Optimal Control Techniques for Dynamic Walking

Size: px
Start display at page:

Download "Optimal Control Techniques for Dynamic Walking"

Transcription

1 Optimal Control Techniques for Dynamic Walking Optimization in Robotics & Biomechanics IWR, University of Heidelberg Presentation partly based on slides by Sebastian Sager, Moritz Diehl and Peter Riede Dynamic Walking 2011 Jena

2 Why do we do this tutorial? There are a lot of optimal control problems in walking robots There are often statements like We use SNOPT (fmincon,... etc.) to optimize robot motions There is a lot more to optimal control than to nonlinear optimization!!

3 Introduction Katja Mombaur

4 Nonlinear Optimization Problem Famous nonlinear example function Rosenbrock function Fletcher Banana valley function

5 Important property of nonlinear optimization problems The optimization is performed in finite dimensional space The result is a point in finite dimensional space This will change for the next problem class

6 Optimal control problems Optimal control = Optimal choice of inputs for a dynamic system

7 Optimal control problems Optimization problems including dynamics e.g. optimal control problems State and control variables are functions in time (infinite-dimensional variables)

8 Optimal control methods Transformation from optimal control to nonlinear optimization problem Optimal control method Nonlinear Optimization Methods

9 MUSCOD an efficient tool for optimal control problems Developed by Bock and co-workers (IWR, University of Heidelberg) Original version Muscod I 1981 (Fortran 77) MUSCOD II developed in 1995 ( C ) Since then continuous extensions and updates (e.g. Mixed integer optimal control, NMPC,...) also contains efficient integrators with sensitivity generation Unfortunately not yet publicly available, but maybe in the near future If you are interested, contact us

10 Optimal Control

11 Optimal control problem (simplifed) Lagrange type Mayer type Objective function Process dynamics Initial and final constrainte

12 Optimal control problem (more complex) e.g. for the optimization of dynamic robot gaits: Multiphase problems with many additional constraints But we will stay with the simple problems for now

13 3 different approaches for optimal control problems Reminder Key problem: How to handle infinite dimensionality of states x(t) and controls u(t)? Dynamic Programming / Hamilton-Jacobi-Bellman equation Indirect Methods/ calculus of variations/ Pontryagin Maximum Principle Direct Methods (discretization of controls) Only approach treated in this talk

14 Direct methods for optimal control problems Common idea: replace control functions u by a discretization (= a finite-dimensional parameter vector) Are also called First-dicretize-then-optimize methods Infinite dimensionality of controls resolved But what about states x(t)?

15 Three different methods for state discretization Direct Collocation Direct Single Shooting Direct Multiple Shooting

16 Direct Single Shooting

17 NLP in Direct Single Shooting

18 Numerical example

19 Single shooting optimization for x 0 = 0.05

20 Single shooting iteration Solution

21 Direct Single Shooting: Pros and Cons + Concept easy to understand + Can use state-of-the art ODE or DAE integrators + (comparatively) Few optimization variables even for large ODE/DAE systems + Need only initial guess for controls q - Can not use knowledge of x in initialization (e.g. in tracking problems) - Often does not work when initial guesses for controls are far off trajectory explodes - Unstable systes are difficult/impossible to treat These drawbacks are adressed by Multiple Shooting Often used in enigineering applications, e.g. in packages gopt (PSE), ADOPT (Marquardt),...

22 Direct Multiple Shooting Bock, Plitt, 1981 Discretize controls piecewise on a coarse grid Use functions which have only local support, e.g. piecewise constant or piecewise linear functions

23 Direct Multiple Shooting Bock, Plitt, 1981 Split long integration interval into many shorter ones Use initial values of all integration intervals as free variables and shoot a new integration from each initial value

24 Direct Multiple Shooting Bock, Plitt, 1981 Introduce constraints to close gaps ( continuity conditions ) Also use integators to compute objective function

25 Discretized Optimal Control Problem

26 How to solve the NLP

27 The Lagrangian Function for NLP Lagrangian function of the constrained NLP equality multipliers λ i may have both signs in a solution inequality multipliers µ i cannot be negative (cf. shadow prices) for inactive constraints, multipliers µ i are zero

28 First order optimality conditions Karush-Kuhn-Tucker necessary conditions (KKT-conditions): x * feasible there exist λ *, µ * such that and it holds the complementary condition i.e. µ i* = 0 or h i (x * )= 0 for all i

29 Newton s method for unconstrained NLP Idea: calculate zeros of the equation to satisfy first order optimality constraints Taylor series: Newton Iteration: Inverse of Hessian Gradient of Lagrangian function

30 SQP - applying Newton s method to KKT Newton s method finds zeros of nonlinear equations

31 SQP sequential quadratic programming This is equivalent to solving the following quadratic programming problem (QP) in each step of the SQP Hessian of Lagrangian function use active-set-strategy to determine active inequality constraints Practical SQP: use update formula for Hessian use step size adaption

32 Example - Newton s method Behavior for banana valley function

33 Example - comparison between methods Newton s method much faster than steepest descent method convergence roughly linear for first iterations since step length α k <1 convergence roughly quadratic for last iterations with step length α k 1

34 Essential steps in NLP solution Sequential quadratic programming (SQP) methods are very efficient methods to solve nonlinear programming problems Use a QP approximation to the NLP at every iteration SQP = Newton s method applied to KKT conditions Reduction of computation times by computation of Hessians via update formula Globalization of convergence by using damped Newton steps Important to note: iterates can be infeasible, only solution must be feasible

35 Back to the optimal control problem

36 Direct multiple shooting Bock, Plitt, 1981 Simultanuous optimization and simulation Discretized optimal control problem (NLP) Variables: discretized states s i, discretized controls u i, parameters p, Phase durations h i s i, u i, p, h x e,i + sens. Initial value problem solution (Integration + derivatives) on each multiple shooting interval s i x e,i Solution by efficient SQP Solution by efficient integrators

37 Trajectory sensitivity generation: black box - a bad idea

38 Trajectory sensitivity generation: IND a good idea! IND = internal numerical differentiation (Bock, 1981)

39 Direct Multiple Shooting Result of discretization: Large-scale nonlinear programming problem (NLP) Special structure originating from discretization (in KKT matrix) Bock, Plitt, 1981 Hessian of Lagrange Fct Constraint Jacobians MUSCOD Solution with structure-exploiting, tailored sequential quadratic programming (SQP) method, special condensing techniques

40 Direct Multiple Shooting example Same example as before; same initialization : u = 0 3 iterations compared to 7 for single shooting

41 Direct Multiple Shooting: Pros and Cons

42 Demonstration of example optimal control problem solution with MUSCOD-II A simple example

43 A simple optimal control problem A car is supposed to travel 300 m in 32 seconds Its initial and final velocity are zero The acceleration can vary between -2 m/s 2 and 1m/s 2 The maximum velocity is 30 m/s Optimization goal: minimize energy in terms of accelrations squared

44 A simple optimal control problem Mathematical formulation: subject to the constraints: Objective function (Lagrange type) lfcn Dynamic process model ffcn Initial and final constraints rdfcn Bounds (data file)

45 MUSCOD-II Model file Macros # of model stages # of global parameters # coupled constraints among them, # of equaliy cnstraints # of differential state variables # of algebraic state variables # of controls # of local parameters # of start point constraints among them, # of equality constraints # of end point constraints among them, # of equality constraints

46 MUSCOD II source file Objective function: Integral term, Lagrange type Dynamical equations (right hand side)

47 MUSCOD II source file Constraint equations

48 MUSCOD-II source file // Define optimal control problem //Define model dimensions // Define model stage with index, dimensions of // state and control variables, pointers to // right hand side and objective fnctions,... etc.

49 MUSCOD-II source file // Define multipoint constraints (at start point, interior points or end point (of last phase)

50 MUSCOD-II data file Define number of multiple shooting intervals (also equals number of control intervals) Define start values, min and max values, and scaling factors for phase time flag to fix variable

51 MUSCOD-II data file Define type of state initialization: s_spec= 0: every point 1: start value generation by linear interpolation 2: start value generation by forward integration Define start values, scaling factors, min and max values for states

52 MUSCOD-II data file Type of control discretization u_ Control variable start values, scaling, min and max

53 MUSCOD-II data file Scaling of constraints: Scaling, min and max of objective function

54 Results

55 Same problem with different objective function Mathematical formulation: subject to the constraints: Objective function (Mayer type) mfcn Dynamic process model ffcn Initial and final constraints rdfcn Bounds (data file)

56 Results for time minimization

57 Demonstration of example optimal control problem solution with MUSCOD-II: A bipedal running robot

58 A bipedal running robot Running motion: alternation between single leg contact phases and flight phases Touch -down Leg1 Phase 1: Contact Takeoff Phase 2: Flight Touch -down Leg2 + Leg shift

59 A bipedal running robot 5 DOF in flight 4 DOF in contact 4 actuators : trunk Upper legs lower legs (massless) Only active in contact phase

60 Model of bipedal running robot Flight phase

61 Contact phase Spring damper forces Coupling between state variables

62 Model of bipedal running robot Contact phase

63 Form of model equations required for optimal control code MUSCOD. x = ffcn where a is the solution of see previous slides also satisfying

64 Switching functions Switching function for lift-off: Must also satisfy condition: Leg spring at rest length Positive vertical velocity (moving up) Switching function for take-off: Must also satisfy condition: Height of contact point = zero Negative vertical velocity at contact point

65 Touchdown discontinuity & Periodicity Inelastic impact: there is a jump in all model velocities at touchdown compute velocity after touchdown: Periodicity constraints on all positions (except forward direction) and velocities

66

67 The same robot performing summersaults... Mombaur et al Only requires modification of periodicity constraints: in torso and leg angles per step

68

69 ... and even open-loop stable flip-flops Requires another modification of periodicity constraints: in torso and leg angles per step

70

71 Literature

72 Thank you for your attention! Katja Mombaur Pictures taken at the Musée de l Automate, Souillac

CasADi tutorial Introduction

CasADi tutorial Introduction Lund, 6 December 2011 CasADi tutorial Introduction Joel Andersson Department of Electrical Engineering (ESAT-SCD) & Optimization in Engineering Center (OPTEC) Katholieke Universiteit Leuven OPTEC (ESAT

More information

Real-Time Optimization for Fast Nonlinear MPC: Algorithms, Theory, and Applications

Real-Time Optimization for Fast Nonlinear MPC: Algorithms, Theory, and Applications Real-Time Optimization for Fast Nonlinear MPC: Algorithms, Theory, and Applications Moritz Diehl Optimization in Engineering Center OPTEC & ESAT, K.U. Leuven Joint work with H. J. Ferreau*, B. Houska*,

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Second Order Optimization Methods Marc Toussaint U Stuttgart Planned Outline Gradient-based optimization (1st order methods) plain grad., steepest descent, conjugate grad.,

More information

Introduction to Optimization Problems and Methods

Introduction to Optimization Problems and Methods Introduction to Optimization Problems and Methods wjch@umich.edu December 10, 2009 Outline 1 Linear Optimization Problem Simplex Method 2 3 Cutting Plane Method 4 Discrete Dynamic Programming Problem Simplex

More information

Fast Direct Multiple Shooting Algorithms for Optimal Robot Control

Fast Direct Multiple Shooting Algorithms for Optimal Robot Control Fast Direct Multiple Shooting Algorithms for Optimal Robot Control Moritz Diehl, Hans Georg Bock, Holger Diedam, Pierre-Brice Wieber To cite this version: Moritz Diehl, Hans Georg Bock, Holger Diedam,

More information

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited.

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited. page v Preface xiii I Basics 1 1 Optimization Models 3 1.1 Introduction... 3 1.2 Optimization: An Informal Introduction... 4 1.3 Linear Equations... 7 1.4 Linear Optimization... 10 Exercises... 12 1.5

More information

Inverse KKT Motion Optimization: A Newton Method to Efficiently Extract Task Spaces and Cost Parameters from Demonstrations

Inverse KKT Motion Optimization: A Newton Method to Efficiently Extract Task Spaces and Cost Parameters from Demonstrations Inverse KKT Motion Optimization: A Newton Method to Efficiently Extract Task Spaces and Cost Parameters from Demonstrations Peter Englert Machine Learning and Robotics Lab Universität Stuttgart Germany

More information

Optimization III: Constrained Optimization

Optimization III: Constrained Optimization Optimization III: Constrained Optimization CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Doug James (and Justin Solomon) CS 205A: Mathematical Methods Optimization III: Constrained Optimization

More information

Programming, numerics and optimization

Programming, numerics and optimization Programming, numerics and optimization Lecture C-4: Constrained optimization Łukasz Jankowski ljank@ippt.pan.pl Institute of Fundamental Technological Research Room 4.32, Phone +22.8261281 ext. 428 June

More information

LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION. 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach

LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION. 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach Basic approaches I. Primal Approach - Feasible Direction

More information

Department of Mathematics Oleg Burdakov of 30 October Consider the following linear programming problem (LP):

Department of Mathematics Oleg Burdakov of 30 October Consider the following linear programming problem (LP): Linköping University Optimization TAOP3(0) Department of Mathematics Examination Oleg Burdakov of 30 October 03 Assignment Consider the following linear programming problem (LP): max z = x + x s.t. x x

More information

Trajectory Optimization

Trajectory Optimization C H A P T E R 12 Trajectory Optimization So far, we have discussed a number of ways to solve optimal control problems via state space search (e.g., Dijkstra s and Dynamic Programming/Value Iteration).

More information

Theoretical Concepts of Machine Learning

Theoretical Concepts of Machine Learning Theoretical Concepts of Machine Learning Part 2 Institute of Bioinformatics Johannes Kepler University, Linz, Austria Outline 1 Introduction 2 Generalization Error 3 Maximum Likelihood 4 Noise Models 5

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Constrained Optimization Marc Toussaint U Stuttgart Constrained Optimization General constrained optimization problem: Let R n, f : R n R, g : R n R m, h : R n R l find min

More information

APPLIED OPTIMIZATION WITH MATLAB PROGRAMMING

APPLIED OPTIMIZATION WITH MATLAB PROGRAMMING APPLIED OPTIMIZATION WITH MATLAB PROGRAMMING Second Edition P. Venkataraman Rochester Institute of Technology WILEY JOHN WILEY & SONS, INC. CONTENTS PREFACE xiii 1 Introduction 1 1.1. Optimization Fundamentals

More information

Constrained Optimization COS 323

Constrained Optimization COS 323 Constrained Optimization COS 323 Last time Introduction to optimization objective function, variables, [constraints] 1-dimensional methods Golden section, discussion of error Newton s method Multi-dimensional

More information

Chapter 3 Numerical Methods

Chapter 3 Numerical Methods Chapter 3 Numerical Methods Part 1 3.1 Linearization and Optimization of Functions of Vectors 1 Problem Notation 2 Outline 3.1.1 Linearization 3.1.2 Optimization of Objective Functions 3.1.3 Constrained

More information

Unconstrained Optimization Principles of Unconstrained Optimization Search Methods

Unconstrained Optimization Principles of Unconstrained Optimization Search Methods 1 Nonlinear Programming Types of Nonlinear Programs (NLP) Convexity and Convex Programs NLP Solutions Unconstrained Optimization Principles of Unconstrained Optimization Search Methods Constrained Optimization

More information

Chapter II. Linear Programming

Chapter II. Linear Programming 1 Chapter II Linear Programming 1. Introduction 2. Simplex Method 3. Duality Theory 4. Optimality Conditions 5. Applications (QP & SLP) 6. Sensitivity Analysis 7. Interior Point Methods 1 INTRODUCTION

More information

DIRECT SEQUENTIAL DYNAMIC OPTIMIZATION WITH AUTOMATIC SWITCHING STRUCTURE DETECTION. Martin Schlegel, Wolfgang Marquardt 1

DIRECT SEQUENTIAL DYNAMIC OPTIMIZATION WITH AUTOMATIC SWITCHING STRUCTURE DETECTION. Martin Schlegel, Wolfgang Marquardt 1 DIRECT SEQUENTIAL DYNAMIC OPTIMIZATION WITH AUTOMATIC SWITCHING STRUCTURE DETECTION Martin Schlegel, Wolfgang Marquardt 1 Lehrstuhl für Prozesstechnik, RWTH Aachen University D 52056 Aachen, Germany Abstract:

More information

Nonlinear Programming

Nonlinear Programming Nonlinear Programming SECOND EDITION Dimitri P. Bertsekas Massachusetts Institute of Technology WWW site for book Information and Orders http://world.std.com/~athenasc/index.html Athena Scientific, Belmont,

More information

Maximizing an interpolating quadratic

Maximizing an interpolating quadratic Week 11: Monday, Apr 9 Maximizing an interpolating quadratic Suppose that a function f is evaluated on a reasonably fine, uniform mesh {x i } n i=0 with spacing h = x i+1 x i. How can we find any local

More information

qpoases - Online Active Set Strategy for Fast Linear MPC

qpoases - Online Active Set Strategy for Fast Linear MPC qpoases - Online Active Set Strategy for Fast Linear MPC Moritz Diehl, Hans Joachim Ferreau, Lieboud Vanden Broeck, Jan Swevers Dept. ESAT and Center of Excellence for Optimization in Engineering OPTEC

More information

Nonlinear Model Predictive Control Using Multiple Shooting Combined with Collocation on Finite Elements

Nonlinear Model Predictive Control Using Multiple Shooting Combined with Collocation on Finite Elements Nonlinear Model Predictive Control Using Multiple Shooting Combined with Collocation on Finite Elements Jasem Tamimi and Pu Li Simulation and Optimal Processes Group, Institute of Automation and Systems

More information

Modern Methods of Data Analysis - WS 07/08

Modern Methods of Data Analysis - WS 07/08 Modern Methods of Data Analysis Lecture XV (04.02.08) Contents: Function Minimization (see E. Lohrmann & V. Blobel) Optimization Problem Set of n independent variables Sometimes in addition some constraints

More information

Preface. and Its Applications 81, ISBN , doi: / , Springer Science+Business Media New York, 2013.

Preface. and Its Applications 81, ISBN , doi: / , Springer Science+Business Media New York, 2013. Preface This book is for all those interested in using the GAMS technology for modeling and solving complex, large-scale, continuous nonlinear optimization problems or applications. Mainly, it is a continuation

More information

Solving Optimal Control Problems with ACADO Toolkit

Solving Optimal Control Problems with ACADO Toolkit Solving Optimal Control Problems with ACADO Toolkit Boris Houska, Hans Joachim Ferreau, Moritz Diehl Electrical Engineering Department K.U. Leuven OPTEC Seminar, 2/9/2009 Electrical Engineering Department

More information

arxiv: v1 [math.oc] 2 Jul 2017

arxiv: v1 [math.oc] 2 Jul 2017 Transcription Methods for Trajectory Optimization A beginners tutorial Matthew P. Kelly Cornell University mpk7@cornell.edu February 8, 5 arxiv:77.84v [math.oc] Jul 7 Abstract This report is an introduction

More information

Animation Lecture 10 Slide Fall 2003

Animation Lecture 10 Slide Fall 2003 Animation Lecture 10 Slide 1 6.837 Fall 2003 Conventional Animation Draw each frame of the animation great control tedious Reduce burden with cel animation layer keyframe inbetween cel panoramas (Disney

More information

25. NLP algorithms. ˆ Overview. ˆ Local methods. ˆ Constrained optimization. ˆ Global methods. ˆ Black-box methods.

25. NLP algorithms. ˆ Overview. ˆ Local methods. ˆ Constrained optimization. ˆ Global methods. ˆ Black-box methods. CS/ECE/ISyE 524 Introduction to Optimization Spring 2017 18 25. NLP algorithms ˆ Overview ˆ Local methods ˆ Constrained optimization ˆ Global methods ˆ Black-box methods ˆ Course wrap-up Laurent Lessard

More information

Applied Lagrange Duality for Constrained Optimization

Applied Lagrange Duality for Constrained Optimization Applied Lagrange Duality for Constrained Optimization Robert M. Freund February 10, 2004 c 2004 Massachusetts Institute of Technology. 1 1 Overview The Practical Importance of Duality Review of Convexity

More information

Computational Optimization. Constrained Optimization Algorithms

Computational Optimization. Constrained Optimization Algorithms Computational Optimization Constrained Optimization Algorithms Same basic algorithms Repeat Determine descent direction Determine step size Take a step Until Optimal But now must consider feasibility,

More information

Constrained and Unconstrained Optimization

Constrained and Unconstrained Optimization Constrained and Unconstrained Optimization Carlos Hurtado Department of Economics University of Illinois at Urbana-Champaign hrtdmrt2@illinois.edu Oct 10th, 2017 C. Hurtado (UIUC - Economics) Numerical

More information

Computational Methods. Constrained Optimization

Computational Methods. Constrained Optimization Computational Methods Constrained Optimization Manfred Huber 2010 1 Constrained Optimization Unconstrained Optimization finds a minimum of a function under the assumption that the parameters can take on

More information

Linear methods for supervised learning

Linear methods for supervised learning Linear methods for supervised learning LDA Logistic regression Naïve Bayes PLA Maximum margin hyperplanes Soft-margin hyperplanes Least squares resgression Ridge regression Nonlinear feature maps Sometimes

More information

Local and Global Minimum

Local and Global Minimum Local and Global Minimum Stationary Point. From elementary calculus, a single variable function has a stationary point at if the derivative vanishes at, i.e., 0. Graphically, the slope of the function

More information

A Short SVM (Support Vector Machine) Tutorial

A Short SVM (Support Vector Machine) Tutorial A Short SVM (Support Vector Machine) Tutorial j.p.lewis CGIT Lab / IMSC U. Southern California version 0.zz dec 004 This tutorial assumes you are familiar with linear algebra and equality-constrained optimization/lagrange

More information

Data Mining Chapter 8: Search and Optimization Methods Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University

Data Mining Chapter 8: Search and Optimization Methods Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Data Mining Chapter 8: Search and Optimization Methods Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Search & Optimization Search and Optimization method deals with

More information

Programs. Introduction

Programs. Introduction 16 Interior Point I: Linear Programs Lab Objective: For decades after its invention, the Simplex algorithm was the only competitive method for linear programming. The past 30 years, however, have seen

More information

Ellipsoid Algorithm :Algorithms in the Real World. Ellipsoid Algorithm. Reduction from general case

Ellipsoid Algorithm :Algorithms in the Real World. Ellipsoid Algorithm. Reduction from general case Ellipsoid Algorithm 15-853:Algorithms in the Real World Linear and Integer Programming II Ellipsoid algorithm Interior point methods First polynomial-time algorithm for linear programming (Khachian 79)

More information

Introduction to Linear Programming. Algorithmic and Geometric Foundations of Optimization

Introduction to Linear Programming. Algorithmic and Geometric Foundations of Optimization Introduction to Linear Programming Algorithmic and Geometric Foundations of Optimization Optimization and Linear Programming Mathematical programming is a class of methods for solving problems which ask

More information

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation Optimization Methods: Introduction and Basic concepts 1 Module 1 Lecture Notes 2 Optimization Problem and Model Formulation Introduction In the previous lecture we studied the evolution of optimization

More information

Convex Optimization. Lijun Zhang Modification of

Convex Optimization. Lijun Zhang   Modification of Convex Optimization Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Modification of http://stanford.edu/~boyd/cvxbook/bv_cvxslides.pdf Outline Introduction Convex Sets & Functions Convex Optimization

More information

Lagrange multipliers. Contents. Introduction. From Wikipedia, the free encyclopedia

Lagrange multipliers. Contents. Introduction. From Wikipedia, the free encyclopedia Lagrange multipliers From Wikipedia, the free encyclopedia In mathematical optimization problems, Lagrange multipliers, named after Joseph Louis Lagrange, is a method for finding the local extrema of a

More information

Problem characteristics. Dynamic Optimization. Examples. Policies vs. Trajectories. Planning using dynamic optimization. Dynamic Optimization Issues

Problem characteristics. Dynamic Optimization. Examples. Policies vs. Trajectories. Planning using dynamic optimization. Dynamic Optimization Issues Problem characteristics Planning using dynamic optimization Chris Atkeson 2004 Want optimal plan, not just feasible plan We will minimize a cost function C(execution). Some examples: C() = c T (x T ) +

More information

Today. Golden section, discussion of error Newton s method. Newton s method, steepest descent, conjugate gradient

Today. Golden section, discussion of error Newton s method. Newton s method, steepest descent, conjugate gradient Optimization Last time Root finding: definition, motivation Algorithms: Bisection, false position, secant, Newton-Raphson Convergence & tradeoffs Example applications of Newton s method Root finding in

More information

Lecture VI: Constraints and Controllers. Parts Based on Erin Catto s Box2D Tutorial

Lecture VI: Constraints and Controllers. Parts Based on Erin Catto s Box2D Tutorial Lecture VI: Constraints and Controllers Parts Based on Erin Catto s Box2D Tutorial Motion Constraints In practice, no rigid body is free to move around on its own. Movement is constrained: wheels on a

More information

A Brief Look at Optimization

A Brief Look at Optimization A Brief Look at Optimization CSC 412/2506 Tutorial David Madras January 18, 2018 Slides adapted from last year s version Overview Introduction Classes of optimization problems Linear programming Steepest

More information

Panagiotis Tsiotras. Dynamics and Control Systems Laboratory Daniel Guggenheim School of Aerospace Engineering Georgia Institute of Technology

Panagiotis Tsiotras. Dynamics and Control Systems Laboratory Daniel Guggenheim School of Aerospace Engineering Georgia Institute of Technology Panagiotis Tsiotras Dynamics and Control Systems Laboratory Daniel Guggenheim School of Aerospace Engineering Georgia Institute of Technology ICRAT 12 Tutotial on Methods for Optimal Trajectory Design

More information

5 Machine Learning Abstractions and Numerical Optimization

5 Machine Learning Abstractions and Numerical Optimization Machine Learning Abstractions and Numerical Optimization 25 5 Machine Learning Abstractions and Numerical Optimization ML ABSTRACTIONS [some meta comments on machine learning] [When you write a large computer

More information

CS 395T Lecture 12: Feature Matching and Bundle Adjustment. Qixing Huang October 10 st 2018

CS 395T Lecture 12: Feature Matching and Bundle Adjustment. Qixing Huang October 10 st 2018 CS 395T Lecture 12: Feature Matching and Bundle Adjustment Qixing Huang October 10 st 2018 Lecture Overview Dense Feature Correspondences Bundle Adjustment in Structure-from-Motion Image Matching Algorithm

More information

Problem Set #3 (With Corrections)

Problem Set #3 (With Corrections) IC-32 Optimal Control Winter 2006 Benoît Chachuat ME C2 401, Ph: 33844, benoit.chachuat@epfl.ch Problem Set #3 (With Corrections) 1. Consider the following NLP problem: min x IR 3 f(x) := x2 1 + x 1 x

More information

David G. Luenberger Yinyu Ye. Linear and Nonlinear. Programming. Fourth Edition. ö Springer

David G. Luenberger Yinyu Ye. Linear and Nonlinear. Programming. Fourth Edition. ö Springer David G. Luenberger Yinyu Ye Linear and Nonlinear Programming Fourth Edition ö Springer Contents 1 Introduction 1 1.1 Optimization 1 1.2 Types of Problems 2 1.3 Size of Problems 5 1.4 Iterative Algorithms

More information

Trajectory Optimization for. Robots

Trajectory Optimization for. Robots LA (x0, U ; µ, ) = `f (xn ) + N X 1 2 k=0 N X1 `(xk, uk ) + k=0 Trajectory Optimization for @c(x, u) @c(x, u) ˆ Q =Q + I Underactuated @x @x (and other) @c(x, u) @c(x, u) ˆ =Q + Q I + I Robots @u @u c(xk,uk

More information

OPTIMIZATION METHODS

OPTIMIZATION METHODS D. Nagesh Kumar Associate Professor Department of Civil Engineering, Indian Institute of Science, Bangalore - 50 0 Email : nagesh@civil.iisc.ernet.in URL: http://www.civil.iisc.ernet.in/~nagesh Brief Contents

More information

A FACTOR GRAPH APPROACH TO CONSTRAINED OPTIMIZATION. A Thesis Presented to The Academic Faculty. Ivan Dario Jimenez

A FACTOR GRAPH APPROACH TO CONSTRAINED OPTIMIZATION. A Thesis Presented to The Academic Faculty. Ivan Dario Jimenez A FACTOR GRAPH APPROACH TO CONSTRAINED OPTIMIZATION A Thesis Presented to The Academic Faculty By Ivan Dario Jimenez In Partial Fulfillment of the Requirements for the Degree B.S. in Computer Science with

More information

Jane Li. Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute

Jane Li. Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute Jane Li Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute (3 pts) Compare the testing methods for testing path segment and finding first

More information

Introduction to Multi-body Dynamics

Introduction to Multi-body Dynamics division Graduate Course ME 244) Tentative Draft Syllabus 1. Basic concepts in 3-D rigid-body mechanics 1. Rigid body vs flexible body 2. Spatial kinematics (3-D rotation transformations) and Euler theorem

More information

Convex Programs. COMPSCI 371D Machine Learning. COMPSCI 371D Machine Learning Convex Programs 1 / 21

Convex Programs. COMPSCI 371D Machine Learning. COMPSCI 371D Machine Learning Convex Programs 1 / 21 Convex Programs COMPSCI 371D Machine Learning COMPSCI 371D Machine Learning Convex Programs 1 / 21 Logistic Regression! Support Vector Machines Support Vector Machines (SVMs) and Convex Programs SVMs are

More information

In other words, we want to find the domain points that yield the maximum or minimum values (extrema) of the function.

In other words, we want to find the domain points that yield the maximum or minimum values (extrema) of the function. 1 The Lagrange multipliers is a mathematical method for performing constrained optimization of differentiable functions. Recall unconstrained optimization of differentiable functions, in which we want

More information

A coupling of discrete and continuous optimization to solve kinodynamic motion planning problems 1

A coupling of discrete and continuous optimization to solve kinodynamic motion planning problems 1 A coupling of discrete and continuous optimization to solve kinodynamic motion planning problems 1 Chantal Landry Weierstrass Institute Mohrenstr. 39, 10117 Berlin, Germany chantal.landry@wias-berlin.de

More information

Augmented Lagrangian Methods

Augmented Lagrangian Methods Augmented Lagrangian Methods Stephen J. Wright 1 2 Computer Sciences Department, University of Wisconsin-Madison. IMA, August 2016 Stephen Wright (UW-Madison) Augmented Lagrangian IMA, August 2016 1 /

More information

From Theory to Application (Optimization and Optimal Control in Space Applications)

From Theory to Application (Optimization and Optimal Control in Space Applications) From Theory to Application (Optimization and Optimal Control in Space Applications) Christof Büskens Optimierung & Optimale Steuerung 02.02.2012 The paradox of mathematics If mathematics refer to reality,

More information

Virtual Manikin Controller Calculating the movement of a human model Master s thesis in Complex Adaptive Systems DANIEL GLEESON

Virtual Manikin Controller Calculating the movement of a human model Master s thesis in Complex Adaptive Systems DANIEL GLEESON Virtual Manikin Controller Calculating the movement of a human model Master s thesis in Complex Adaptive Systems DANIEL GLEESON Department of Applied Mechanics Division of Vehicle Engineering and Autonomous

More information

USING OPTIMIZATION TECHNIQUES FOR THE DESIGN AND CONTROL OF FAST BIPEDS

USING OPTIMIZATION TECHNIQUES FOR THE DESIGN AND CONTROL OF FAST BIPEDS 1 USING OPTIMIZATION TECHNIQUES FOR THE DESIGN AND CONTROL OF FAST BIPEDS T. LUKSCH and K. BERNS Robotics Research Lab, University of Kaiserslautern, Kaiserslautern, Germany E-mail: t.luksch@informatik.uni-kl.de

More information

Chapter Multidimensional Gradient Method

Chapter Multidimensional Gradient Method Chapter 09.04 Multidimensional Gradient Method After reading this chapter, you should be able to: 1. Understand how multi-dimensional gradient methods are different from direct search methods. Understand

More information

Kinematics. Why inverse? The study of motion without regard to the forces that cause it. Forward kinematics. Inverse kinematics

Kinematics. Why inverse? The study of motion without regard to the forces that cause it. Forward kinematics. Inverse kinematics Kinematics Inverse kinematics The study of motion without regard to the forces that cause it Forward kinematics Given a joint configuration, what is the osition of an end oint on the structure? Inverse

More information

Demo 1: KKT conditions with inequality constraints

Demo 1: KKT conditions with inequality constraints MS-C5 Introduction to Optimization Solutions 9 Ehtamo Demo : KKT conditions with inequality constraints Using the Karush-Kuhn-Tucker conditions, see if the points x (x, x ) (, 4) or x (x, x ) (6, ) are

More information

Trajectory Optimization

Trajectory Optimization Trajectory Optimization Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering http://users.wpi.edu/~zli11 Recap We heard about RRT*, a sampling-based planning in high-dimensional cost

More information

Numerical Method in Optimization as a Multi-stage Decision Control System

Numerical Method in Optimization as a Multi-stage Decision Control System Numerical Method in Optimization as a Multi-stage Decision Control System B.S. GOH Institute of Mathematical Sciences University of Malaya 50603 Kuala Lumpur MLYSI gohoptimum@gmail.com bstract: - Numerical

More information

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture - 35 Quadratic Programming In this lecture, we continue our discussion on

More information

Lecture Notes: Constraint Optimization

Lecture Notes: Constraint Optimization Lecture Notes: Constraint Optimization Gerhard Neumann January 6, 2015 1 Constraint Optimization Problems In constraint optimization we want to maximize a function f(x) under the constraints that g i (x)

More information

Sequential Coordinate-wise Algorithm for Non-negative Least Squares Problem

Sequential Coordinate-wise Algorithm for Non-negative Least Squares Problem CENTER FOR MACHINE PERCEPTION CZECH TECHNICAL UNIVERSITY Sequential Coordinate-wise Algorithm for Non-negative Least Squares Problem Woring document of the EU project COSPAL IST-004176 Vojtěch Franc, Miro

More information

Characterizing Improving Directions Unconstrained Optimization

Characterizing Improving Directions Unconstrained Optimization Final Review IE417 In the Beginning... In the beginning, Weierstrass's theorem said that a continuous function achieves a minimum on a compact set. Using this, we showed that for a convex set S and y not

More information

PRIMAL-DUAL INTERIOR POINT METHOD FOR LINEAR PROGRAMMING. 1. Introduction

PRIMAL-DUAL INTERIOR POINT METHOD FOR LINEAR PROGRAMMING. 1. Introduction PRIMAL-DUAL INTERIOR POINT METHOD FOR LINEAR PROGRAMMING KELLER VANDEBOGERT AND CHARLES LANNING 1. Introduction Interior point methods are, put simply, a technique of optimization where, given a problem

More information

New features in dynamic optimization with EcosimPro

New features in dynamic optimization with EcosimPro Journal of Engineering and Technology for Industrial Applications, 2018. Edition. 13.Vol: 04 https://www.itegam-jetia.org ISSN ONLINE: 2447-0228 DOI: https://dx.doi.org/10.5935/2447-0228.20180001 New features

More information

A convex, smooth and invertible contact model for trajectory optimization

A convex, smooth and invertible contact model for trajectory optimization A convex, smooth and invertible contact model for trajectory optimization Emanuel Todorov Departments of Applied Mathematics and Computer Science and Engineering University of Washington Abstract Trajectory

More information

Parameter Estimation in Differential Equations: A Numerical Study of Shooting Methods

Parameter Estimation in Differential Equations: A Numerical Study of Shooting Methods Parameter Estimation in Differential Equations: A Numerical Study of Shooting Methods Franz Hamilton Faculty Advisor: Dr Timothy Sauer January 5, 2011 Abstract Differential equation modeling is central

More information

Sensitivity computation based on CasADi for dynamic optimization problems

Sensitivity computation based on CasADi for dynamic optimization problems Sensitivity computation based on CasADi for dynamic optimization problems 16 th European Workshop on Automatic Differentiation 8 9 December 2014, Jena, Germany Evgeny Lazutkin, Abebe Geletu, Siegbert Hopfgarten,

More information

Augmented Lagrangian Methods

Augmented Lagrangian Methods Augmented Lagrangian Methods Mário A. T. Figueiredo 1 and Stephen J. Wright 2 1 Instituto de Telecomunicações, Instituto Superior Técnico, Lisboa, Portugal 2 Computer Sciences Department, University of

More information

Convex Optimization and Machine Learning

Convex Optimization and Machine Learning Convex Optimization and Machine Learning Mengliu Zhao Machine Learning Reading Group School of Computing Science Simon Fraser University March 12, 2014 Mengliu Zhao SFU-MLRG March 12, 2014 1 / 25 Introduction

More information

Introduction to optimization methods and line search

Introduction to optimization methods and line search Introduction to optimization methods and line search Jussi Hakanen Post-doctoral researcher jussi.hakanen@jyu.fi How to find optimal solutions? Trial and error widely used in practice, not efficient and

More information

Recent developments in simulation, optimization and control of flexible multibody systems

Recent developments in simulation, optimization and control of flexible multibody systems Recent developments in simulation, optimization and control of flexible multibody systems Olivier Brüls Department of Aerospace and Mechanical Engineering University of Liège o.bruls@ulg.ac.be Katholieke

More information

Structure and Synthesis of Robot Motion

Structure and Synthesis of Robot Motion Structure and Synthesis of Robot Motion Dynamics: Constraints, Continua, etc. Subramanian Ramamoorthy School of Informatics 5 February, 2009 Recap Last time, we discussed two major approaches to describing

More information

Dynamic Optimization in JModelica.org

Dynamic Optimization in JModelica.org Dynamic Optimization in JModelica.org Magnusson, Fredrik; Åkesson, Johan Published in: Processes DOI: 10.3390/pr3020471 2015 Document Version: Publisher's PDF, also known as Version of record Link to publication

More information

CS205b/CME306. Lecture 9

CS205b/CME306. Lecture 9 CS205b/CME306 Lecture 9 1 Convection Supplementary Reading: Osher and Fedkiw, Sections 3.3 and 3.5; Leveque, Sections 6.7, 8.3, 10.2, 10.4. For a reference on Newton polynomial interpolation via divided

More information

SIMULTANEOUS PERTURBATION STOCHASTIC APPROXIMATION FOR REAL-TIME OPTIMIZATION OF MODEL PREDICTIVE CONTROL

SIMULTANEOUS PERTURBATION STOCHASTIC APPROXIMATION FOR REAL-TIME OPTIMIZATION OF MODEL PREDICTIVE CONTROL SIMULTANEOUS PERTURBATION STOCHASTIC APPROXIMATION FOR REAL-TIME OPTIMIZATION OF MODEL PREDICTIVE CONTROL Irina Baltcheva Felisa J.Vázquez-Abad ½ (member of GERAD) Université de Montréal DIRO, CP 6128

More information

VIBRATION ISOLATION USING A MULTI-AXIS ROBOTIC PLATFORM G.

VIBRATION ISOLATION USING A MULTI-AXIS ROBOTIC PLATFORM G. VIBRATION ISOLATION USING A MULTI-AXIS ROBOTIC PLATFORM G. Satheesh Kumar, Y. G. Srinivasa and T. Nagarajan Precision Engineering and Instrumentation Laboratory Department of Mechanical Engineering Indian

More information

Lecture VI: Constraints and Controllers

Lecture VI: Constraints and Controllers Lecture VI: Constraints and Controllers Motion Constraints In practice, no rigid body is free to move around on its own. Movement is constrained: wheels on a chair human body parts trigger of a gun opening

More information

Introduction to Constrained Optimization

Introduction to Constrained Optimization Introduction to Constrained Optimization Duality and KKT Conditions Pratik Shah {pratik.shah [at] lnmiit.ac.in} The LNM Institute of Information Technology www.lnmiit.ac.in February 13, 2013 LNMIIT MLPR

More information

Can we quantify the hardness of learning manipulation? Kris Hauser Department of Electrical and Computer Engineering Duke University

Can we quantify the hardness of learning manipulation? Kris Hauser Department of Electrical and Computer Engineering Duke University Can we quantify the hardness of learning manipulation? Kris Hauser Department of Electrical and Computer Engineering Duke University Robot Learning! Robot Learning! Google used 14 identical robots 800,000

More information

15.082J and 6.855J. Lagrangian Relaxation 2 Algorithms Application to LPs

15.082J and 6.855J. Lagrangian Relaxation 2 Algorithms Application to LPs 15.082J and 6.855J Lagrangian Relaxation 2 Algorithms Application to LPs 1 The Constrained Shortest Path Problem (1,10) 2 (1,1) 4 (2,3) (1,7) 1 (10,3) (1,2) (10,1) (5,7) 3 (12,3) 5 (2,2) 6 Find the shortest

More information

Convex Optimization CMU-10725

Convex Optimization CMU-10725 Convex Optimization CMU-10725 Conjugate Direction Methods Barnabás Póczos & Ryan Tibshirani Conjugate Direction Methods 2 Books to Read David G. Luenberger, Yinyu Ye: Linear and Nonlinear Programming Nesterov:

More information

Interior Point I. Lab 21. Introduction

Interior Point I. Lab 21. Introduction Lab 21 Interior Point I Lab Objective: For decades after its invention, the Simplex algorithm was the only competitive method for linear programming. The past 30 years, however, have seen the discovery

More information

Robot Mapping. TORO Gradient Descent for SLAM. Cyrill Stachniss

Robot Mapping. TORO Gradient Descent for SLAM. Cyrill Stachniss Robot Mapping TORO Gradient Descent for SLAM Cyrill Stachniss 1 Stochastic Gradient Descent Minimize the error individually for each constraint (decomposition of the problem into sub-problems) Solve one

More information

ACADO TOOLKIT - AUTOMATIC CONTROL AND DYNAMIC OPTIMIZATION

ACADO TOOLKIT - AUTOMATIC CONTROL AND DYNAMIC OPTIMIZATION ACADO Toolkit - Automatic Control and Dynamic Optimization p. 1/24 ACADO TOOLKIT - AUTOMATIC CONTROL AND DYNAMIC OPTIMIZATION Moritz Diehl, Boris Houska, Hans Joachim Ferreau Optimization in Engineering

More information

Parallel Robots. Mechanics and Control H AMID D. TAG HI RAD. CRC Press. Taylor & Francis Group. Taylor & Francis Croup, Boca Raton London NewYoric

Parallel Robots. Mechanics and Control H AMID D. TAG HI RAD. CRC Press. Taylor & Francis Group. Taylor & Francis Croup, Boca Raton London NewYoric Parallel Robots Mechanics and Control H AMID D TAG HI RAD CRC Press Taylor & Francis Group Boca Raton London NewYoric CRC Press Is an Imprint of the Taylor & Francis Croup, an informs business Contents

More information

Lagrangian Relaxation: An overview

Lagrangian Relaxation: An overview Discrete Math for Bioinformatics WS 11/12:, by A. Bockmayr/K. Reinert, 22. Januar 2013, 13:27 4001 Lagrangian Relaxation: An overview Sources for this lecture: D. Bertsimas and J. Tsitsiklis: Introduction

More information

CS321 Introduction To Numerical Methods

CS321 Introduction To Numerical Methods CS3 Introduction To Numerical Methods Fuhua (Frank) Cheng Department of Computer Science University of Kentucky Lexington KY 456-46 - - Table of Contents Errors and Number Representations 3 Error Types

More information

arxiv: v2 [math.oc] 12 Feb 2019

arxiv: v2 [math.oc] 12 Feb 2019 A CENTRAL PATH FOLLOWING METHOD USING THE NORMALIZED GRADIENTS Long Chen 1, Wenyi Chen 2, and Kai-Uwe Bletzinger 1 arxiv:1902.04040v2 [math.oc] 12 Feb 2019 1 Chair of Structural Analysis, Technical University

More information