochester Institute of Technology hp7212@rit.edu Prof. Alan Kaminsky (Advisor) Rochester Institute of Technology ark@cs.rit.edu Abstract The

More information

Chapter 10 Part 1: Reduction

Chapter 10 Part 1: Reduction //06 Polynomial-Time Reduction Suppose we could solve Y in polynomial-time. What else could we solve in polynomial time? don't confuse with reduces from Chapter 0 Part : Reduction Reduction. Problem X

More information

Algorithms, Spring 2014, CSE, OSU Greedy algorithms II. Instructor: Anastasios Sidiropoulos

Algorithms, Spring 2014, CSE, OSU Greedy algorithms II. Instructor: Anastasios Sidiropoulos 6331 - Algorithms, Spring 2014, CSE, OSU Greedy algorithms II Instructor: Anastasios Sidiropoulos Greedy algorithms Fast Easy to implement At every step, the algorithm makes a choice that seems locally

More information

8 NP-complete problem Hard problems: demo

8 NP-complete problem Hard problems: demo Ch8 NPC Millennium Prize Problems http://en.wikipedia.org/wiki/millennium_prize_problems 8 NP-complete problem Hard problems: demo NP-hard (Non-deterministic Polynomial-time hard), in computational complexity

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 29 Approximation Algorithms Load Balancing Weighted Vertex Cover Reminder: Fill out SRTEs online Don t forget to click submit Sofya Raskhodnikova 12/7/2016 Approximation

More information

CSC2420 Fall 2012: Algorithm Design, Analysis and Theory

CSC2420 Fall 2012: Algorithm Design, Analysis and Theory CSC2420 Fall 2012: Algorithm Design, Analysis and Theory Allan Borodin September 20, 2012 1 / 1 Lecture 2 We continue where we left off last lecture, namely we are considering a PTAS for the the knapsack

More information

Lecture 10 October 7, 2014

Lecture 10 October 7, 2014 6.890: Algorithmic Lower Bounds: Fun With Hardness Proofs Fall 2014 Lecture 10 October 7, 2014 Prof. Erik Demaine Scribes: Fermi Ma, Asa Oines, Mikhail Rudoy, Erik Waingarten Overview This lecture begins

More information

Local Search Approximation Algorithms for the Complement of the Min-k-Cut Problems

Local Search Approximation Algorithms for the Complement of the Min-k-Cut Problems Local Search Approximation Algorithms for the Complement of the Min-k-Cut Problems Wenxing Zhu, Chuanyin Guo Center for Discrete Mathematics and Theoretical Computer Science, Fuzhou University, Fuzhou

More information

An IPS for TQBF Intro to Approximability

An IPS for TQBF Intro to Approximability An IPS for TQBF Intro to Approximability Outline Proof that TQBF (the language of true (valid) quantified Boolean formulas) is in the class IP Introduction to approximation algorithms for NP optimization

More information

Topic: Local Search: Max-Cut, Facility Location Date: 2/13/2007

Topic: Local Search: Max-Cut, Facility Location Date: 2/13/2007 CS880: Approximations Algorithms Scribe: Chi Man Liu Lecturer: Shuchi Chawla Topic: Local Search: Max-Cut, Facility Location Date: 2/3/2007 In previous lectures we saw how dynamic programming could be

More information

Where Can We Draw The Line?

Where Can We Draw The Line? Where Can We Draw The Line? On the Hardness of Satisfiability Problems Complexity 1 Introduction Objectives: To show variants of SAT and check if they are NP-hard Overview: Known results 2SAT Max2SAT Complexity

More information

ON PRIMAL-DUAL SCHEMA FOR THE MINIMUM SATISFIABILITY PROBLEM

ON PRIMAL-DUAL SCHEMA FOR THE MINIMUM SATISFIABILITY PROBLEM ON PRIMAL-DUAL SCHEMA FOR THE MINIMUM SATISFIABILITY PROBLEM UMAIR MUHAMMAD ARIF Bachelor of Engineering (Electronic) NED University of Engineering and Technology, 2011 A Thesis Submitted to the School

More information

CS 598CSC: Approximation Algorithms Lecture date: March 2, 2011 Instructor: Chandra Chekuri

CS 598CSC: Approximation Algorithms Lecture date: March 2, 2011 Instructor: Chandra Chekuri CS 598CSC: Approximation Algorithms Lecture date: March, 011 Instructor: Chandra Chekuri Scribe: CC Local search is a powerful and widely used heuristic method (with various extensions). In this lecture

More information

Optimisation While Streaming

Optimisation While Streaming Optimisation While Streaming Amit Chakrabarti Dartmouth College Joint work with S. Kale, A. Wirth DIMACS Workshop on Big Data Through the Lens of Sublinear Algorithms, Aug 2015 Combinatorial Optimisation

More information

On Finding Dense Subgraphs

On Finding Dense Subgraphs On Finding Dense Subgraphs Barna Saha (Joint work with Samir Khuller) Department of Computer Science University of Maryland, College Park, MD 20742 36th ICALP, 2009 Density for Undirected Graphs Given

More information

Online Stochastic Matching CMSC 858F: Algorithmic Game Theory Fall 2010

Online Stochastic Matching CMSC 858F: Algorithmic Game Theory Fall 2010 Online Stochastic Matching CMSC 858F: Algorithmic Game Theory Fall 2010 Barna Saha, Vahid Liaghat Abstract This summary is mostly based on the work of Saberi et al. [1] on online stochastic matching problem

More information

The Online Connected Facility Location Problem

The Online Connected Facility Location Problem The Online Connected Facility Location Problem Mário César San Felice 1, David P. Willamson 2, and Orlando Lee 1 1 Unicamp, Institute of Computing, Campinas SP 13083-852, Brazil felice@ic.unicamp.br, lee@ic.unicamp.br

More information

Sub-exponential Approximation Schemes: From Dense to Almost-Sparse. Dimitris Fotakis Michael Lampis Vangelis Paschos

Sub-exponential Approximation Schemes: From Dense to Almost-Sparse. Dimitris Fotakis Michael Lampis Vangelis Paschos Sub-exponential Approximation Schemes: From Dense to Almost-Sparse Dimitris Fotakis Michael Lampis Vangelis Paschos NTU Athens Université Paris Dauphine Nov 5, 2015 Overview Things you will hear in this

More information

Sub-exponential Approximation Schemes: From Dense to Almost-Sparse. Dimitris Fotakis Michael Lampis Vangelis Paschos

Sub-exponential Approximation Schemes: From Dense to Almost-Sparse. Dimitris Fotakis Michael Lampis Vangelis Paschos Sub-exponential Approximation Schemes: From Dense to Almost-Sparse Dimitris Fotakis Michael Lampis Vangelis Paschos NTU Athens Université Paris Dauphine Feb 18, STACS 2016 Motivation Sub-Exponential Approximation

More information

Deterministic Algorithms for Rank Aggregation and Other Ranking and Clustering Problems

Deterministic Algorithms for Rank Aggregation and Other Ranking and Clustering Problems Deterministic Algorithms for Rank Aggregation and Other Ranking and Clustering Problems Anke van Zuylen and David P. Williamson School of Operations Research and Information Engineering, Cornell University,

More information

Lecture 14: Linear Programming II

Lecture 14: Linear Programming II A Theorist s Toolkit (CMU 18-859T, Fall 013) Lecture 14: Linear Programming II October 3, 013 Lecturer: Ryan O Donnell Scribe: Stylianos Despotakis 1 Introduction At a big conference in Wisconsin in 1948

More information

Week 5. Convex Optimization

Week 5. Convex Optimization Week 5. Convex Optimization Lecturer: Prof. Santosh Vempala Scribe: Xin Wang, Zihao Li Feb. 9 and, 206 Week 5. Convex Optimization. The convex optimization formulation A general optimization problem is

More information

Approximation Algorithms: The Primal-Dual Method. My T. Thai

Approximation Algorithms: The Primal-Dual Method. My T. Thai Approximation Algorithms: The Primal-Dual Method My T. Thai 1 Overview of the Primal-Dual Method Consider the following primal program, called P: min st n c j x j j=1 n a ij x j b i j=1 x j 0 Then the

More information

Combinatorial Optimization

Combinatorial Optimization Combinatorial Optimization Problem set 7: solutions. Formulate and solve an integer program for the following scenario. A trader of unusual objects is traveling with a caravan that begins in city A, proceeds

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Frédéric Giroire FG Simplex 1/11 Motivation Goal: Find good solutions for difficult problems (NP-hard). Be able to quantify the goodness of the given solution. Presentation of

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Given an NP-hard problem, what should be done? Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one of three desired features. Solve problem to optimality.

More information

The Subtour LP for the Traveling Salesman Problem

The Subtour LP for the Traveling Salesman Problem The Subtour LP for the Traveling Salesman Problem David P. Williamson Cornell University November 22, 2011 Joint work with Jiawei Qian, Frans Schalekamp, and Anke van Zuylen The Traveling Salesman Problem

More information

The Design of Approximation Algorithms

The Design of Approximation Algorithms The Design of Approximation Algorithms David P. Williamson Cornell University David B. Shmoys Cornell University m Щ0 CAMBRIDGE UNIVERSITY PRESS Contents Preface page ix I An Introduction to the Techniques

More information

Approximation Techniques for Utilitarian Mechanism Design

Approximation Techniques for Utilitarian Mechanism Design Approximation Techniques for Utilitarian Mechanism Design Department of Computer Science RWTH Aachen Germany joint work with Patrick Briest and Piotr Krysta 05/16/2006 1 Introduction to Utilitarian Mechanism

More information

CMPSCI611: The Simplex Algorithm Lecture 24

CMPSCI611: The Simplex Algorithm Lecture 24 CMPSCI611: The Simplex Algorithm Lecture 24 Let s first review the general situation for linear programming problems. Our problem in standard form is to choose a vector x R n, such that x 0 and Ax = b,

More information

Judicious bisections

Judicious bisections Judicious bisections Po-Shen Loh Carnegie Mellon University Joint work with Choongbum Lee and Benny Sudakov Max Cut Problem Given a graph, find a bipartition which maximizes the number of crossing edges.

More information

9.1 Cook-Levin Theorem

9.1 Cook-Levin Theorem CS787: Advanced Algorithms Scribe: Shijin Kong and David Malec Lecturer: Shuchi Chawla Topic: NP-Completeness, Approximation Algorithms Date: 10/1/2007 As we ve already seen in the preceding lecture, two

More information

On the Rectangle Escape Problem

On the Rectangle Escape Problem CCCG 2013, Waterloo, Ontario, August 8 10, 2013 On the Rectangle Escape Problem Sepehr Assadi Ehsan Emamjomeh-Zadeh Sadra Yazdanbod Hamid Zarrabi-Zadeh Abstract Motivated by a PCB routing application,

More information

1 Unweighted Set Cover

1 Unweighted Set Cover Comp 60: Advanced Algorithms Tufts University, Spring 018 Prof. Lenore Cowen Scribe: Yuelin Liu Lecture 7: Approximation Algorithms: Set Cover and Max Cut 1 Unweighted Set Cover 1.1 Formulations There

More information

A constant-factor approximation algorithm for the asymmetric travelling salesman problem

A constant-factor approximation algorithm for the asymmetric travelling salesman problem A constant-factor approximation algorithm for the asymmetric travelling salesman problem London School of Economics Joint work with Ola Svensson and Jakub Tarnawski cole Polytechnique F d rale de Lausanne

More information

12 Introduction to LP-Duality

12 Introduction to LP-Duality 12 Introduction to LP-Duality A large fraction of the theory of approximation algorithms, as we know it today, is built around linear programming (LP). In Section 12.1 we will review some key concepts

More information

What Can We Do? CS125 Lecture 20 Fall 2014

What Can We Do? CS125 Lecture 20 Fall 2014 CS125 Lecture 20 Fall 2014 We have defined the class of NP-complete problems, which have the property that if there is a polynomial time algorithm for any one of these problems, there is a polynomial time

More information

Horn Formulae. CS124 Course Notes 8 Spring 2018

Horn Formulae. CS124 Course Notes 8 Spring 2018 CS124 Course Notes 8 Spring 2018 In today s lecture we will be looking a bit more closely at the Greedy approach to designing algorithms. As we will see, sometimes it works, and sometimes even when it

More information

Dual-Based Approximation Algorithms for Cut-Based Network Connectivity Problems

Dual-Based Approximation Algorithms for Cut-Based Network Connectivity Problems Dual-Based Approximation Algorithms for Cut-Based Network Connectivity Problems Benjamin Grimmer bdg79@cornell.edu arxiv:1508.05567v2 [cs.ds] 20 Jul 2017 Abstract We consider a variety of NP-Complete network

More information

Graph Theory and Optimization Approximation Algorithms

Graph Theory and Optimization Approximation Algorithms Graph Theory and Optimization Approximation Algorithms Nicolas Nisse Université Côte d Azur, Inria, CNRS, I3S, France October 2018 Thank you to F. Giroire for some of the slides N. Nisse Graph Theory and

More information

An FPTAS for minimizing the product of two non-negative linear cost functions

An FPTAS for minimizing the product of two non-negative linear cost functions Math. Program., Ser. A DOI 10.1007/s10107-009-0287-4 SHORT COMMUNICATION An FPTAS for minimizing the product of two non-negative linear cost functions Vineet Goyal Latife Genc-Kaya R. Ravi Received: 2

More information

On the Rectangle Escape Problem

On the Rectangle Escape Problem CCCG 2013, Waterloo, Ontario, August 8 10, 2013 On the Rectangle Escape Problem Sepehr Assadi Ehsan Emamjomeh-Zadeh Sadra Yazdanbod Hamid Zarrabi-Zadeh Abstract Motivated by a bus routing application,

More information

18 Spanning Tree Algorithms

18 Spanning Tree Algorithms November 14, 2017 18 Spanning Tree Algorithms William T. Trotter trotter@math.gatech.edu A Networking Problem Problem The vertices represent 8 regional data centers which need to be connected with high-speed

More information

11.1 Facility Location

11.1 Facility Location CS787: Advanced Algorithms Scribe: Amanda Burton, Leah Kluegel Lecturer: Shuchi Chawla Topic: Facility Location ctd., Linear Programming Date: October 8, 2007 Today we conclude the discussion of local

More information

CS-E3200 Discrete Models and Search

CS-E3200 Discrete Models and Search Shahab Tasharrofi Department of Information and Computer Science, Aalto University Lecture 7: Complete and local search methods for SAT Outline Algorithms for solving Boolean satisfiability problems Complete

More information

Approximate Graph Coloring by Semidefinite Programming

Approximate Graph Coloring by Semidefinite Programming Approximate Graph Coloring by Semidefinite Programming DAVID KARGER Massachusetts Institute of Technology, Cambridge, Massachusetts RAJEEV MOTWANI Stanford University, Stanford, California AND MADHU SUDAN

More information

An Efficient Approximation for the Generalized Assignment Problem

An Efficient Approximation for the Generalized Assignment Problem An Efficient Approximation for the Generalized Assignment Problem Reuven Cohen Liran Katzir Danny Raz Department of Computer Science Technion Haifa 32000, Israel Abstract We present a simple family of

More information

1 Introduction. 1. Prove the problem lies in the class NP. 2. Find an NP-complete problem that reduces to it.

1 Introduction. 1. Prove the problem lies in the class NP. 2. Find an NP-complete problem that reduces to it. 1 Introduction There are hundreds of NP-complete problems. For a recent selection see http://www. csc.liv.ac.uk/ ped/teachadmin/comp202/annotated_np.html Also, see the book M. R. Garey and D. S. Johnson.

More information

On the Rectangle Escape Problem

On the Rectangle Escape Problem On the Rectangle Escape Problem A. Ahmadinejad S. Assadi E. Emamjomeh-Zadeh S. Yazdanbod H. Zarrabi-Zadeh Abstract Motivated by the bus escape routing problem in printed circuit boards, we study the following

More information

On Approximating Minimum Vertex Cover for Graphs with Perfect Matching

On Approximating Minimum Vertex Cover for Graphs with Perfect Matching On Approximating Minimum Vertex Cover for Graphs with Perfect Matching Jianer Chen and Iyad A. Kanj Abstract It has been a challenging open problem whether there is a polynomial time approximation algorithm

More information

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg MVE165/MMG630, Integer linear programming algorithms Ann-Brith Strömberg 2009 04 15 Methods for ILP: Overview (Ch. 14.1) Enumeration Implicit enumeration: Branch and bound Relaxations Decomposition methods:

More information

PTAS for Matroid Matching

PTAS for Matroid Matching PTAS for Matroid Matching Jon Lee 1 Maxim Sviridenko 1 Jan Vondrák 2 1 IBM Watson Research Center Yorktown Heights, NY 2 IBM Almaden Research Center San Jose, CA May 6, 2010 Jan Vondrák (IBM Almaden) PTAS

More information

Local search with perturbations for the prize collecting Steiner tree problem in graphs

Local search with perturbations for the prize collecting Steiner tree problem in graphs Local search with perturbations for the prize collecting Steiner tree problem in graphs Celso C. Ribeiro Catholic University of Rio de Janeiro, Brazil (on leave at Algorithms & Optimization Research Dept.,

More information

COT 6936: Topics in Algorithms! Giri Narasimhan. ECS 254A / EC 2443; Phone: x3748

COT 6936: Topics in Algorithms! Giri Narasimhan. ECS 254A / EC 2443; Phone: x3748 COT 6936: Topics in Algorithms! Giri Narasimhan ECS 254A / EC 2443; Phone: x3748 giri@cs.fiu.edu http://www.cs.fiu.edu/~giri/teach/cot6936_s12.html https://moodle.cis.fiu.edu/v2.1/course/view.php?id=174

More information

Principles of AI Planning. Principles of AI Planning. 7.1 How to obtain a heuristic. 7.2 Relaxed planning tasks. 7.1 How to obtain a heuristic

Principles of AI Planning. Principles of AI Planning. 7.1 How to obtain a heuristic. 7.2 Relaxed planning tasks. 7.1 How to obtain a heuristic Principles of AI Planning June 8th, 2010 7. Planning as search: relaxed planning tasks Principles of AI Planning 7. Planning as search: relaxed planning tasks Malte Helmert and Bernhard Nebel 7.1 How to

More information

Greedy algorithms Or Do the right thing

Greedy algorithms Or Do the right thing Greedy algorithms Or Do the right thing March 1, 2005 1 Greedy Algorithm Basic idea: When solving a problem do locally the right thing. Problem: Usually does not work. VertexCover (Optimization Version)

More information

Polynomial-Time Approximation Algorithms

Polynomial-Time Approximation Algorithms 6.854 Advanced Algorithms Lecture 20: 10/27/2006 Lecturer: David Karger Scribes: Matt Doherty, John Nham, Sergiy Sidenko, David Schultz Polynomial-Time Approximation Algorithms NP-hard problems are a vast

More information

val(y, I) α (9.0.2) α (9.0.3)

val(y, I) α (9.0.2) α (9.0.3) CS787: Advanced Algorithms Lecture 9: Approximation Algorithms In this lecture we will discuss some NP-complete optimization problems and give algorithms for solving them that produce a nearly optimal,

More information

A Provably Good Approximation Algorithm for Rectangle Escape Problem with Application to PCB Routing

A Provably Good Approximation Algorithm for Rectangle Escape Problem with Application to PCB Routing A Provably Good Approximation Algorithm for Rectangle Escape Problem with Application to PCB Routing Qiang Ma Hui Kong Martin D. F. Wong Evangeline F. Y. Young Department of Electrical and Computer Engineering,

More information

NP-Completeness of 3SAT, 1-IN-3SAT and MAX 2SAT

NP-Completeness of 3SAT, 1-IN-3SAT and MAX 2SAT NP-Completeness of 3SAT, 1-IN-3SAT and MAX 2SAT 3SAT The 3SAT problem is the following. INSTANCE : Given a boolean expression E in conjunctive normal form (CNF) that is the conjunction of clauses, each

More information

! Greed. O(n log n) interval scheduling. ! Divide-and-conquer. O(n log n) FFT. ! Dynamic programming. O(n 2 ) edit distance.

! Greed. O(n log n) interval scheduling. ! Divide-and-conquer. O(n log n) FFT. ! Dynamic programming. O(n 2 ) edit distance. Algorithm Design Patterns and Anti-Patterns 8. NP and Computational Intractability Algorithm design patterns. Ex.! Greed. O(n log n) interval scheduling.! Divide-and-conquer. O(n log n) FFT.! Dynamic programming.

More information

Fabian Kuhn. Nicla Bernasconi, Dan Hefetz, Angelika Steger

Fabian Kuhn. Nicla Bernasconi, Dan Hefetz, Angelika Steger Algorithms and Lower Bounds for Distributed Coloring Problems Fabian Kuhn Parts are joint work with Parts are joint work with Nicla Bernasconi, Dan Hefetz, Angelika Steger Given: Network = Graph G Distributed

More information

Chapter 8. NP and Computational Intractability. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved.

Chapter 8. NP and Computational Intractability. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. Chapter 8 NP and Computational Intractability Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. 1 Algorithm Design Patterns and Anti-Patterns Algorithm design patterns.

More information

IN general setting, a combinatorial network is

IN general setting, a combinatorial network is JOURNAL OF L A TEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 1 Clustering without replication: approximation and inapproximability Zola Donovan, Vahan Mkrtchyan, and K. Subramani, arxiv:1412.4051v1 [cs.ds]

More information

In this lecture, we ll look at applications of duality to three problems:

In this lecture, we ll look at applications of duality to three problems: Lecture 7 Duality Applications (Part II) In this lecture, we ll look at applications of duality to three problems: 1. Finding maximum spanning trees (MST). We know that Kruskal s algorithm finds this,

More information

Recitation 13. Minimum Spanning Trees Announcements. SegmentLab has been released, and is due Friday, November 17. It s worth 135 points.

Recitation 13. Minimum Spanning Trees Announcements. SegmentLab has been released, and is due Friday, November 17. It s worth 135 points. Recitation 13 Minimum Spanning Trees 13.1 Announcements SegmentLab has been released, and is due Friday, November 17. It s worth 135 points. 73 74 RECITATION 13. MINIMUM SPANNING TREES 13.2 Prim s Algorithm

More information

Hardness of Approximation for the TSP. Michael Lampis LAMSADE Université Paris Dauphine

Hardness of Approximation for the TSP. Michael Lampis LAMSADE Université Paris Dauphine Hardness of Approximation for the TSP Michael Lampis LAMSADE Université Paris Dauphine Sep 2, 2015 Overview Hardness of Approximation What is it? How to do it? (Easy) Examples The PCP Theorem What is it?

More information

Ch9: Exact Inference: Variable Elimination. Shimi Salant, Barak Sternberg

Ch9: Exact Inference: Variable Elimination. Shimi Salant, Barak Sternberg Ch9: Exact Inference: Variable Elimination Shimi Salant Barak Sternberg Part 1 Reminder introduction (1/3) We saw two ways to represent (finite discrete) distributions via graphical data structures: Bayesian

More information

CS 580: Algorithm Design and Analysis. Jeremiah Blocki Purdue University Spring 2018

CS 580: Algorithm Design and Analysis. Jeremiah Blocki Purdue University Spring 2018 CS 580: Algorithm Design and Analysis Jeremiah Blocki Purdue University Spring 2018 Chapter 11 Approximation Algorithms Slides by Kevin Wayne. Copyright @ 2005 Pearson-Addison Wesley. All rights reserved.

More information

ACO Comprehensive Exam October 12 and 13, Computability, Complexity and Algorithms

ACO Comprehensive Exam October 12 and 13, Computability, Complexity and Algorithms 1. Computability, Complexity and Algorithms Given a simple directed graph G = (V, E), a cycle cover is a set of vertex-disjoint directed cycles that cover all vertices of the graph. 1. Show that there

More information

Analysis of an ( )-Approximation Algorithm for the Maximum Edge-Disjoint Paths Problem with Congestion Two

Analysis of an ( )-Approximation Algorithm for the Maximum Edge-Disjoint Paths Problem with Congestion Two Analysis of an ( )-Approximation Algorithm for the Maximum Edge-Disjoint Paths Problem with Congestion Two Nabiha Asghar Department of Combinatorics & Optimization University of Waterloo, Ontario, Canada

More information

! Greed. O(n log n) interval scheduling. ! Divide-and-conquer. O(n log n) FFT. ! Dynamic programming. O(n 2 ) edit distance.

! Greed. O(n log n) interval scheduling. ! Divide-and-conquer. O(n log n) FFT. ! Dynamic programming. O(n 2 ) edit distance. Algorithm Design Patterns and Anti-Patterns Chapter 8 NP and Computational Intractability Algorithm design patterns. Ex.! Greed. O(n log n) interval scheduling.! Divide-and-conquer. O(n log n) FFT.! Dynamic

More information