Theory of Automatic Robot Assembly and Programming

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Theory of Automatic Robot Assembly and Programming"

Transcription

1 Theory of Automatic Robot Assembly and Programming

2 Theory of Automatic Robot Assembly and Programming Bartholomew o. Nnaji Professor and Director Automation and Robotics Laboratory Department of Industrial Engineering University of Massachusetts Amherst USA SPRINGER-SCIENCE+BUSINESS MEDIA, B.V.

3 First edition Springer Science+Bnsiness Media Dordrecht Originally published by Chapman & Hall in 1993 Softcover reprint ofthe hardcover 15t edition 1993 ISBN o (USA) Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the UK Copyright Designs and Patents Act, 1988, this publication may not be reproduced, stored, or transmitted, in any form or by any means, without the prior permission in writing of the publishers, or in the case of reprographic reprodudion only in accordance with the terms of the licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of licences issued by the appropriate Reproduction Rights Organization outside the UK. Enquiries conceming reproduction outside the terms stated here should be sent to the publishers at the London address printed on this page. The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility for any errors or omissions that may be made. A catalogue record for this book is available from the British Library Library of Congress Cataloging-in-Publieation data available Nnaji, Bartholomew O., Theory of automatic robot assembly and programming/bartholomew O. Nnaji. - lst ed. p. em. Includes bibliographical referenees and index. ISBN ISBN (ebook) DOI / Robots, Industrial. 2. Robots - Programming. I. Title. TS19I.8.N '72 - de CIP 18. Printed on permanent acid-free text paper, manufactured in aeeordanee with the proposed ANSIINISO Z X and ANSI Z

4 To Professor Richard]. Giglio for his courage and vision

5 Contents List of tables Acknowledgements Preface 1 Machine programming 1.1 Introduction 1.2 Problems of machine reasoning 1.3 Robot programming Explicit robot programming 1.4 Machine task-level programming 1.5 Organization of this book 2 CAD in automatic machine programming 2.1 Introduction 2.2 Desired CAD data 2.3 Feature, feature classification and representation Feature concept The Euler formula for features Feature classification Feature representation Feature representation for mechanical components 2.4 Feature reasoning for mechanical components Notations and definitions in feature reasoning Envelope determination Coordinate frame mapping Extraction of form features Feature recognition Criteria used for feature recognition Generic feature primitives Pattern matching Feature decomposition 3 Spatial relationships 3.1 Introduction 3.2 Background Importance of a solid modeler in spatial reasoning Spatial relationships developments xiii xv xvii II

6 viii Contents Mathematical representation Expressions for positions of bodies in terms of relations between features Features and spatial relationships Spatial relationships Assembly locations Types of spatial relationship Degrees of freedom Intersection of degrees of freedom Inferring mating frames Product specification attributes Applications Bill of materials and precedence constraints Feasible approach directions World modeling 66 4 Structure of an automatic robot programmer 4.1 Introduction 4.2 An overview of RALPH 4.3 World knowledge database 4.4 RALPH commands Task-level commands Mid-level internal commands General robot-level commands 4.5 Mathematical consideration 4.6 Task planner The task-level planner The mid-level planner 4.7 An example of assembly task 4.8 Programming issues 4.9 Discussion Sensors and representation 5.1 Background Tactile sensors Force sensors Proximity sensors Ultrasonic ranging Infrared Vision 5.2 Internal and external sensors Internal sensors External sensors 5.3 Sensor fusion 5.4 Sensor architecture

7 Contents General sensor level Generic sensor level Non-contact sensors Contact sensors Internal sensors Specific sensor level 5.5 Representation Planning General sensor planner Generic sensor planner 5.6 Probability of sensor usage Generic plan Specific sensor planner Sensor range Set considerations Individual sensor properties Gripper considerations 5.7 Processing Specific level processor Generic level processor General level processor Summary ix W orid modeling and task specification 6.1 World modeling Geometric description Parametric world modeler Physical description Kinematics of linkages Description of the robot characteristics Complexity of the world model Task specification Assembly stability model Quantitative approach to analyzing stability Description of the two-block system Equations of motion of the two-block system Simulation of the two-block assembly Equivalent parameters for transformation of a multi-body system to a single body Designing for stability Singularity and stability Inertial effects and non-linearities Generalized centroid Relative stability Summary 150

8 x Contents 7 Gross motion planning and collision avoidance Introduction Gross motion in RALPH Robot motion planning problems Findspace and findpath problems The findspace problem The find path problem Compliant motion with uncertainty Configuration space Definition Computation of the configuration space obstacles Advantages and disadvantages of C-space Path planning algorithms Visibility graph Hypothesize and test Voronoi diagram Cell decomposition Potential field The path planning algorithm Outline of collision repelling algorithm Creating the configuration space Finding the position of the axis Intersecting link j with the obstacles Updating the bitmap Finding the path for the arm Creating the retracted free C-space Creating the numerical potential field in ctee Effects of varying ( Moving the end-effector Fixed arm configuration Adjusting the hand configuration Discussion Evaluation of the proposed algorithm Proposed improvements Trajectory planning Summary Grasp planning Introduction Background General model of grasping Approaches to parallel jaw grasping Choosing grasps and grasp parameters Building integrated systems World spatial relationships in grasping Grasping concepts 181

9 Contents xi Task requirement Basic task attributes Suitable task description Feature reasoning for grasping Geometric constraints in grasping Parallelity and exterior grasp condition Local accessibility Mutual visibility Finding the grasp point and approach direction Grasp force and grasp evaluation Analysis for a rigid gripper jaw surface Analysis for a soft contact Design and implementation Task requirement Manipulability Torquability Rotatability Stability Format for task description Feature reasoning Geometrical constraints An example Summary Trajectory planning and control 9.1 Introduction Cartesian space control Joint space control Joint interpolated control 9.2 Evaluation of trajectories 9.3 Other trajectory evaluation approaches 9.4 Background material 9.5 Robots with more than 3 degrees of freedom 9.6 Evaluation and analysis Discussion 9.7 Summary Considerations for generic kinematic structures 10.1 Introduction 10.2 Kinematic structures Inverse kinematic solution Jacobian Degeneracy Singularity An example Quartenion representation of rotations

10 xii Contents 10.3 Kinematic implementation Kinematic analysis Example Link parameters for cylindrical robots Inverse kinematics results Singular points for RPP (cylindrical) robots Pattern of kinematic behavior Summary Program synthesis and other planners Introduction Spanning vector for assembly directions and other applications Determining control faces Finding mating faces Spanning vector Mathematical background Algorithm for finding spanning vector Representation of spanning vector Some examples of spanning vector Precedence generation Concept of assembly precedence Assumptions for precedence Spatial relationships and precedence Find all mating faces Determining the disassembly direction Precedence algorithm Interpretation of results Fine motion planning Program synthesis 290 References 292 Index 300

11 List of tables 1.1 Prominent robot languages Notation of symbols The structure of RALPH task-level commands Table of varieties of noncontact sensors Table of varieties of contact sensors Table of ranked generic sensor combinations Table of coordinate frames for generic sensor types Typical values for the parameters used in the dynamic simulation of the two-block system The joint categories for four robot body types Task attributes for various tasks; on a scale of 0 to 2, where 0 means no requirement and 2 means strong requirement Task attributes for mid level commands Weightage of factors influencing manipulability Weightage of factors influencing torquability Weightage of factors influencing rotatability Weightage of factors influencing stability Link parameters for the GE-A4 robot 238

12 Acknowledgements I wish to thank my students at the Automation and Robotics Laboratory both past and present who worked with me on a number of research projects which resulted in the development of various chapters of this book. In particular, I thank Dr Tzong-Shyan Kang and Dr Jang-Ping Chen for working with me on the Feature Reasoning project; Shuchieh Yeh and Mehran Kamran (CAD Data and Symmetry project); Hsu-Chang Liu (Product Modeling project); Ashok Vishnu (Stability project); Aditi Dubey (Grasp Planner project); Jagtap Prashant (Precedence Generation project); Ellen Lin (Sensor Representation project); Sven Haberer (Gross motion planning project); and Andy Rist (Simulator project). Many of our laboratory staff members helped to proof-read and comment on the book. In particular, I thank Mehran Kamran, Jyh-Haw Kang, Hsu-Chang Liu, and Shuchieh Yeh for providing this kind of needed support. Finally, I wish to give special thanks to my family for their patience for all those hours I had to spend away from them developing the material for this manuscript. I appreciate their support. This material is based partially upon research supported by the National Science Foundation, under grant number DMC and the North Atlantic Treaty Organization. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author and do not necessarily reflect the views of the National Science Foundation or the North Atlantic Treaty Organization. B.O. Nnaji

13 Preface Machines will gradually become programmed using computers which have the knowledge of how the objects in the world relate to one another. This book capitalizes on the fact that products which are manufactured can be designed on the computer and that information about the product such as its physical shape provide powerful information to reason about how to develop the process plan for their manufacture. This book explores the whole aspect of using the principles of how parts behave naturally to automatically generate programs that govern how to produce them. The last decade saw tremendous work on how machines can be programmed to perform a variety of tasks automatically. Robotics has witnessed the most work on programming techniques. But it was not until the emergence of the advanced CAD system as a proper source of information representation about objects which are to be manipulated by the robot that it became viable for automated processors to generate robot programs without human interface. It became possible for objects to be described and for principles about how they interact in the world to be developed. The functions which the features designed into the objects serve for the objects can be adequately represented and used in reasoning about the manufacturing of the parts using the robot. This book describes the necessary principles which must be developed for a robot to generate its own programs with the knowledge of the world in the CAD system. The reader will be taken through the basic theory of automatic robot programming; and representation of product information in a CAD system suitable for making inference about the product planning. Issues of how a task is represented to the machine are addressed in detail including spatial relationships and bill of materials. This task specification is based on a more contemporary view of the CAD system. In addition, the planning at all stages of robot motion is also presented. This work represents over a decade of work in robotics and automated manufacturing. All the material presented has been tested and many of the principles are being used in many major industries in the world. This text should be suitable for advanced undergraduate and graduate students in industrial, mechanical, manufacturing, and electrical engineering, as well as computer science. The book should also be appropriate for a course on robot programming, machine programming, and robotic assembly. It can also serve as a major part of a course in robotics, or any other automated manufacturing course. Theory of Automatic Robot Assembly and Programming is also designed for practising engineers, computer scientists or managers of production function who desire to keep abreast of the technology or to use robots in their facility. The principles which govern automatic robot programming are well explained within the application area of assembly throughout the book.

Graphics Programming in c++

Graphics Programming in c++ Graphics Programming in c++ Springer London Berlin Heidelberg New York Barcelona Budapest Hong Kong Milan Paris Santa Clara Singapore Tokyo Mark Walmsley Graphics Programming in c++ Writing Graphics Applications

More information

Stereo Scene Flow for 3D Motion Analysis

Stereo Scene Flow for 3D Motion Analysis Stereo Scene Flow for 3D Motion Analysis Andreas Wedel Daniel Cremers Stereo Scene Flow for 3D Motion Analysis Dr. Andreas Wedel Group Research Daimler AG HPC 050 G023 Sindelfingen 71059 Germany andreas.wedel@daimler.com

More information

Foundations of 3D Graphics Programming

Foundations of 3D Graphics Programming Foundations of 3D Graphics Programming Jim X. Chen Edward J. Wegman Foundations of 3D Graphics Programming Using JOGL and Java3D With 139 Figures Jim X. Chen, PhD Computer Science Department George Mason

More information

Mobile Robotics. Mathematics, Models, and Methods. HI Cambridge. Alonzo Kelly. Carnegie Mellon University UNIVERSITY PRESS

Mobile Robotics. Mathematics, Models, and Methods. HI Cambridge. Alonzo Kelly. Carnegie Mellon University UNIVERSITY PRESS Mobile Robotics Mathematics, Models, and Methods Alonzo Kelly Carnegie Mellon University HI Cambridge UNIVERSITY PRESS Contents Preface page xiii 1 Introduction 1 1.1 Applications of Mobile Robots 2 1.2

More information

MCE/EEC 647/747: Robot Dynamics and Control. Lecture 1: Introduction

MCE/EEC 647/747: Robot Dynamics and Control. Lecture 1: Introduction MCE/EEC 647/747: Robot Dynamics and Control Lecture 1: Introduction Reading: SHV Chapter 1 Robotics and Automation Handbook, Chapter 1 Assigned readings from several articles. Cleveland State University

More information

Mobile Robotics. Mathematics, Models, and Methods

Mobile Robotics. Mathematics, Models, and Methods Mobile Robotics Mathematics, Models, and Methods Mobile Robotics offers comprehensive coverage of the essentials of the field suitable for both students and practitioners. Adapted from the author's graduate

More information

PERFORMANCE ANALYSIS OF REAL-TIME EMBEDDED SOFTWARE

PERFORMANCE ANALYSIS OF REAL-TIME EMBEDDED SOFTWARE PERFORMANCE ANALYSIS OF REAL-TIME EMBEDDED SOFTWARE PERFORMANCE ANALYSIS OF REAL-TIME EMBEDDED SOFTWARE Yau-Tsun Steven Li Monterey Design Systems, Inc. Sharad Malik Princeton University ~. " SPRINGER

More information

Yves Nievergelt. Wavelets Made Easy. Springer Science+Business Media, LLC

Yves Nievergelt. Wavelets Made Easy. Springer Science+Business Media, LLC Wavelets Made Easy Yves Nievergelt Wavelets Made Easy Springer Science+Business Media, LLC Yves Nievergelt Department of Mathematics Eastem Washington University Cheney, WA 99004-2431 USA Library of Congress

More information

Inverse Kinematics. Given a desired position (p) & orientation (R) of the end-effector

Inverse Kinematics. Given a desired position (p) & orientation (R) of the end-effector Inverse Kinematics Given a desired position (p) & orientation (R) of the end-effector q ( q, q, q ) 1 2 n Find the joint variables which can bring the robot the desired configuration z y x 1 The Inverse

More information

Spatial R-C-C-R Mechanism for a Single DOF Gripper

Spatial R-C-C-R Mechanism for a Single DOF Gripper NaCoMM-2009-ASMRL28 Spatial R-C-C-R Mechanism for a Single DOF Gripper Rajeev Lochana C.G * Mechanical Engineering Department Indian Institute of Technology Delhi, New Delhi, India * Email: rajeev@ar-cad.com

More information

FUZZY LOGIC WITH ENGINEERING APPLICATIONS

FUZZY LOGIC WITH ENGINEERING APPLICATIONS FUZZY LOGIC WITH ENGINEERING APPLICATIONS Third Edition Timothy J. Ross University of New Mexico, USA A John Wiley and Sons, Ltd., Publication FUZZY LOGIC WITH ENGINEERING APPLICATIONS Third Edition FUZZY

More information

MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

MULTIMEDIA DATABASE MANAGEMENT SYSTEMS MULTIMEDIA DATABASE MANAGEMENT SYSTEMS THE KLUWER INTERNATIONAL SERIES IN ENGINEERING AND COMPUTER SCIENCE MULTIMEDIA SYSTEMS AND APPLICATIONS Recently Published Titles: Consulting Editor Borko Furht Florida

More information

Operation of machine vision system

Operation of machine vision system ROBOT VISION Introduction The process of extracting, characterizing and interpreting information from images. Potential application in many industrial operation. Selection from a bin or conveyer, parts

More information

Introduction to Robotics

Introduction to Robotics Université de Strasbourg Introduction to Robotics Bernard BAYLE, 2013 http://eavr.u-strasbg.fr/ bernard Modelling of a SCARA-type robotic manipulator SCARA-type robotic manipulators: introduction SCARA-type

More information

The Internet of Things

The Internet of Things The Internet of Things The Internet of Things Connecting Objects to the Web Edited by Hakima Chaouchi First published 2010 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

More information

Inverse Kinematics of 6 DOF Serial Manipulator. Robotics. Inverse Kinematics of 6 DOF Serial Manipulator

Inverse Kinematics of 6 DOF Serial Manipulator. Robotics. Inverse Kinematics of 6 DOF Serial Manipulator Inverse Kinematics of 6 DOF Serial Manipulator Robotics Inverse Kinematics of 6 DOF Serial Manipulator Vladimír Smutný Center for Machine Perception Czech Institute for Informatics, Robotics, and Cybernetics

More information

MTRX4700 Experimental Robotics

MTRX4700 Experimental Robotics MTRX 4700 : Experimental Robotics Lecture 2 Stefan B. Williams Slide 1 Course Outline Week Date Content Labs Due Dates 1 5 Mar Introduction, history & philosophy of robotics 2 12 Mar Robot kinematics &

More information

Introduction to Robotics

Introduction to Robotics Jianwei Zhang zhang@informatik.uni-hamburg.de Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Technische Aspekte Multimodaler Systeme 05. July 2013 J. Zhang 1 Task-level

More information

Ch 8 Industrial Robotics

Ch 8 Industrial Robotics Ch 8 Industrial Robotics Sections: 1. Robot Anatomy and Related Attributes 2. Robot Control Systems 3. End Effectors 4. Sensors in Robotics 5. Industrial Robot Applications 6. Robot Programming 7. Robot

More information

Elastic Bands: Connecting Path Planning and Control

Elastic Bands: Connecting Path Planning and Control Elastic Bands: Connecting Path Planning and Control Sean Quinlan and Oussama Khatib Robotics Laboratory Computer Science Department Stanford University Abstract Elastic bands are proposed as the basis

More information

EEE 187: Robotics Summary 2

EEE 187: Robotics Summary 2 1 EEE 187: Robotics Summary 2 09/05/2017 Robotic system components A robotic system has three major components: Actuators: the muscles of the robot Sensors: provide information about the environment and

More information

Mobile Manipulation A Mobile Platform Supporting a Manipulator System for an Autonomous Robot

Mobile Manipulation A Mobile Platform Supporting a Manipulator System for an Autonomous Robot Mobile Manipulation A Mobile Platform Supporting a Manipulator System for an Autonomous Robot U.M. Nassal, M. Damm, T.C. Lueth Institute for Real-Time Computer Systems and Robotics (IPR) University of

More information

IMECE FUNCTIONAL INTERFACE-BASED ASSEMBLY MODELING

IMECE FUNCTIONAL INTERFACE-BASED ASSEMBLY MODELING Proceedings of IMECE2005 2005 ASME International Mechanical Engineering Congress and Exposition November 5-11, 2005, Orlando, Florida USA IMECE2005-79945 FUNCTIONAL INTERFACE-BASED ASSEMBLY MODELING James

More information

EE Kinematics & Inverse Kinematics

EE Kinematics & Inverse Kinematics Electric Electronic Engineering Bogazici University October 15, 2017 Problem Statement Kinematics: Given c C, find a map f : C W s.t. w = f(c) where w W : Given w W, find a map f 1 : W C s.t. c = f 1

More information

Lecture «Robot Dynamics»: Kinematic Control

Lecture «Robot Dynamics»: Kinematic Control Lecture «Robot Dynamics»: Kinematic Control 151-0851-00 V lecture: CAB G11 Tuesday 10:15 12:00, every week exercise: HG E1.2 Wednesday 8:15 10:00, according to schedule (about every 2nd week) Marco Hutter,

More information

Collision Detection. Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering

Collision Detection. Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering RBE 550 MOTION PLANNING BASED ON DR. DMITRY BERENSON S RBE 550 Collision Detection Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering http://users.wpi.edu/~zli11 Euler Angle RBE

More information

Similarity and Compatibility in Fuzzy Set Theory

Similarity and Compatibility in Fuzzy Set Theory Similarity and Compatibility in Fuzzy Set Theory Studies in Fuzziness and Soft Computing Editor-in-chief Prof. Janusz Kacprzyk Systems Research Institute Polish Academy of Sciences ul. Newelska 6 01-447

More information

Space Robot Path Planning for Collision Avoidance

Space Robot Path Planning for Collision Avoidance Space Robot Path Planning for ollision voidance Yuya Yanoshita and Shinichi Tsuda bstract This paper deals with a path planning of space robot which includes a collision avoidance algorithm. For the future

More information

Planar Robot Kinematics

Planar Robot Kinematics V. Kumar lanar Robot Kinematics The mathematical modeling of spatial linkages is quite involved. t is useful to start with planar robots because the kinematics of planar mechanisms is generally much simpler

More information

ECE276B: Planning & Learning in Robotics Lecture 5: Configuration Space

ECE276B: Planning & Learning in Robotics Lecture 5: Configuration Space ECE276B: Planning & Learning in Robotics Lecture 5: Configuration Space Lecturer: Nikolay Atanasov: natanasov@ucsd.edu Teaching Assistants: Tianyu Wang: tiw161@eng.ucsd.edu Yongxi Lu: yol070@eng.ucsd.edu

More information

0 Mastering Microsoft Office

0 Mastering Microsoft Office 0 Mastering Microsoft Office MACMILLAN MASTER SERIES Accounting Advanced English Language Advanced Pure Mathematics Arabic Banking Basic Management Biology British Politics Business Administration Business

More information

NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582

NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING Dr. Stephen Bruder Course Information Robot Engineering Classroom UNM: Woodward Hall room 147 NMT: Cramer 123 Schedule Tue/Thur 8:00 9:15am Office Hours UNM: After class 10am Email bruder@aptec.com

More information

TRAINING A ROBOTIC MANIPULATOR

TRAINING A ROBOTIC MANIPULATOR ME 4773/5493 Fundamental of Robotics Fall 2016 San Antonio, TX, USA TRAINING A ROBOTIC MANIPULATOR Jonathan Sackett Dept. of Mechanical Engineering San Antonio, TX, USA 78249 jonathan.sackett@utsa.edu

More information

Path Planning with Motion Optimization for Car Body-In-White Industrial Robot Applications

Path Planning with Motion Optimization for Car Body-In-White Industrial Robot Applications Advanced Materials Research Online: 2012-12-13 ISSN: 1662-8985, Vols. 605-607, pp 1595-1599 doi:10.4028/www.scientific.net/amr.605-607.1595 2013 Trans Tech Publications, Switzerland Path Planning with

More information

RETARGETABLE CODE GENERATION FOR DIGITAL SIGNAL PROCESSORS

RETARGETABLE CODE GENERATION FOR DIGITAL SIGNAL PROCESSORS RETARGETABLE CODE GENERATION FOR DIGITAL SIGNAL PROCESSORS RETARGETABLE CODE GENERATION FOR DIGITAL SIGNAL PROCESSORS Rainer LEUPERS University of Dortmund Department of Computer Science Dortmund, Germany

More information

MASTERING COBOL PROGRAMMING

MASTERING COBOL PROGRAMMING MASTERING COBOL PROGRAMMING MACMILLAN MASTER SERIES Banking Basic English Law Basic Management Biology British Politics Business Communication Business Microcomputing Chemistry COBOL Programming Commerce

More information

Electrical Engineering and Computer Sciences (EECS)

Electrical Engineering and Computer Sciences (EECS) University of California, Berkeley 1 Electrical Engineering and Computer Sciences (EECS) Courses EECS 47D Completion of work in Electrical Engineering 16A 1-3 Units Terms offered: Prior to 2007 This course

More information

Robotics. SAAST Robotics Robot Arms

Robotics. SAAST Robotics Robot Arms SAAST Robotics 008 Robot Arms Vijay Kumar Professor of Mechanical Engineering and Applied Mechanics and Professor of Computer and Information Science University of Pennsylvania Topics Types of robot arms

More information

Lecture 2: Kinematics of medical robotics

Lecture 2: Kinematics of medical robotics ME 328: Medical Robotics Autumn 2016 Lecture 2: Kinematics of medical robotics Allison Okamura Stanford University kinematics The study of movement The branch of classical mechanics that describes the

More information

SYNTHESIS OF PLANAR MECHANISMS FOR PICK AND PLACE TASKS WITH GUIDING LOCATIONS

SYNTHESIS OF PLANAR MECHANISMS FOR PICK AND PLACE TASKS WITH GUIDING LOCATIONS Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE 2013 August 4-7, 2013, Portland, Oregon, USA DETC2013-12021

More information

Digital Signal Processing System Design: LabVIEW-Based Hybrid Programming Nasser Kehtarnavaz

Digital Signal Processing System Design: LabVIEW-Based Hybrid Programming Nasser Kehtarnavaz Digital Signal Processing System Design: LabVIEW-Based Hybrid Programming Nasser Kehtarnavaz Digital Signal Processing System Design: LabVIEW-Based Hybrid Programming by Nasser Kehtarnavaz University

More information

Computer Science Workbench

Computer Science Workbench Computer Science Workbench Editor: Tosiyasu L. Kunii Springer Japan KK Computer Science Workbench N. Magnenat Thalmann, D. Thalmann: Image Synthesis. Theory and Practice. XV, 400 pp., 223 figs., including

More information

Guide to RISC Processors

Guide to RISC Processors Guide to RISC Processors Sivarama P. Dandamudi Guide to RISC Processors for Programmers and Engineers Sivarama P. Dandamudi School of Computer Science Carleton University Ottawa, ON K1S 5B6 Canada sivarama@scs.carleton.ca

More information

Exploiting Distributed Resources in Wireless, Mobile and Social Networks Frank H. P. Fitzek and Marcos D. Katz

Exploiting Distributed Resources in Wireless, Mobile and Social Networks Frank H. P. Fitzek and Marcos D. Katz MOBILE CLOUDS Exploiting Distributed Resources in Wireless, Mobile and Social Networks Frank H. P. Fitzek and Marcos D. Katz MOBILE CLOUDS MOBILE CLOUDS EXPLOITING DISTRIBUTED RESOURCES IN WIRELESS,

More information

Image Processing, Analysis and Machine Vision

Image Processing, Analysis and Machine Vision Image Processing, Analysis and Machine Vision Milan Sonka PhD University of Iowa Iowa City, USA Vaclav Hlavac PhD Czech Technical University Prague, Czech Republic and Roger Boyle DPhil, MBCS, CEng University

More information

Design & Kinematic Analysis of an Articulated Robotic Manipulator

Design & Kinematic Analysis of an Articulated Robotic Manipulator Design & Kinematic Analysis of an Articulated Robotic Manipulator Elias Eliot 1, B.B.V.L. Deepak 1*, D.R. Parhi 2, and J. Srinivas 2 1 Department of Industrial Design, National Institute of Technology-Rourkela

More information

Finding Reachable Workspace of a Robotic Manipulator by Edge Detection Algorithm

Finding Reachable Workspace of a Robotic Manipulator by Edge Detection Algorithm International Journal of Advanced Mechatronics and Robotics (IJAMR) Vol. 3, No. 2, July-December 2011; pp. 43-51; International Science Press, ISSN: 0975-6108 Finding Reachable Workspace of a Robotic Manipulator

More information

Lesson 1: Introduction to Pro/MECHANICA Motion

Lesson 1: Introduction to Pro/MECHANICA Motion Lesson 1: Introduction to Pro/MECHANICA Motion 1.1 Overview of the Lesson The purpose of this lesson is to provide you with a brief overview of Pro/MECHANICA Motion, also called Motion in this book. Motion

More information

Three-Dimensional Computer Vision

Three-Dimensional Computer Vision \bshiaki Shirai Three-Dimensional Computer Vision With 313 Figures ' Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Table of Contents 1 Introduction 1 1.1 Three-Dimensional Computer Vision

More information

Development of a MATLAB Toolbox for 3-PRS Parallel Robot

Development of a MATLAB Toolbox for 3-PRS Parallel Robot International Journal of Hybrid Information echnology, pp.4-4 http://dx.doi.org/.457/ijhit.4.7.5.37 Development of a MALAB oolbox for 3-PRS Parallel Robot Guoqiang Chen and Jianli Kang * Henan Polytechnic

More information

On-ground experimental verification of a torque controlled free-floating robot

On-ground experimental verification of a torque controlled free-floating robot On-ground experimental verification of a torque controlled free-floating robot Marco De Stefano, Jordi Artigas, Alessandro M. Giordano, Roberto Lampariello and Alin-Albu Schaeffer Institute of Robotics

More information

Adaptive Control of 4-DoF Robot manipulator

Adaptive Control of 4-DoF Robot manipulator Adaptive Control of 4-DoF Robot manipulator Pavel Mironchyk p.mironchyk@yahoo.com arxiv:151.55v1 [cs.sy] Jan 15 Abstract In experimental robotics, researchers may face uncertainties in parameters of a

More information

Planning Movement of a Robotic Arm for Assembly of Products

Planning Movement of a Robotic Arm for Assembly of Products Journal of Mechanics Engineering and Automation 5 (2015) 257-262 doi: 10.17265/2159-5275/2015.04.008 D DAVID PUBLISHING Planning Movement of a Robotic Arm for Assembly of Products Jose Ismael Ojeda Campaña

More information

Motion Planning of a Robotic Arm on a Wheeled Vehicle on a Rugged Terrain * Abstract. 1 Introduction. Yong K. Hwangt

Motion Planning of a Robotic Arm on a Wheeled Vehicle on a Rugged Terrain * Abstract. 1 Introduction. Yong K. Hwangt Motion Planning of a Robotic Arm on a Wheeled Vehicle on a Rugged Terrain * Yong K. Hwangt Abstract This paper presents a set of motion planners for an exploration vehicle on a simulated rugged terrain.

More information

Geometric Modeling. Introduction

Geometric Modeling. Introduction Geometric Modeling Introduction Geometric modeling is as important to CAD as governing equilibrium equations to classical engineering fields as mechanics and thermal fluids. intelligent decision on the

More information

An Introduction to the Bootstrap

An Introduction to the Bootstrap An Introduction to the Bootstrap Bradley Efron Department of Statistics Stanford University and Robert J. Tibshirani Department of Preventative Medicine and Biostatistics and Department of Statistics,

More information

Object-Oriented Programming and Java

Object-Oriented Programming and Java Object-Oriented Programming and Java Danny Poo Derek Kiong Swarnalatha Ashok Object-Oriented Programming and Java Second edition Dr Danny Poo School of Computing National University of Singapore, Singapore

More information

Articulated Robots! Robert Stengel! Robotics and Intelligent Systems! MAE 345, Princeton University, 2017

Articulated Robots! Robert Stengel! Robotics and Intelligent Systems! MAE 345, Princeton University, 2017 Articulated Robots! Robert Stengel! Robotics and Intelligent Systems! MAE 345, Princeton University, 2017 Robot configurations Joints and links Joint-link-joint transformations! Denavit-Hartenberg representation

More information

COLLISION-FREE TRAJECTORY PLANNING FOR MANIPULATORS USING GENERALIZED PATTERN SEARCH

COLLISION-FREE TRAJECTORY PLANNING FOR MANIPULATORS USING GENERALIZED PATTERN SEARCH ISSN 1726-4529 Int j simul model 5 (26) 4, 145-154 Original scientific paper COLLISION-FREE TRAJECTORY PLANNING FOR MANIPULATORS USING GENERALIZED PATTERN SEARCH Ata, A. A. & Myo, T. R. Mechatronics Engineering

More information

Functional Architectures for Cooperative Multiarm Systems

Functional Architectures for Cooperative Multiarm Systems Università di Genova - DIST GRAAL- Genoa Robotic And Automation Lab Functional Architectures for Cooperative Multiarm Systems Prof. Giuseppe Casalino Outline A multilayered hierarchical approach to robot

More information

Flexible Modeling and Simulation Architecture for Haptic Control of Maritime Cranes and Robotic Arms

Flexible Modeling and Simulation Architecture for Haptic Control of Maritime Cranes and Robotic Arms Flexible Modeling and Simulation Architecture for Haptic Control of Maritime Cranes and Robotic Arms F. Sanfilippo, H. P. Hildre, V. Æsøy and H.X. Zhang Department of Maritime Technology and Operation

More information

High-Accuracy Articulated Mobile Robots

High-Accuracy Articulated Mobile Robots High-Accuracy Articulated Mobile Robots 2017-01-2095 Timothy Jackson Electroimpact Inc. Published 09/19/2017 CITATION: Jackson, T., "High-Accuracy Articulated Mobile Robots," SAE Technical Paper 2017-01-2095,

More information

5-Axis Flex Track Drilling Systems on Complex Contours: Solutions for Position Control

5-Axis Flex Track Drilling Systems on Complex Contours: Solutions for Position Control 5-Axis Flex Track Drilling Systems on Complex Contours: Solutions for Position Control 2013-01-2224 Published 09/17/2013 Joseph R. Malcomb Electroimpact Inc. Copyright 2013 SAE International doi:10.4271/2013-01-2224

More information

Simulation of Articulated Robotic Manipulator & It s Application in Modern Industries

Simulation of Articulated Robotic Manipulator & It s Application in Modern Industries IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 11, Issue 3 Ver. II (May- Jun. 2014), PP 01-07 Simulation of Articulated Robotic Manipulator & It

More information

Software Development for SAP R/3

Software Development for SAP R/3 Software Development for SAP R/3 Springer-Verlag Berlin Heidelberg GmbH Ulrich Mende Software Development for SAP R/3 Data Dictionary, ABAP/4, Interfaces With Diskette With 124 Figures and Many Example

More information

Anibal Ollero Professor and head of GRVC University of Seville (Spain)

Anibal Ollero Professor and head of GRVC University of Seville (Spain) Aerial Manipulation Anibal Ollero Professor and head of GRVC University of Seville (Spain) aollero@us.es Scientific Advisor of the Center for Advanced Aerospace Technologies (Seville, Spain) aollero@catec.aero

More information

Intern Presentation:

Intern Presentation: : Gripper Stereo and Assisted Teleoperation Stanford University December 13, 2010 Outline 1. Introduction 2. Hardware 3. Research 4. Packages 5. Conclusion Introduction Hardware Research Packages Conclusion

More information

BIN PICKING APPLICATIONS AND TECHNOLOGIES

BIN PICKING APPLICATIONS AND TECHNOLOGIES BIN PICKING APPLICATIONS AND TECHNOLOGIES TABLE OF CONTENTS INTRODUCTION... 3 TYPES OF MATERIAL HANDLING... 3 WHOLE BIN PICKING PROCESS... 4 VISION SYSTEM: HARDWARE... 4 VISION SYSTEM: SOFTWARE... 5 END

More information

Manipulator Path Control : Path Planning, Dynamic Trajectory and Control Analysis

Manipulator Path Control : Path Planning, Dynamic Trajectory and Control Analysis Manipulator Path Control : Path Planning, Dynamic Trajectory and Control Analysis Motion planning for industrial manipulators is a challenging task when obstacles are present in the workspace so that collision-free

More information

Introduction to Computer Networking

Introduction to Computer Networking Introduction to Computer Networking Thomas G. Robertazzi Introduction to Computer Networking 123 Thomas G. Robertazzi Department of Electrical and Computer Engineering Stony Brook University Stony Brook,

More information

Practical Linear Algebra

Practical Linear Algebra Practical Linear Algebra AGeometryToolbox Third Edition Gerald Farin Dianne Hansford CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 2014 by Taylor &

More information

IND62 TIM CALIBRATION OF FREE-FORM STANDARD AND THEIR APPLICATIONS FOR IN-PROCESS MEASUREMENT ON MACHINE TOOLS

IND62 TIM CALIBRATION OF FREE-FORM STANDARD AND THEIR APPLICATIONS FOR IN-PROCESS MEASUREMENT ON MACHINE TOOLS IND62 TIM CALIBRATION OF FREE-FORM STANDARD AND THEIR APPLICATIONS FOR IN-PROCESS MEASUREMENT ON MACHINE TOOLS VÍT ZELENÝ, IVANA LINKEOVÁ, PAVEL SKALNÍK (LENGTH MEASUREMENT DEPARTMENT) 5th November 2014

More information

Groupware and the World Wide Web

Groupware and the World Wide Web Groupware and the World Wide Web Edited by Richard Bentley, Uwe Busbach, David Kerr & Klaas Sikkel German National Research Center for Information Technology, Institutefor Applied Information Technology

More information

-SOLUTION- ME / ECE 739: Advanced Robotics Homework #2

-SOLUTION- ME / ECE 739: Advanced Robotics Homework #2 ME / ECE 739: Advanced Robotics Homework #2 Due: March 5 th (Thursday) -SOLUTION- Please submit your answers to the questions and all supporting work including your Matlab scripts, and, where appropriate,

More information

Theory of Machines Course # 1

Theory of Machines Course # 1 Theory of Machines Course # 1 Ayman Nada Assistant Professor Jazan University, KSA. arobust@tedata.net.eg March 29, 2010 ii Sucess is not coming in a day 1 2 Chapter 1 INTRODUCTION 1.1 Introduction Mechanisms

More information

Motion Planning 2D. Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo

Motion Planning 2D. Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo Motion Planning 2D Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo Tratto dai corsi: CS 326A: Motion Planning ai.stanford.edu/~latombe/cs326/2007/index.htm Prof. J.C. Latombe Stanford

More information

Analysis of mechanisms with flexible beam-like links, rotary joints and assembly errors

Analysis of mechanisms with flexible beam-like links, rotary joints and assembly errors Arch Appl Mech (2012) 82:283 295 DOI 10.1007/s00419-011-0556-6 ORIGINAL Krzysztof Augustynek Iwona Adamiec-Wójcik Analysis of mechanisms with flexible beam-like links, rotary joints and assembly errors

More information

Lecture 18 Kinematic Chains

Lecture 18 Kinematic Chains CS 598: Topics in AI - Adv. Computational Foundations of Robotics Spring 2017, Rutgers University Lecture 18 Kinematic Chains Instructor: Jingjin Yu Outline What are kinematic chains? C-space for kinematic

More information

Whitestein Series in software Agent Technologies. About whitestein Technologies

Whitestein Series in software Agent Technologies. About whitestein Technologies Whitestein Series in software Agent Technologies Series Editors: Marius Walliser Stefan Brantschen Monique Calisti Thomas Hempfling This series reports new developments in agent-based software technologies

More information

ROBOT SENSORS. 1. Proprioceptors

ROBOT SENSORS. 1. Proprioceptors ROBOT SENSORS Since the action capability is physically interacting with the environment, two types of sensors have to be used in any robotic system: - proprioceptors for the measurement of the robot s

More information

OPTIMIZATION OF INVERSE KINEMATICS OF ROBOTIC ARM USING ANFIS

OPTIMIZATION OF INVERSE KINEMATICS OF ROBOTIC ARM USING ANFIS OPTIMIZATION OF INVERSE KINEMATICS OF ROBOTIC ARM USING ANFIS 1. AMBUJA SINGH, 2. DR. MANOJ SONI 1(M.TECH STUDENT, R&A, DEPARTMENT OF MAE, IGDTUW, DELHI, INDIA) 2(ASSOCIATE PROFESSOR, DEPARTMENT OF MAE,

More information

Chapter 2 Kinematics of Mechanisms

Chapter 2 Kinematics of Mechanisms Chapter Kinematics of Mechanisms.1 Preamble Robot kinematics is the study of the motion (kinematics) of robotic mechanisms. In a kinematic analysis, the position, velocity, and acceleration of all the

More information

Inverse Kinematics Solution for Trajectory Tracking using Artificial Neural Networks for SCORBOT ER-4u

Inverse Kinematics Solution for Trajectory Tracking using Artificial Neural Networks for SCORBOT ER-4u Inverse Kinematics Solution for Trajectory Tracking using Artificial Neural Networks for SCORBOT ER-4u Rahul R Kumar 1, Praneel Chand 2 School of Engineering and Physics The University of the South Pacific

More information

A. Portela A. Charafi Finite Elements Using Maple

A. Portela A. Charafi Finite Elements Using Maple A. Portela A. Charafi Finite Elements Using Maple Springer -V erlag Berlin Heidelberg GmbH Engineering ONLINE library http://www.springer.deleng inel A. Portela A. Charafi Finite Elements Using Maple A

More information

VERILOG QUICKSTART. James M. Lee Cadence Design Systems, Inc. SPRINGER SCIENCE+BUSINESS MEDIA, LLC

VERILOG QUICKSTART. James M. Lee Cadence Design Systems, Inc. SPRINGER SCIENCE+BUSINESS MEDIA, LLC VERILOG QUICKSTART VERILOG QUICKSTART by James M. Lee Cadence Design Systems, Inc. ~. " SPRINGER SCIENCE+BUSINESS MEDIA, LLC ISBN 978-1-4613-7801-3 ISBN 978-1-4615-6113-2 (ebook) DOI 10.1007/978-1-4615-6113-2

More information

Motion Control (wheeled robots)

Motion Control (wheeled robots) Motion Control (wheeled robots) Requirements for Motion Control Kinematic / dynamic model of the robot Model of the interaction between the wheel and the ground Definition of required motion -> speed control,

More information

CMPUT 412 Motion Control Wheeled robots. Csaba Szepesvári University of Alberta

CMPUT 412 Motion Control Wheeled robots. Csaba Szepesvári University of Alberta CMPUT 412 Motion Control Wheeled robots Csaba Szepesvári University of Alberta 1 Motion Control (wheeled robots) Requirements Kinematic/dynamic model of the robot Model of the interaction between the wheel

More information

Synthesis of Planar Mechanisms, Part IX: Path Generation using 6 Bar 2 Sliders Mechanism

Synthesis of Planar Mechanisms, Part IX: Path Generation using 6 Bar 2 Sliders Mechanism International Journal of Computer Techniques - Volume 2 Issue 6, Nov- Dec 2015 RESEARCH ARTICLE Synthesis of Planar Mechanisms, Part IX: Path Generation using 6 Bar 2 Sliders Mechanism Galal Ali Hassaan

More information

Reconfigurable Manipulator Simulation for Robotics and Multimodal Machine Learning Application: Aaria

Reconfigurable Manipulator Simulation for Robotics and Multimodal Machine Learning Application: Aaria Reconfigurable Manipulator Simulation for Robotics and Multimodal Machine Learning Application: Aaria Arttu Hautakoski, Mohammad M. Aref, and Jouni Mattila Laboratory of Automation and Hydraulic Engineering

More information

Workspace and joint space analysis of the 3-RPS parallel robot

Workspace and joint space analysis of the 3-RPS parallel robot Workspace and joint space analysis of the 3-RPS parallel robot Damien Chablat, Ranjan Jha, Fabrice Rouillier, Guillaume Moroz To cite this version: Damien Chablat, Ranjan Jha, Fabrice Rouillier, Guillaume

More information

Unlocking the Power of OPNET Modeler

Unlocking the Power of OPNET Modeler Unlocking the Power of OPNET Modeler For fast, easy modeling, this practical guide provides all the essential information you need to know. A wide range of topics is covered, including custom protocols,

More information

Chapter 2 Intelligent Behaviour Modelling and Control for Mobile Manipulators

Chapter 2 Intelligent Behaviour Modelling and Control for Mobile Manipulators Chapter Intelligent Behaviour Modelling and Control for Mobile Manipulators Ayssam Elkady, Mohammed Mohammed, Eslam Gebriel, and Tarek Sobh Abstract In the last several years, mobile manipulators have

More information

OpenGL Graphics Through Applications

OpenGL Graphics Through Applications OpenGL Graphics Through Applications Robert Whitrow OpenGL Graphics Through Applications Robert Whitrow BSc, PhD London Metropolitan University, UK ISBN: 978-1-84800-022-3 e-isbn: 978-1-84800-023-0 British

More information

Index Terms Denavit-Hartenberg Parameters, Kinematics, Pick and place robotic arm, Taper roller bearings. III. METHODOLOGY

Index Terms Denavit-Hartenberg Parameters, Kinematics, Pick and place robotic arm, Taper roller bearings. III. METHODOLOGY ISSN: 39-5967 ISO 9:8 Certified Volume 5, Issue 3, May 6 DESIGN OF A PROTOTYPE OF A PICK AND PLACE ROBOTIC ARM Amod Aboti, Sanket Acharya, Abhinav Anand, Rushikesh Chintale, Vipul Ruiwale Abstract In the

More information

Reconfigurable Kinetic Polygons: An Approach to Designing 2D Kinetic Tessellations

Reconfigurable Kinetic Polygons: An Approach to Designing 2D Kinetic Tessellations Reconfigurable Kinetic Polygons: An Approach to Designing 2D Kinetic Tessellations Negar Kalantar Dept. of Architecture Texas A&M University Kalantar@tamu.edu Alireza Borhani Dept. of Architecture Texas

More information

Integrating 3D Vision Measurements into Industrial Robot Applications

Integrating 3D Vision Measurements into Industrial Robot Applications Integrating 3D Vision Measurements into Industrial Robot Applications by Frank S. Cheng cheng1fs@cmich.edu Engineering and echnology Central Michigan University Xiaoting Chen Graduate Student Engineering

More information

Solving IK problems for open chains using optimization methods

Solving IK problems for open chains using optimization methods Proceedings of the International Multiconference on Computer Science and Information Technology pp. 933 937 ISBN 978-83-60810-14-9 ISSN 1896-7094 Solving IK problems for open chains using optimization

More information

Knot Insertion and Reparametrization of Interval B-spline Curves

Knot Insertion and Reparametrization of Interval B-spline Curves International Journal of Video&Image Processing and Network Security IJVIPNS-IJENS Vol:14 No:05 1 Knot Insertion and Reparametrization of Interval B-spline Curves O. Ismail, Senior Member, IEEE Abstract

More information

CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES

CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES YINGYING REN Abstract. In this paper, the applications of homogeneous coordinates are discussed to obtain an efficient model

More information

Kinematic Synthesis. October 6, 2015 Mark Plecnik

Kinematic Synthesis. October 6, 2015 Mark Plecnik Kinematic Synthesis October 6, 2015 Mark Plecnik Classifying Mechanisms Several dichotomies Serial and Parallel Few DOFS and Many DOFS Planar/Spherical and Spatial Rigid and Compliant Mechanism Trade-offs

More information