Review Initial Value Problems Euler s Method Summary

Size: px
Start display at page:

Download "Review Initial Value Problems Euler s Method Summary"

Transcription

1 THE EULER METHOD P.V. Johnson School of Mathematics Semester

2 OUTLINE 1 REVIEW 2 INITIAL VALUE PROBLEMS The Problem Posing a Problem 3 EULER S METHOD Method Errors 4 SUMMARY

3 OUTLINE 1 REVIEW 2 INITIAL VALUE PROBLEMS The Problem Posing a Problem 3 EULER S METHOD Method Errors 4 SUMMARY

4 OUTLINE 1 REVIEW 2 INITIAL VALUE PROBLEMS The Problem Posing a Problem 3 EULER S METHOD Method Errors 4 SUMMARY

5 OUTLINE 1 REVIEW 2 INITIAL VALUE PROBLEMS The Problem Posing a Problem 3 EULER S METHOD Method Errors 4 SUMMARY

6 ERRORS Be careful when interpreting results from a computer Errors can arise in all sorts of places Using Taylor Series to approximate a differential Truncation errors

7 ERRORS Be careful when interpreting results from a computer Errors can arise in all sorts of places Using Taylor Series to approximate a differential Truncation errors

8 EULER S METHOD Initial value problems for ODEs Solving ODEs numerically Euler s Method Truncation errors again

9 OUTLINE 1 REVIEW 2 INITIAL VALUE PROBLEMS The Problem Posing a Problem 3 EULER S METHOD Method Errors 4 SUMMARY

10 THE INITIAL VALUE PROBLEM Here we will look at the solution of ordinary differential equations of the type, say dy dx = f(x, y), a x b subject to an initial condition y(a) = α

11 THE INITIAL VALUE PROBLEM Here we will look at the solution of ordinary differential equations of the type, say dy dx = f(x, y), a x b subject to an initial condition y(a) = α

12 EXAMPLES CONSIDER THE PROBLEM: with the initial condition dy (1 dx = y y ), x 0 4 y(0) = 1 What can we say about the solution? How can we go about solving it?

13 EXAMPLES CONSIDER THE PROBLEM: with the initial condition dy (1 dx = y y ), x 0 4 y(0) = 1 What can we say about the solution? How can we go about solving it?

14 EXTENSION TO HIGHER ORDER ODES We normally would like to solve higher order ODEs We can do this by rearranging them as a system of first order ODEs EXAMPLE y 2xyy + y 2 = 1, y(1) = 1, y (1) = 2. The equivalent first order system is: (y 1 (x), y 2 (x)) T = (y(x), y (x)) T, f 1 (x, y 1, y 2 ) = y 2 (x), f 2 (x, y 1, y 2 ) = 1 + 2xy 1 (x)y 2 (x) y 2 1 (x), and initial condition (y 1 (1), y 2 (1)) T = (1, 2) T.

15 EXTENSION TO HIGHER ORDER ODES We normally would like to solve higher order ODEs We can do this by rearranging them as a system of first order ODEs EXAMPLE y 2xyy + y 2 = 1, y(1) = 1, y (1) = 2. The equivalent first order system is: (y 1 (x), y 2 (x)) T = (y(x), y (x)) T, f 1 (x, y 1, y 2 ) = y 2 (x), f 2 (x, y 1, y 2 ) = 1 + 2xy 1 (x)y 2 (x) y 2 1 (x), and initial condition (y 1 (1), y 2 (1)) T = (1, 2) T.

16 EXTENSION TO HIGHER ORDER ODES We normally would like to solve higher order ODEs We can do this by rearranging them as a system of first order ODEs EXAMPLE y 2xyy + y 2 = 1, y(1) = 1, y (1) = 2. The equivalent first order system is: (y 1 (x), y 2 (x)) T = (y(x), y (x)) T, f 1 (x, y 1, y 2 ) = y 2 (x), f 2 (x, y 1, y 2 ) = 1 + 2xy 1 (x)y 2 (x) y 2 1 (x), and initial condition (y 1 (1), y 2 (1)) T = (1, 2) T.

17 GENERAL SYSTEM OF FIRST ORDER ODES The general system can be written dy dx = F(x, Y), a x b, where with initial data Y = (y 1 (x), y 2 (x),..., y n (x)) T, F = (f 1 (x, Y), f 2 (x, Y),..., f n (x, Y)) T, Y(a) = α, α = (α 1, α 2,..., α n ) T.

18 OUTLINE 1 REVIEW 2 INITIAL VALUE PROBLEMS The Problem Posing a Problem 3 EULER S METHOD Method Errors 4 SUMMARY

19 WELL-POSED PROBLEMS DEFINITION: An initial value problem is said to be well-posed if: A unique solution, y(x), to the problem exists; The associated perturbed problem has a unique solution and is sufficiently close to the original solution How do we go about showing this for a general problem? What do we mean by a perturbed problem? With a computer, we are always solving the perturbed problem First, we need to know about the Lipschitz condition

20 WELL-POSED PROBLEMS DEFINITION: An initial value problem is said to be well-posed if: A unique solution, y(x), to the problem exists; The associated perturbed problem has a unique solution and is sufficiently close to the original solution How do we go about showing this for a general problem? What do we mean by a perturbed problem? With a computer, we are always solving the perturbed problem First, we need to know about the Lipschitz condition

21 WELL-POSED PROBLEMS DEFINITION: An initial value problem is said to be well-posed if: A unique solution, y(x), to the problem exists; The associated perturbed problem has a unique solution and is sufficiently close to the original solution How do we go about showing this for a general problem? What do we mean by a perturbed problem? With a computer, we are always solving the perturbed problem First, we need to know about the Lipschitz condition

22 THE LIPSCHITZ CONDITION DEFINITION: A function is said to satisfy the Lipschitz condition in the variable y on a set D R 2 if a constant L > 0 exists such that: f(x, y 1 ) f(x, y 2 ) L y 1 y 2 whenever (x, y 1 ), (x, y 2 ) D. The constant L is called the Lipschitz constant for f.

23 PERTURBED PROBLEM THE PERTURBED PROBLEM Let δ(x) be a pertubation to the problem so that δ(x) < ǫ for any ǫ > 0, then dz dx = f(x, z) + δ(x), a x b, z(a) = α + ǫ 0 and the solution z(x) exists with for some constant k(ǫ). z(x) y(x) < k(ǫ)ǫ for all a x b,

24 THE THEORY THEOREM Suppose D = {(x, y) a x b and < y < }. If f is continuous and satisfies a Lipschitz condition in the variable y on the set D, then the initial-value problem is well-posed. dy dx = f(x, y), a x b, y(a) = α

25 OUTLINE 1 REVIEW 2 INITIAL VALUE PROBLEMS The Problem Posing a Problem 3 EULER S METHOD Method Errors 4 SUMMARY

26 SOLVING AN INITIAL VALUE PROBLEM The simplest method to solve an ODE is the Euler method In order to solve, we must discretise the problem make a continuous (infinite) problem discrete (finite) Divide up the interval [a, b] into n equally spaced intervals h a b x x x x x i n

27 SOLVING AN INITIAL VALUE PROBLEM Suppose y(x) is the unique solution to the ODE, and is twice differentiable Apply a Taylor series approximation around x i then we have y(x i+1 ) = y(x i ) + y (x i )h y (ξ) where x i ξ x i+1.

28 SOLVING AN INITIAL VALUE PROBLEM Suppose y(x) is the unique solution to the ODE, and is twice differentiable Apply a Taylor series approximation around x i then we have y(x i+1 ) = y(x i ) + f(x i, y(x i ))h y (ξ) where x i ξ x i+1. Since y is a solution to the ODE, we can replace y by the function f(x, y)

29 THE EULER METHOD Assume w i is our approximation to y at x i, then w 0 = α Then to find all subsequent values of w,set the remainder to zero in the previous equation to obtain: w i+1 = w i + hf(x i, w i ), for each i = 0, 1,...,n 1

30 OUTLINE 1 REVIEW 2 INITIAL VALUE PROBLEMS The Problem Posing a Problem 3 EULER S METHOD Method Errors 4 SUMMARY

31 TRUNCATION ERRORS We would like to be able to compare the errors for different methods We can use the local truncation error difference between equation and the approximation For the Euler method we have: τ i+1 (h) = y i+1 (y i + hf(x i, y i )) h = y i+1 y i h f(x i, y i )

32 TRUNCATION ERRORS We would like to be able to compare the errors for different methods We can use the local truncation error difference between equation and the approximation For the Euler method we have: τ i+1 (h) = y i+1 (y i + hf(x i, y i )) h = y i+1 y i h f(x i, y i )

33 TRUNCATION ERRORS We can calculate the truncation error as τ i+1 (h) = h 2 y (ξ i ), and if y is bounded by the constant M on the interval [a, b] then τ i+1 (h) h 2 M. Hence the truncation error is O(h). A method with truncation error O(h p ) is called an order p method

34 TRUNCATION ERRORS We can calculate the truncation error as τ i+1 (h) = h 2 y (ξ i ), and if y is bounded by the constant M on the interval [a, b] then τ i+1 (h) h 2 M. Hence the truncation error is O(h). A method with truncation error O(h p ) is called an order p method

35 TRUNCATION ERRORS We can calculate the truncation error as τ i+1 (h) = h 2 y (ξ i ), and if y is bounded by the constant M on the interval [a, b] then τ i+1 (h) h 2 M. Hence the truncation error is O(h). A method with truncation error O(h p ) is called an order p method

36 SUMMARY Need Lipschitz condition to say a problem is well Posed Problems Euler s Method is a first order method w i+1 = w i + hf(x i, w i ), for each i = 0, 1,...,n 1 Truncation errors give a quick estimate of error bounds on the problem

Euler s Methods (a family of Runge- Ku9a methods)

Euler s Methods (a family of Runge- Ku9a methods) Euler s Methods (a family of Runge- Ku9a methods) ODE IVP An Ordinary Differential Equation (ODE) is an equation that contains a function having one independent variable: The equation is coupled with an

More information

Mathematics for chemical engineers

Mathematics for chemical engineers Mathematics for chemical engineers Drahoslava Janovská Department of mathematics Winter semester 2013-2014 Numerical solution of ordinary differential equations Initial value problem Outline 1 Introduction

More information

Direction Fields; Euler s Method

Direction Fields; Euler s Method Direction Fields; Euler s Method It frequently happens that we cannot solve first order systems dy (, ) dx = f xy or corresponding initial value problems in terms of formulas. Remarkably, however, this

More information

Module 2: Single Step Methods Lecture 4: The Euler Method. The Lecture Contains: The Euler Method. Euler's Method (Analytical Interpretations)

Module 2: Single Step Methods Lecture 4: The Euler Method. The Lecture Contains: The Euler Method. Euler's Method (Analytical Interpretations) The Lecture Contains: The Euler Method Euler's Method (Analytical Interpretations) An Analytical Example file:///g /Numerical_solutions/lecture4/4_1.htm[8/26/2011 11:14:40 AM] We shall now describe methods

More information

over The idea is to construct an algorithm to solve the IVP ODE (9.1)

over The idea is to construct an algorithm to solve the IVP ODE (9.1) Runge- Ku(a Methods Review of Heun s Method (Deriva:on from Integra:on) The idea is to construct an algorithm to solve the IVP ODE (9.1) over To obtain the solution point we can use the fundamental theorem

More information

Math 104: Euler s Method and Applications of ODEs

Math 104: Euler s Method and Applications of ODEs Math 104: Euler s Method and Applications of ODEs Ryan Blair University of Pennsylvania Tuesday January 29, 2013 Ryan Blair (U Penn) Math 104:Euler s Method and Applications of ODEsTuesday January 29,

More information

x n x n stepnumber k order r error constant C r+1 1/2 5/12 3/8 251/720 abs. stab. interval (α,0) /11-3/10

x n x n stepnumber k order r error constant C r+1 1/2 5/12 3/8 251/720 abs. stab. interval (α,0) /11-3/10 MATH 573 LECTURE NOTES 77 13.8. Predictor-corrector methods. We consider the Adams methods, obtained from the formula xn+1 xn+1 y(x n+1 y(x n ) = y (x)dx = f(x,y(x))dx x n x n by replacing f by an interpolating

More information

ODE IVP. An Ordinary Differential Equation (ODE) is an equation that contains a function having one independent variable:

ODE IVP. An Ordinary Differential Equation (ODE) is an equation that contains a function having one independent variable: Euler s Methods ODE IVP An Ordinary Differential Equation (ODE) is an equation that contains a function having one independent variable: The equation is coupled with an initial value/condition (i.e., value

More information

(1) Given the following system of linear equations, which depends on a parameter a R, 3x y + 5z = 2 4x + y + (a 2 14)z = a + 2

(1) Given the following system of linear equations, which depends on a parameter a R, 3x y + 5z = 2 4x + y + (a 2 14)z = a + 2 (1 Given the following system of linear equations, which depends on a parameter a R, x + 2y 3z = 4 3x y + 5z = 2 4x + y + (a 2 14z = a + 2 (a Classify the system of equations depending on the values of

More information

Surfaces and Partial Derivatives

Surfaces and Partial Derivatives Surfaces and Partial Derivatives James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 9, 2016 Outline Partial Derivatives Tangent Planes

More information

B. Examples Set up the integral(s) needed to find the area of the region bounded by

B. Examples Set up the integral(s) needed to find the area of the region bounded by Math 176 Calculus Sec. 6.1: Area Between Curves I. Area between the Curve and the x Axis A. Let f(x) 0 be continuous on [a,b]. The area of the region between the graph of f and the x-axis is A = f ( x)

More information

Homework Set #2-3, Math 475B

Homework Set #2-3, Math 475B Homework Set #2-3, Math 475B Part I: Matlab In the last semester you learned a number of essential features of MATLAB. 1. In this instance, you will learn to make 3D plots and contour plots of z = f(x,

More information

Lecture-12: Closed Sets

Lecture-12: Closed Sets and Its Examples Properties of Lecture-12: Dr. Department of Mathematics Lovely Professional University Punjab, India October 18, 2014 Outline Introduction and Its Examples Properties of 1 Introduction

More information

LECTURE 18 - OPTIMIZATION

LECTURE 18 - OPTIMIZATION LECTURE 18 - OPTIMIZATION CHRIS JOHNSON Abstract. In this lecture we ll describe extend the optimization techniques you learned in your first semester calculus class to optimize functions of multiple variables.

More information

Euler and improved Euler using SAGE

Euler and improved Euler using SAGE Euler and improved Euler using SAGE The goal is to find an approximate solution to the problem y = f(x, y), y(a) = c, (1) where f(x, y) is some given function We shall try to approximate the value of the

More information

ChE 400: Applied Chemical Engineering Calculations Tutorial 6: Numerical Solution of ODE Using Excel and Matlab

ChE 400: Applied Chemical Engineering Calculations Tutorial 6: Numerical Solution of ODE Using Excel and Matlab ChE 400: Applied Chemical Engineering Calculations Tutorial 6: Numerical Solution of ODE Using Excel and Matlab Tutorial 6: Numerical Solution of ODE Gerardine G. Botte This handout contains information

More information

(Part - 1) P. Sam Johnson. April 14, Numerical Solution of. Ordinary Differential Equations. (Part - 1) Sam Johnson. NIT Karnataka.

(Part - 1) P. Sam Johnson. April 14, Numerical Solution of. Ordinary Differential Equations. (Part - 1) Sam Johnson. NIT Karnataka. P. April 14, 2015 1/51 Overview We discuss the following important methods of solving ordinary differential equations of first / second order. Picard s method of successive approximations (Method of successive

More information

Definition. A Taylor series of a function f is said to represent function f, iff the error term converges to 0 for n going to infinity.

Definition. A Taylor series of a function f is said to represent function f, iff the error term converges to 0 for n going to infinity. Definition A Taylor series of a function f is said to represent function f, iff the error term converges to 0 for n going to infinity. 120202: ESM4A - Numerical Methods 32 f(x) = e x at point c = 0. Taylor

More information

4 Visualization and. Approximation

4 Visualization and. Approximation 4 Visualization and Approximation b A slope field for the differential equation y tan(x + y) tan(x) tan(y). It is not always possible to write down an explicit formula for the solution to a differential

More information

Mathematical Methods and Modeling Laboratory class. Numerical Integration of Ordinary Differential Equations

Mathematical Methods and Modeling Laboratory class. Numerical Integration of Ordinary Differential Equations Mathematical Methods and Modeling Laboratory class Numerical Integration of Ordinary Differential Equations Exact Solutions of ODEs Cauchy s Initial Value Problem in normal form: Recall: if f is locally

More information

Updated: March 31, 2016 Calculus III Section Math 232. Calculus III. Brian Veitch Fall 2015 Northern Illinois University

Updated: March 31, 2016 Calculus III Section Math 232. Calculus III. Brian Veitch Fall 2015 Northern Illinois University Updated: March 3, 26 Calculus III Section 5.6 Math 232 Calculus III Brian Veitch Fall 25 Northern Illinois University 5.6 Triple Integrals In order to build up to a triple integral let s start back at

More information

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections REVIEW I MATH 254 Calculus IV Exam I (Friday, April 29 will cover sections 14.1-8. 1. Functions of multivariables The definition of multivariable functions is similar to that of functions of one variable.

More information

Kevin James. MTHSC 206 Section 14.5 The Chain Rule

Kevin James. MTHSC 206 Section 14.5 The Chain Rule MTHSC 206 Section 14.5 The Chain Rule Theorem (Chain Rule - Case 1) Suppose that z = f (x, y) is a differentiable function and that x(t) and y(t) are both differentiable functions as well. Then, dz dt

More information

Numerical Solutions of Differential Equations (1)

Numerical Solutions of Differential Equations (1) Numerical Solutions of Differential Equations (1) Euler method Sources of error Truncation Round-off error Error balance in numerical integration Euler Method Many differential equations don't have an

More information

Finite difference methods

Finite difference methods Finite difference methods Siltanen/Railo/Kaarnioja Spring 8 Applications of matrix computations Applications of matrix computations Finite difference methods Spring 8 / Introduction Finite difference methods

More information

Maximizing an interpolating quadratic

Maximizing an interpolating quadratic Week 11: Monday, Apr 9 Maximizing an interpolating quadratic Suppose that a function f is evaluated on a reasonably fine, uniform mesh {x i } n i=0 with spacing h = x i+1 x i. How can we find any local

More information

Application 2.4 Implementing Euler's Method

Application 2.4 Implementing Euler's Method Application 2.4 Implementing Euler's Method One's understanding of a numerical algorithm is sharpened by considering its implementation in the form of a calculator or computer program. Figure 2.4.13 in

More information

Continuity and Tangent Lines for functions of two variables

Continuity and Tangent Lines for functions of two variables Continuity and Tangent Lines for functions of two variables James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University April 4, 2014 Outline 1 Continuity

More information

Ordinary differential equations solving methods

Ordinary differential equations solving methods Radim Hošek, A07237 radhost@students.zcu.cz Ordinary differential equations solving methods Problem: y = y2 (1) y = x y (2) y = sin ( + y 2 ) (3) Where it is possible we try to solve the equations analytically,

More information

Truncation Errors. Applied Numerical Methods with MATLAB for Engineers and Scientists, 2nd ed., Steven C. Chapra, McGraw Hill, 2008, Ch. 4.

Truncation Errors. Applied Numerical Methods with MATLAB for Engineers and Scientists, 2nd ed., Steven C. Chapra, McGraw Hill, 2008, Ch. 4. Chapter 4: Roundoff and Truncation Errors Applied Numerical Methods with MATLAB for Engineers and Scientists, 2nd ed., Steven C. Chapra, McGraw Hill, 2008, Ch. 4. 1 Outline Errors Accuracy and Precision

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Homework - Solutions 3 2 Homework 2 - Solutions 3 3 Homework 3 - Solutions 9 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus

More information

Math 213 Calculus III Practice Exam 2 Solutions Fall 2002

Math 213 Calculus III Practice Exam 2 Solutions Fall 2002 Math 13 Calculus III Practice Exam Solutions Fall 00 1. Let g(x, y, z) = e (x+y) + z (x + y). (a) What is the instantaneous rate of change of g at the point (,, 1) in the direction of the origin? We want

More information

Surfaces and Partial Derivatives

Surfaces and Partial Derivatives Surfaces and James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 15, 2017 Outline 1 2 Tangent Planes Let s go back to our simple surface

More information

University of California, Berkeley

University of California, Berkeley University of California, Berkeley FINAL EXAMINATION, Fall 2012 DURATION: 3 hours Department of Mathematics MATH 53 Multivariable Calculus Examiner: Sean Fitzpatrick Total: 100 points Family Name: Given

More information

over The idea is to construct an algorithm to solve the IVP ODE (8.1)

over The idea is to construct an algorithm to solve the IVP ODE (8.1) Runge- Ku(a Methods Review of Heun s Method (Deriva:on from Integra:on) The idea is to construct an algorithm to solve the IVP ODE (8.1) over To obtain the solution point we can use the fundamental theorem

More information

Computer Simulations

Computer Simulations Computer Simulations A practical approach to simulation Semra Gündüç gunduc@ankara.edu.tr Ankara University Faculty of Engineering, Department of Computer Engineering 2014-2015 Spring Term Ankara University

More information

Chapter 6. Curves and Surfaces. 6.1 Graphs as Surfaces

Chapter 6. Curves and Surfaces. 6.1 Graphs as Surfaces Chapter 6 Curves and Surfaces In Chapter 2 a plane is defined as the zero set of a linear function in R 3. It is expected a surface is the zero set of a differentiable function in R n. To motivate, graphs

More information

Background for Surface Integration

Background for Surface Integration Background for urface Integration 1 urface Integrals We have seen in previous work how to define and compute line integrals in R 2. You should remember the basic surface integrals that we will need to

More information

Page 129 Exercise 5: Suppose that the joint p.d.f. of two random variables X and Y is as follows: { c(x. 0 otherwise. ( 1 = c. = c

Page 129 Exercise 5: Suppose that the joint p.d.f. of two random variables X and Y is as follows: { c(x. 0 otherwise. ( 1 = c. = c Stat Solutions for Homework Set Page 9 Exercise : Suppose that the joint p.d.f. of two random variables X and Y is as follows: { cx fx, y + y for y x, < x < otherwise. Determine a the value of the constant

More information

The Divergence Theorem

The Divergence Theorem The Divergence Theorem MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Summer 2011 Green s Theorem Revisited Green s Theorem: M(x, y) dx + N(x, y) dy = C R ( N x M ) da y y x Green

More information

Math 113 Calculus III Final Exam Practice Problems Spring 2003

Math 113 Calculus III Final Exam Practice Problems Spring 2003 Math 113 Calculus III Final Exam Practice Problems Spring 23 1. Let g(x, y, z) = 2x 2 + y 2 + 4z 2. (a) Describe the shapes of the level surfaces of g. (b) In three different graphs, sketch the three cross

More information

M3P1/M4P1 (2005) Dr M Ruzhansky Metric and Topological Spaces Summary of the course: definitions, examples, statements.

M3P1/M4P1 (2005) Dr M Ruzhansky Metric and Topological Spaces Summary of the course: definitions, examples, statements. M3P1/M4P1 (2005) Dr M Ruzhansky Metric and Topological Spaces Summary of the course: definitions, examples, statements. Chapter 1: Metric spaces and convergence. (1.1) Recall the standard distance function

More information

= w. w u. u ; u + w. x x. z z. y y. v + w. . Remark. The formula stated above is very important in the theory of. surface integral.

= w. w u. u ; u + w. x x. z z. y y. v + w. . Remark. The formula stated above is very important in the theory of. surface integral. 1 Chain rules 2 Directional derivative 3 Gradient Vector Field 4 Most Rapid Increase 5 Implicit Function Theorem, Implicit Differentiation 6 Lagrange Multiplier 7 Second Derivative Test Theorem Suppose

More information

Curves, Tangent Planes, and Differentials ( ) Feb. 26, 2012 (Sun) Lecture 9. Partial Derivatives: Signs on Level Curves, Tangent

Curves, Tangent Planes, and Differentials ( ) Feb. 26, 2012 (Sun) Lecture 9. Partial Derivatives: Signs on Level Curves, Tangent Lecture 9. Partial Derivatives: Signs on Level Curves, Tangent Planes, and Differentials ( 11.3-11.4) Feb. 26, 2012 (Sun) Signs of Partial Derivatives on Level Curves Level curves are shown for a function

More information

Functions of Two variables.

Functions of Two variables. Functions of Two variables. Ferdinánd Filip filip.ferdinand@bgk.uni-obuda.hu siva.banki.hu/jegyzetek 27 February 217 Ferdinánd Filip 27 February 217 Functions of Two variables. 1 / 36 Table of contents

More information

Lecture 15. Lecturer: Prof. Sergei Fedotov Calculus and Vectors. Length of a Curve and Parametric Equations

Lecture 15. Lecturer: Prof. Sergei Fedotov Calculus and Vectors. Length of a Curve and Parametric Equations Lecture 15 Lecturer: Prof. Sergei Fedotov 10131 - Calculus and Vectors Length of a Curve and Parametric Equations Sergei Fedotov (University of Manchester) MATH10131 2011 1 / 5 Lecture 15 1 Length of a

More information

Lecture : Topological Space

Lecture : Topological Space Example of Lecture : Dr. Department of Mathematics Lovely Professional University Punjab, India October 18, 2014 Outline Example of 1 2 3 Example of 4 5 6 Example of I Topological spaces and continuous

More information

ODEs occur quite often in physics and astrophysics: Wave Equation in 1-D stellar structure equations hydrostatic equation in atmospheres orbits

ODEs occur quite often in physics and astrophysics: Wave Equation in 1-D stellar structure equations hydrostatic equation in atmospheres orbits Solving ODEs General Stuff ODEs occur quite often in physics and astrophysics: Wave Equation in 1-D stellar structure equations hydrostatic equation in atmospheres orbits need workhorse solvers to deal

More information

Lecture 15: The subspace topology, Closed sets

Lecture 15: The subspace topology, Closed sets Lecture 15: The subspace topology, Closed sets 1 The Subspace Topology Definition 1.1. Let (X, T) be a topological space with topology T. subset of X, the collection If Y is a T Y = {Y U U T} is a topology

More information

Exact equations are first order DEs of the form M(x, y) + N(x, y) y' = 0 for which we can find a function f(x, φ(x)) so that

Exact equations are first order DEs of the form M(x, y) + N(x, y) y' = 0 for which we can find a function f(x, φ(x)) so that Section 2.6 Exact Equations (ONLY) Key Terms: Exact equations are first order DEs of the form M(x, y) + N(x, y) y' = 0 for which we can find a function f(x, φ(x)) so that The construction of f(x, φ(x))

More information

Welcome to MTH 308 A/B!! Principles of Numerical Computation / Numerical Analysis and Scientific Computing

Welcome to MTH 308 A/B!! Principles of Numerical Computation / Numerical Analysis and Scientific Computing Welcome to MTH 308 A/B!! Principles of Numerical Computation / Numerical Analysis and Scientific Computing Contact Information Instructor : Office : 327, Faculty Building Phone : 7880 or 0512-259-7880

More information

2.8. Connectedness A topological space X is said to be disconnected if X is the disjoint union of two non-empty open subsets. The space X is said to

2.8. Connectedness A topological space X is said to be disconnected if X is the disjoint union of two non-empty open subsets. The space X is said to 2.8. Connectedness A topological space X is said to be disconnected if X is the disjoint union of two non-empty open subsets. The space X is said to be connected if it is not disconnected. A subset of

More information

LECTURE 13, THURSDAY APRIL 1, 2004

LECTURE 13, THURSDAY APRIL 1, 2004 LECTURE 13, THURSDAY APRIL 1, 2004 FRANZ LEMMERMEYER 1. Parametrizing Curves of Genus 0 As a special case of the theorem that curves of genus 0, in particular those with the maximal number of double points,

More information

The listing says y(1) = How did the computer know this?

The listing says y(1) = How did the computer know this? 18.03 Class 2, Feb 3, 2010 Numerical Methods [1] How do you know the value of e? [2] Euler's method [3] Sources of error [4] Higher order methods [1] The study of differential equations has three parts:.

More information

SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION

SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION CHAPTER 5 SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION Alessandro Artale UniBZ - http://www.inf.unibz.it/ artale/ SECTION 5.5 Application: Correctness of Algorithms Copyright Cengage Learning. All

More information

MULTI-DIMENSIONAL MONTE CARLO INTEGRATION

MULTI-DIMENSIONAL MONTE CARLO INTEGRATION CS580: Computer Graphics KAIST School of Computing Chapter 3 MULTI-DIMENSIONAL MONTE CARLO INTEGRATION 2 1 Monte Carlo Integration This describes a simple technique for the numerical evaluation of integrals

More information

Ordinary Differential Equations

Ordinary Differential Equations Next: Partial Differential Equations Up: Numerical Analysis for Chemical Previous: Numerical Differentiation and Integration Subsections Runge-Kutta Methods Euler's Method Improvement of Euler's Method

More information

CS321. Introduction to Numerical Methods

CS321. Introduction to Numerical Methods CS31 Introduction to Numerical Methods Lecture 1 Number Representations and Errors Professor Jun Zhang Department of Computer Science University of Kentucky Lexington, KY 40506 0633 August 5, 017 Number

More information

Stanford University CS261: Optimization Handout 1 Luca Trevisan January 4, 2011

Stanford University CS261: Optimization Handout 1 Luca Trevisan January 4, 2011 Stanford University CS261: Optimization Handout 1 Luca Trevisan January 4, 2011 Lecture 1 In which we describe what this course is about and give two simple examples of approximation algorithms 1 Overview

More information

Introduction to PDEs: Notation, Terminology and Key Concepts

Introduction to PDEs: Notation, Terminology and Key Concepts Chapter 1 Introduction to PDEs: Notation, Terminology and Key Concepts 1.1 Review 1.1.1 Goal The purpose of this section is to briefly review notation as well as basic concepts from calculus. We will also

More information

Questions Q1. (a) Find the values of the constants A, B and C. (4) b) Hence find

Questions Q1. (a) Find the values of the constants A, B and C. (4) b) Hence find Questions Q1. (a) Find the values of the constants A, B and C. (4) b) Hence find (ii) Find, leaving your answer in the form a + ln b, where a and b are constants. (6) (Total 10 marks) Q2. (a) Find the

More information

Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Spring 2018 Instructor: Dr. Sateesh Mane.

Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Spring 2018 Instructor: Dr. Sateesh Mane. Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Spring 2018 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 2018 16 Lecture 16 May 3, 2018 Numerical solution of systems

More information

We show that the composite function h, h(x) = g(f(x)) is a reduction h: A m C.

We show that the composite function h, h(x) = g(f(x)) is a reduction h: A m C. 219 Lemma J For all languages A, B, C the following hold i. A m A, (reflexive) ii. if A m B and B m C, then A m C, (transitive) iii. if A m B and B is Turing-recognizable, then so is A, and iv. if A m

More information

Math 225 Scientific Computing II Outline of Lectures

Math 225 Scientific Computing II Outline of Lectures Math 225 Scientific Computing II Outline of Lectures Spring Semester 2003 I. Interpolating polynomials Lagrange formulation of interpolating polynomial Uniqueness of interpolating polynomial of degree

More information

Tangent Planes and Linear Approximations

Tangent Planes and Linear Approximations February 21, 2007 Tangent Planes Tangent Planes Let S be a surface with equation z = f (x, y). Tangent Planes Let S be a surface with equation z = f (x, y). Let P(x 0, y 0, z 0 ) be a point on S. Tangent

More information

1 Scope, Bound and Free Occurrences, Closed Terms

1 Scope, Bound and Free Occurrences, Closed Terms CS 6110 S18 Lecture 2 The λ-calculus Last time we introduced the λ-calculus, a mathematical system for studying the interaction of functional abstraction and functional application. We discussed the syntax

More information

2.9 Linear Approximations and Differentials

2.9 Linear Approximations and Differentials 2.9 Linear Approximations and Differentials 2.9.1 Linear Approximation Consider the following graph, Recall that this is the tangent line at x = a. We had the following definition, f (a) = lim x a f(x)

More information

Chapter 3 Numerical Methods

Chapter 3 Numerical Methods Chapter 3 Numerical Methods Part 1 3.1 Linearization and Optimization of Functions of Vectors 1 Problem Notation 2 Outline 3.1.1 Linearization 3.1.2 Optimization of Objective Functions 3.1.3 Constrained

More information

Computational Methods. Sources of Errors

Computational Methods. Sources of Errors Computational Methods Sources of Errors Manfred Huber 2011 1 Numerical Analysis / Scientific Computing Many problems in Science and Engineering can not be solved analytically on a computer Numeric solutions

More information

Distance-to-Solution Estimates for Optimization Problems with Constraints in Standard Form

Distance-to-Solution Estimates for Optimization Problems with Constraints in Standard Form Distance-to-Solution Estimates for Optimization Problems with Constraints in Standard Form Philip E. Gill Vyacheslav Kungurtsev Daniel P. Robinson UCSD Center for Computational Mathematics Technical Report

More information

Properties of a Function s Graph

Properties of a Function s Graph Section 3.2 Properties of a Function s Graph Objective 1: Determining the Intercepts of a Function An intercept of a function is a point on the graph of a function where the graph either crosses or touches

More information

The following information is for reviewing the material since Exam 3:

The following information is for reviewing the material since Exam 3: Outcomes List for Math 121 Calculus I Fall 2010-2011 General Information: The purpose of this Outcomes List is to give you a concrete summary of the material you should know, and the skills you should

More information

CS321 Introduction To Numerical Methods

CS321 Introduction To Numerical Methods CS3 Introduction To Numerical Methods Fuhua (Frank) Cheng Department of Computer Science University of Kentucky Lexington KY 456-46 - - Table of Contents Errors and Number Representations 3 Error Types

More information

Euler s Method for Approximating Solution Curves

Euler s Method for Approximating Solution Curves Euler s Method for Approximating Solution Curves As you may have begun to suspect at this point, time constraints will allow us to learn only a few of the many known methods for solving differential equations.

More information

Ellipsoid Algorithm :Algorithms in the Real World. Ellipsoid Algorithm. Reduction from general case

Ellipsoid Algorithm :Algorithms in the Real World. Ellipsoid Algorithm. Reduction from general case Ellipsoid Algorithm 15-853:Algorithms in the Real World Linear and Integer Programming II Ellipsoid algorithm Interior point methods First polynomial-time algorithm for linear programming (Khachian 79)

More information

. 1. Chain rules. Directional derivative. Gradient Vector Field. Most Rapid Increase. Implicit Function Theorem, Implicit Differentiation

. 1. Chain rules. Directional derivative. Gradient Vector Field. Most Rapid Increase. Implicit Function Theorem, Implicit Differentiation 1 Chain rules 2 Directional derivative 3 Gradient Vector Field 4 Most Rapid Increase 5 Implicit Function Theorem, Implicit Differentiation 6 Lagrange Multiplier 7 Second Derivative Test Theorem Suppose

More information

Comprehensive Practice Handout MATH 1325 entire semester

Comprehensive Practice Handout MATH 1325 entire semester 1 Comprehensive Practice Handout MATH 1325 entire semester Test 1 material Use the graph of f(x) below to answer the following 6 questions. 7 1. Find the value of lim x + f(x) 2. Find the value of lim

More information

Chapter 5 Partial Differentiation

Chapter 5 Partial Differentiation Chapter 5 Partial Differentiation For functions of one variable, y = f (x), the rate of change of the dependent variable can dy be found unambiguously by differentiation: f x. In this chapter we explore

More information

THE TANGENT PLANE 6.1 INTRODUCTION TO THE TANGENT PLANE CHAPTER 6:

THE TANGENT PLANE 6.1 INTRODUCTION TO THE TANGENT PLANE CHAPTER 6: CHAPTER 6: THE TANGENT PLANE 6.1 INTRODUCTION TO THE TANGENT PLANE The following diagram contains the graph of the function y = x 2 and the graph of its tangent line at the point (1, 1) With these graphs,

More information

APPROXIMATING PDE s IN L 1

APPROXIMATING PDE s IN L 1 APPROXIMATING PDE s IN L 1 Veselin Dobrev Jean-Luc Guermond Bojan Popov Department of Mathematics Texas A&M University NONLINEAR APPROXIMATION TECHNIQUES USING L 1 Texas A&M May 16-18, 2008 Outline 1 Outline

More information

Directional Derivatives and the Gradient Vector Part 2

Directional Derivatives and the Gradient Vector Part 2 Directional Derivatives and the Gradient Vector Part 2 Lecture 25 February 28, 2007 Recall Fact Recall Fact If f is a dierentiable function of x and y, then f has a directional derivative in the direction

More information

Review of Calculus, cont d

Review of Calculus, cont d Jim Lambers MAT 460/560 Fall Semester 2009-10 Lecture 4 Notes These notes correspond to Sections 1.1 1.2 in the text. Review of Calculus, cont d Taylor s Theorem, cont d We conclude our discussion of Taylor

More information

OpenGL Graphics System. 2D Graphics Primitives. Drawing 2D Graphics Primitives. 2D Graphics Primitives. Mathematical 2D Primitives.

OpenGL Graphics System. 2D Graphics Primitives. Drawing 2D Graphics Primitives. 2D Graphics Primitives. Mathematical 2D Primitives. D Graphics Primitives Eye sees Displays - CRT/LCD Frame buffer - Addressable pixel array (D) Graphics processor s main function is to map application model (D) by projection on to D primitives: points,

More information

53:244 (58:254) Energy Principles in Structural Mechanics. virtual work, principles of stationary and minimum potential energy;

53:244 (58:254) Energy Principles in Structural Mechanics. virtual work, principles of stationary and minimum potential energy; Introduction, course perspective, course organization. Material: Derivation of basic principles of mechanics; principle of virtual work, principles of stationary and minimum potential energy; Hamilton

More information

Exam 1 Review. MATH Intuitive Calculus Fall Name:. Show your reasoning. Use standard notation correctly.

Exam 1 Review. MATH Intuitive Calculus Fall Name:. Show your reasoning. Use standard notation correctly. MATH 11012 Intuitive Calculus Fall 2012 Name:. Exam 1 Review Show your reasoning. Use standard notation correctly. 1. Consider the function f depicted below. y 1 1 x (a) Find each of the following (or

More information

B.Stat / B.Math. Entrance Examination 2017

B.Stat / B.Math. Entrance Examination 2017 B.Stat / B.Math. Entrance Examination 017 BOOKLET NO. TEST CODE : UGA Forenoon Questions : 0 Time : hours Write your Name, Registration Number, Test Centre, Test Code and the Number of this Booklet in

More information

Math 241, Exam 3 Information.

Math 241, Exam 3 Information. Math 241, xam 3 Information. 11/28/12, LC 310, 11:15-12:05. xam 3 will be based on: Sections 15.2-15.4, 15.6-15.8. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

More information

EC 521 MATHEMATICAL METHODS FOR ECONOMICS. Lecture 2: Convex Sets

EC 521 MATHEMATICAL METHODS FOR ECONOMICS. Lecture 2: Convex Sets EC 51 MATHEMATICAL METHODS FOR ECONOMICS Lecture : Convex Sets Murat YILMAZ Boğaziçi University In this section, we focus on convex sets, separating hyperplane theorems and Farkas Lemma. And as an application

More information

Point-Set Topology 1. TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS

Point-Set Topology 1. TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS Point-Set Topology 1. TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS Definition 1.1. Let X be a set and T a subset of the power set P(X) of X. Then T is a topology on X if and only if all of the following

More information

MAC2313 Test 3 A E g(x, y, z) dy dx dz

MAC2313 Test 3 A E g(x, y, z) dy dx dz MAC2313 Test 3 A (5 pts) 1. If the function g(x, y, z) is integrated over the cylindrical solid bounded by x 2 + y 2 = 3, z = 1, and z = 7, the correct integral in Cartesian coordinates is given by: A.

More information

SOME REMARKS CONCERNING D METRIC SPACES

SOME REMARKS CONCERNING D METRIC SPACES SOME REMARKS CONCERNING D METRIC SPACES Zead Mustafa and Brailey Sims November 2003 Abstract In this note we make some remarks concerning D metric spaces, and present some examples which show that many

More information

Lesson 10. Transforming 3D Integrals

Lesson 10. Transforming 3D Integrals Lesson 10 Transforming D Integrals Example 1: Triple Integrals to Compute Volume ecall that in previous chapters we could find the length of an interval I by computing dx or the area of a region by computing

More information

Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives

Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives In general, if f is a function of two variables x and y, suppose we let only x vary while keeping y fixed, say y = b, where b is a constant. By the definition of a derivative, we have Then we are really

More information

Topic 5.1: Line Elements and Scalar Line Integrals. Textbook: Section 16.2

Topic 5.1: Line Elements and Scalar Line Integrals. Textbook: Section 16.2 Topic 5.1: Line Elements and Scalar Line Integrals Textbook: Section 16.2 Warm-Up: Derivatives of Vector Functions Suppose r(t) = x(t) î + y(t) ĵ + z(t) ˆk parameterizes a curve C. The vector: is: r (t)

More information

TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3.

TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3. TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3. 301. Definition. Let m be a positive integer, and let X be a set. An m-tuple of elements of X is a function x : {1,..., m} X. We sometimes use x i instead

More information

Polynomials tend to oscillate (wiggle) a lot, even when our true function does not.

Polynomials tend to oscillate (wiggle) a lot, even when our true function does not. AMSC/CMSC 460 Computational Methods, Fall 2007 UNIT 2: Spline Approximations Dianne P O Leary c 2001, 2002, 2007 Piecewise polynomial interpolation Piecewise polynomial interpolation Read: Chapter 3 Skip:

More information

6. Advanced Topics in Computability

6. Advanced Topics in Computability 227 6. Advanced Topics in Computability The Church-Turing thesis gives a universally acceptable definition of algorithm Another fundamental concept in computer science is information No equally comprehensive

More information

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University Part 5 Chapter 19 Numerical Differentiation PowerPoints organized by Dr. Michael R. Gustafson II, Duke University All images copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

Convex sets and convex functions

Convex sets and convex functions Convex sets and convex functions Convex optimization problems Convex sets and their examples Separating and supporting hyperplanes Projections on convex sets Convex functions, conjugate functions ECE 602,

More information

SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION

SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION CHAPTER 5 SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION Copyright Cengage Learning. All rights reserved. SECTION 5.5 Application: Correctness of Algorithms Copyright Cengage Learning. All rights reserved.

More information