Non-rigid Image Registration

Size: px
Start display at page:

Download "Non-rigid Image Registration"

Transcription

1 Overview Non-rigid Image Registration Introduction to image registration - he goal of image registration - Motivation for medical image registration - Classification of image registration - Nonrigid registration approaches My research method ransformation properties - Symmetry - ransitivity Validation of image registration algorithms Future work Department of Biomedical Engineering Georgia Institute of echnology Yi-Yu Chou March, 004 he Goal of Image Registration Motivation for Medical Image Registration Image registration consists in finding a transformation that realigns two or several images (in D) or image volumes (in 3D). o fuse information from multiple imaging devices to correlate different measures of structures and function Beonit M. Dawant, Non-Rigid Registration of Medical Images: Purpose and Methods, A Short Survey, IEEE ISBI, pages , 00. he goal of image registration is to determine a common coordinate system in which images can be compared or fused on a pixel-by-pixel basis. PE image with MRI Motivation for Medical Image Registration o measure dynamic patterns of structure change during brain development, tumor growth, degenerative disease processes or pre- and post intervention images. Normal brain image / Alzheimer s brain image Pre- and post-surgery of brain MRI Head and neck MRI-C image Motivation for Medical Image Registration Passing segmentation or labeling information from the atlas to subject image Brain atlas and MRI

2 Classification of Image Registration Rigid ransformation Geometric transformations:. Rigid. Affine 3. Projective 4. Non-rigid Original Rigid Affine Projective Nonrigid Rotation(R) ranslation(t) x x p r p r t = = t r = y y t r r = Rp + t r p cos( θ ) R = sin( θ ) sin( θ ) cos( θ ) Preservation of length and angle Affine ransformation Projective ransformation Rotation ranslation Scale Shear x a = y a a x a + a y a 3 3 No more preservation of lengths and angles Parallel lines are preserved Straight lines are preserved Nonrigid ransformation Gemeral Registration Approaches Elastic transformation Nonlinear Curved Can not generally be expressed in a matrix notation Involve a large number of parameters Can map straight lines into curves Feature based (points, edges, surfaces) Intensity based (work directly with image intensity value) Hybrid

3 Nonrigid Registration Approaches Basis function expansions ( Fourier basis, wavelet basis, radial basis, B-splines, etc) Physical models Optical flow-based methods My Research Method Non-rigid : Rigid or affine registration do not have enough degrees of freedom or flexibility to accommodate local shape differences. Intensity based : Feature based registration require extra work (segmentation, feature extraction, etc ), and requires user interaction to specify landmarks unique correspondences can not always be specified, and such methods usually only provide coarse registration due to the small number of correspondences specified. Spline warps. Cubic B-Spline. hin-plate Spline Registration Algorithm Registration Algorithm I Initial ransform Update Nonrigid image registration is an optimization problem, where the goal is to optimize an image similarity measure with respect to the transformation parameters. I I* Measure Similarity Optimal? he most widely used image similarity measures are mean square difference and normalized mutual information. Final Optimization Methods Registration Procedures Gradient Descent : ISM Γ( I, I ) = arg max[ ISM ( I, I opt opt )] In theory, similarity measures have more local optimum as the dimension of the transformation increases. ransformation Multi-resolution search : Coarse to fine strategy

4 Registration Procedures Registration Procedures D Experimental Results Case - weighted coronal brain image D Experimental Results Case - hin-plate Spline + Mean Square Difference Original image Deformed image x size = 6 mm Computed image Displacement Field y size = 86 mm maximal displacement :.6 mm Max Error :.9 mm D Experimental Results Case - Short axis MR cardiac image D Experimental Results Case - Cubic B-Spline + Normalized Mutual Information Original image x size = 386 pixel Deformed image Computed image Displacement Field y size = 33 pixel Max Error :.4 pixel maximal displacement : 3.3 pixel

5 3D Experimental Results Cubic B-Spline + Mean Square Difference 3D Experimental Results Cubic B-Spline + Mean Square difference Original image Image Dimensions: (6, 6, 0) Voxel Size: (.38,.38, ) mm maximal displacement : 9.93 mm Deformed image rue vector field maximal error :.09 mm Computed vector field Symmetry ransitivity ransformation Properties Most image registration algorithms do not produce transformations with these properties. Satisfying the symmetry and transitivity properties are necessary but not sufficient conditions for establishing whether or not a registration algorithm produces biologically meaningful transformations. Symmetry When an image registration operator is applied to two (different) images, the obtained transformation should be the inverse of the transformation obtained, when the order of images is reversed. his symmetry property can be formalized as : Γ ( I, I ) = [ Γ ( I, I )] Symmetry Many nonrigid image registration algorithms have difficulty producing symmetry property because numerical optimization techniques used to find the optimal image transformation often get struck in local minima. Symmetry In 999 Christensen [] proposed the consistent linear-elastic image registration algorithm that minimizes the pairwise inverse consistency error between pairwise transformation.. Jointly estimate the forward and reverse transformations.. Constrain the forward and reverse transformations to be inversed. [] Gary E. Christensen, "Consistent Linear-Elastic ransformations for Image Matching", IPMI 999: 4-3

6 Symmetry Symmetry est for Affine Registration In this research, we proposed : Γ( I, I ) = arg min[ ISM ( I, I opt opt ) + ISM ( I, I opt )] a b c d e f g (a) Original image (b) Deformed image (c) Computed image using affine registration (d) Computed image using affine registration with symmetry property (e) Differences image of a and b (f) Difference image of b and c (g) Difference image of b and d ransitivity Image registration algorithms that have a difficult time producing symmetry property have an even harder time producing transformation that satisfy the transitivity property. ransformations with the transitivity property allow a corresponding point to be mapped from A to B to C to A z= AC (x) y= AB (x) x= BA (y) y= CB (z) A B C BC [ AB (x)] = AC (x) A B C ransitivity M AB BC AC = = = ransitivity D ransitivity est y= AB (x) z= AC (x) x= BA (y) y= CB (z) A B C BC = [ = = AC AB ] o[ ] a b c d e f hree randomly selected images from a sequence of D short axis cardiac MR images are shown in (a), (b), and (c). he computed displacement field from image (a) to image (b) is shown in (d), the computed displacement field from image (b) to image (c) is shown in (e), and the computed displacement field from image (a) to image (c) is shown in (f).

7 D ransitivity est (cont.) 3D ransitivity est a b c he transitivity error (max, mean, std) for random triples of images (I, I, I 3 ) with a given model (M) of D short axis cardiac MR images. he units for the errors are pixels. Oskar Skrinjar, Yi-Yu Chou, and Hemant agare, ransitive Nonrigid Image Registration: Application to Cardiac MR Image Sequences, SPIE Medical Imaging, February 004, San Diego, CA. d e f hree randomly selected images from a sequence of 3D short axis cardiac MR images are shown in (a), (b), and (c). he computed displacement field from image (a) to image (b) is shown in (d), the computed displacement field from image (b) to image (c) is shown in (e), and the computed displacement field from image (a) to image (c) is shown in (f). I I 6 3D ransitivity est (cont.) I M max.x0-4.x0-4.x0-4.3x0-4.x0-4.4x0-4.0x0-4.4x0-4 mean.x0 -.9x0 -.x0 -.x0 -.x0 -.x0 -.x0 -.x0 - std 3.x0-3.4x0-3.x0-3.6x0-3.x0-3.x0-3.x0-3.6x0 - he transitivity error (max, mean, std) for random triples of images (I, I, I 3 ) with a given model (M) of 3D short axis cardiac MR images. he units for the errors are voxels. Related Issues: Validation Validation strategies: Visual assessment : contour overlays; difference images Simulation : artificially deformed image; biomechanical model Gold Standard : implanted markers; (only suitable for rigid registrations) Consistency : (A,B) (B,C) = (A,C) Future Work D symmetry test 3D symmetry test

Transitive and Symmetric Nonrigid Image Registration. Yi-Yu Chou

Transitive and Symmetric Nonrigid Image Registration. Yi-Yu Chou Transitive and Symmetric Nonrigid Image Registration A Thesis Presented to The Academic Faculty by Yi-Yu Chou In Partial Fulfillment of the Requirements for the Degree Master of Science School of Biomedical

More information

Spatio-Temporal Registration of Biomedical Images by Computational Methods

Spatio-Temporal Registration of Biomedical Images by Computational Methods Spatio-Temporal Registration of Biomedical Images by Computational Methods Francisco P. M. Oliveira, João Manuel R. S. Tavares tavares@fe.up.pt, www.fe.up.pt/~tavares Outline 1. Introduction 2. Spatial

More information

Biomedical Image Analysis based on Computational Registration Methods. João Manuel R. S. Tavares

Biomedical Image Analysis based on Computational Registration Methods. João Manuel R. S. Tavares Biomedical Image Analysis based on Computational Registration Methods João Manuel R. S. Tavares tavares@fe.up.pt, www.fe.up.pt/~tavares Outline 1. Introduction 2. Methods a) Spatial Registration of (2D

More information

Nonrigid Registration using Free-Form Deformations

Nonrigid Registration using Free-Form Deformations Nonrigid Registration using Free-Form Deformations Hongchang Peng April 20th Paper Presented: Rueckert et al., TMI 1999: Nonrigid registration using freeform deformations: Application to breast MR images

More information

Image Registration. Prof. Dr. Lucas Ferrari de Oliveira UFPR Informatics Department

Image Registration. Prof. Dr. Lucas Ferrari de Oliveira UFPR Informatics Department Image Registration Prof. Dr. Lucas Ferrari de Oliveira UFPR Informatics Department Introduction Visualize objects inside the human body Advances in CS methods to diagnosis, treatment planning and medical

More information

Biomedical Imaging Registration Trends and Applications. Francisco P. M. Oliveira, João Manuel R. S. Tavares

Biomedical Imaging Registration Trends and Applications. Francisco P. M. Oliveira, João Manuel R. S. Tavares Biomedical Imaging Registration Trends and Applications Francisco P. M. Oliveira, João Manuel R. S. Tavares tavares@fe.up.pt, www.fe.up.pt/~tavares Outline 1. Introduction 2. Spatial Registration of (2D

More information

Hybrid Spline-based Multimodal Registration using a Local Measure for Mutual Information

Hybrid Spline-based Multimodal Registration using a Local Measure for Mutual Information Hybrid Spline-based Multimodal Registration using a Local Measure for Mutual Information Andreas Biesdorf 1, Stefan Wörz 1, Hans-Jürgen Kaiser 2, Karl Rohr 1 1 University of Heidelberg, BIOQUANT, IPMB,

More information

HST.582J / 6.555J / J Biomedical Signal and Image Processing Spring 2007

HST.582J / 6.555J / J Biomedical Signal and Image Processing Spring 2007 MIT OpenCourseWare http://ocw.mit.edu HST.582J / 6.555J / 16.456J Biomedical Signal and Image Processing Spring 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Image Registration I

Image Registration I Image Registration I Comp 254 Spring 2002 Guido Gerig Image Registration: Motivation Motivation for Image Registration Combine images from different modalities (multi-modality registration), e.g. CT&MRI,

More information

RIGID IMAGE REGISTRATION

RIGID IMAGE REGISTRATION RIGID IMAGE REGISTRATION Duygu Tosun-Turgut, Ph.D. Center for Imaging of Neurodegenerative Diseases Department of Radiology and Biomedical Imaging duygu.tosun@ucsf.edu What is registration? Image registration

More information

1 Introduction Motivation and Aims Functional Imaging Computational Neuroanatomy... 12

1 Introduction Motivation and Aims Functional Imaging Computational Neuroanatomy... 12 Contents 1 Introduction 10 1.1 Motivation and Aims....... 10 1.1.1 Functional Imaging.... 10 1.1.2 Computational Neuroanatomy... 12 1.2 Overview of Chapters... 14 2 Rigid Body Registration 18 2.1 Introduction.....

More information

Multimodal Elastic Image Matching

Multimodal Elastic Image Matching Research results based on my diploma thesis supervised by Prof. Witsch 2 and in cooperation with Prof. Mai 3. 1 February 22 nd 2011 1 Karlsruhe Institute of Technology (KIT) 2 Applied Mathematics Department,

More information

Volumetry of hypothalamic substructures by multimodal morphological image registration

Volumetry of hypothalamic substructures by multimodal morphological image registration Volumetry of hypothalamic substructures by multimodal morphological image registration Dominik Löchel 14.09.2011 Institute for Applied and Numerical Mathematics KIT University of the State of Baden-Württemberg

More information

A Registration-Based Atlas Propagation Framework for Automatic Whole Heart Segmentation

A Registration-Based Atlas Propagation Framework for Automatic Whole Heart Segmentation A Registration-Based Atlas Propagation Framework for Automatic Whole Heart Segmentation Xiahai Zhuang (PhD) Centre for Medical Image Computing University College London Fields-MITACS Conference on Mathematics

More information

Learning-based Neuroimage Registration

Learning-based Neuroimage Registration Learning-based Neuroimage Registration Leonid Teverovskiy and Yanxi Liu 1 October 2004 CMU-CALD-04-108, CMU-RI-TR-04-59 School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 Abstract

More information

Registration by continuous optimisation. Stefan Klein Erasmus MC, the Netherlands Biomedical Imaging Group Rotterdam (BIGR)

Registration by continuous optimisation. Stefan Klein Erasmus MC, the Netherlands Biomedical Imaging Group Rotterdam (BIGR) Registration by continuous optimisation Stefan Klein Erasmus MC, the Netherlands Biomedical Imaging Group Rotterdam (BIGR) Registration = optimisation C t x t y 1 Registration = optimisation C t x t y

More information

Automatic Subthalamic Nucleus Targeting for Deep Brain Stimulation. A Validation Study

Automatic Subthalamic Nucleus Targeting for Deep Brain Stimulation. A Validation Study Automatic Subthalamic Nucleus Targeting for Deep Brain Stimulation. A Validation Study F. Javier Sánchez Castro a, Claudio Pollo a,b, Jean-Guy Villemure b, Jean-Philippe Thiran a a École Polytechnique

More information

Introduction to Medical Image Registration

Introduction to Medical Image Registration Introduction to Medical Image Registration Sailesh Conjeti Computer Aided Medical Procedures (CAMP), Technische Universität München, Germany sailesh.conjeti@tum.de Partially adapted from slides by: 1.

More information

Basic principles of MR image analysis. Basic principles of MR image analysis. Basic principles of MR image analysis

Basic principles of MR image analysis. Basic principles of MR image analysis. Basic principles of MR image analysis Basic principles of MR image analysis Basic principles of MR image analysis Julien Milles Leiden University Medical Center Terminology of fmri Brain extraction Registration Linear registration Non-linear

More information

Spatio-temporal Analysis of Biomedical Images based on Automated Methods of Image Registration

Spatio-temporal Analysis of Biomedical Images based on Automated Methods of Image Registration Spatio-temporal Analysis of Biomedical Images based on Automated Methods of Image Registration João Manuel R. S. Tavares tavares@fe.up.pt, www.fe.up.pt/~tavares Outline 1. Introduction 2. Methods a) Spatial

More information

The Insight Toolkit. Image Registration Algorithms & Frameworks

The Insight Toolkit. Image Registration Algorithms & Frameworks The Insight Toolkit Image Registration Algorithms & Frameworks Registration in ITK Image Registration Framework Multi Resolution Registration Framework Components PDE Based Registration FEM Based Registration

More information

Registration Techniques

Registration Techniques EMBO Practical Course on Light Sheet Microscopy Junior-Prof. Dr. Olaf Ronneberger Computer Science Department and BIOSS Centre for Biological Signalling Studies University of Freiburg Germany O. Ronneberger,

More information

Image Warping. Srikumar Ramalingam School of Computing University of Utah. [Slides borrowed from Ross Whitaker] 1

Image Warping. Srikumar Ramalingam School of Computing University of Utah. [Slides borrowed from Ross Whitaker] 1 Image Warping Srikumar Ramalingam School of Computing University of Utah [Slides borrowed from Ross Whitaker] 1 Geom Trans: Distortion From Optics Barrel Distortion Pincushion Distortion Straight lines

More information

Implementation of Advanced Image Guided Radiation Therapy

Implementation of Advanced Image Guided Radiation Therapy Image Acquisition Course Outline Principles, characteristics& applications of the available modalities Image Processing in the T x room Image guided treatment delivery What can / can t we do in the room

More information

2D Rigid Registration of MR Scans using the 1d Binary Projections

2D Rigid Registration of MR Scans using the 1d Binary Projections 2D Rigid Registration of MR Scans using the 1d Binary Projections Panos D. Kotsas Abstract This paper presents the application of a signal intensity independent registration criterion for 2D rigid body

More information

NIH Public Access Author Manuscript Proc SPIE. Author manuscript; available in PMC 2013 September 09.

NIH Public Access Author Manuscript Proc SPIE. Author manuscript; available in PMC 2013 September 09. NIH Public Access Author Manuscript Published in final edited form as: Proc SPIE. 2013 February 23; 8314: 83143D. doi:10.1117/12.912028. Automatic 3D Segmentation of the Kidney in MR Images Using Wavelet

More information

Overview of Proposed TG-132 Recommendations

Overview of Proposed TG-132 Recommendations Overview of Proposed TG-132 Recommendations Kristy K Brock, Ph.D., DABR Associate Professor Department of Radiation Oncology, University of Michigan Chair, AAPM TG 132: Image Registration and Fusion Conflict

More information

Smart point landmark distribution for thin-plate splines

Smart point landmark distribution for thin-plate splines Smart point landmark distribution for thin-plate splines John Lewis a, Hea-Juen Hwang a, Ulrich Neumann a, and Reyes Enciso b a Integrated Media Systems Center, University of Southern California, 3740

More information

Lecture 13 Theory of Registration. ch. 10 of Insight into Images edited by Terry Yoo, et al. Spring (CMU RI) : BioE 2630 (Pitt)

Lecture 13 Theory of Registration. ch. 10 of Insight into Images edited by Terry Yoo, et al. Spring (CMU RI) : BioE 2630 (Pitt) Lecture 13 Theory of Registration ch. 10 of Insight into Images edited by Terry Yoo, et al. Spring 2018 16-725 (CMU RI) : BioE 2630 (Pitt) Dr. John Galeotti The content of these slides by John Galeotti,

More information

TG 132: Use of Image Registration and Fusion in RT

TG 132: Use of Image Registration and Fusion in RT TG 132: Use of Image Registration and Fusion in RT Kristy K Brock, PhD, DABR, FAAPM Associate Professor Department of Radiation Oncology, University of Michigan Chair, AAPM TG 132: Image Registration and

More information

CT5510: Computer Graphics. Transformation BOCHANG MOON

CT5510: Computer Graphics. Transformation BOCHANG MOON CT5510: Computer Graphics Transformation BOCHANG MOON 2D Translation Transformations such as rotation and scale can be represented using a matrix M.., How about translation? No way to express this using

More information

CSE 554 Lecture 7: Deformation II

CSE 554 Lecture 7: Deformation II CSE 554 Lecture 7: Deformation II Fall 2011 CSE554 Deformation II Slide 1 Review Rigid-body alignment Non-rigid deformation Intrinsic methods: deforming the boundary points An optimization problem Minimize

More information

Good Morning! Thank you for joining us

Good Morning! Thank you for joining us Good Morning! Thank you for joining us Deformable Registration, Contour Propagation and Dose Mapping: 101 and 201 Marc Kessler, PhD, FAAPM The University of Michigan Conflict of Interest I receive direct

More information

Biomedical Image Processing

Biomedical Image Processing Biomedical Image Processing Jason Thong Gabriel Grant 1 2 Motivation from the Medical Perspective MRI, CT and other biomedical imaging devices were designed to assist doctors in their diagnosis and treatment

More information

Optimization of Image Registration for Medical Image Analysis

Optimization of Image Registration for Medical Image Analysis Optimization of Image Registration for Medical Image Analysis PN Maddaiah, PN Pournami, VK Govindan Department of Computer science and Engineering, National Institute of Technology Calicut, Kerala, India

More information

Transformations. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

Transformations. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Transformations Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Angel: Interactive Computer Graphics 4E Addison-Wesley 25 1 Objectives

More information

Correspondence Detection Using Wavelet-Based Attribute Vectors

Correspondence Detection Using Wavelet-Based Attribute Vectors Correspondence Detection Using Wavelet-Based Attribute Vectors Zhong Xue, Dinggang Shen, and Christos Davatzikos Section of Biomedical Image Analysis, Department of Radiology University of Pennsylvania,

More information

Medical Image Registration by Maximization of Mutual Information

Medical Image Registration by Maximization of Mutual Information Medical Image Registration by Maximization of Mutual Information EE 591 Introduction to Information Theory Instructor Dr. Donald Adjeroh Submitted by Senthil.P.Ramamurthy Damodaraswamy, Umamaheswari Introduction

More information

HYBRID MULTISCALE LANDMARK AND DEFORMABLE IMAGE REGISTRATION. Dana Paquin. Doron Levy. Lei Xing. (Communicated by Yang Kuang)

HYBRID MULTISCALE LANDMARK AND DEFORMABLE IMAGE REGISTRATION. Dana Paquin. Doron Levy. Lei Xing. (Communicated by Yang Kuang) MATHEMATICAL BIOSCIENCES http://www.mbejournal.org/ AND ENGINEERING Volume 4, Number 4, October 2007 pp. 711 737 HYBRID MULTISCALE LANDMARK AND DEFORMABLE IMAGE REGISTRATION Dana Paquin Department of Mathematics,

More information

Geometric Transformations and Image Warping. Ross Whitaker modified by Guido Gerig SCI Institute, School of Computing University of Utah

Geometric Transformations and Image Warping. Ross Whitaker modified by Guido Gerig SCI Institute, School of Computing University of Utah Geometric Transformations and Image Warping Ross Whitaker modified by Guido Gerig SCI Institute, School of Computing University of Utah 1 Geom Trans: Distortion From Optics Barrel Distortion Pincushion

More information

HST.582J / 6.555J / J Biomedical Signal and Image Processing Spring 2007

HST.582J / 6.555J / J Biomedical Signal and Image Processing Spring 2007 MIT OpenCourseWare http://ocw.mit.edu HST.582J / 6.555J / 16.456J Biomedical Signal and Image Processing Spring 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Image Registration + Other Stuff

Image Registration + Other Stuff Image Registration + Other Stuff John Ashburner Pre-processing Overview fmri time-series Motion Correct Anatomical MRI Coregister m11 m 21 m 31 m12 m13 m14 m 22 m 23 m 24 m 32 m 33 m 34 1 Template Estimate

More information

Image processing and features

Image processing and features Image processing and features Gabriele Bleser gabriele.bleser@dfki.de Thanks to Harald Wuest, Folker Wientapper and Marc Pollefeys Introduction Previous lectures: geometry Pose estimation Epipolar geometry

More information

Geometric Transformations and Image Warping

Geometric Transformations and Image Warping Geometric Transformations and Image Warping Ross Whitaker SCI Institute, School of Computing University of Utah Univ of Utah, CS6640 2009 1 Geometric Transformations Greyscale transformations -> operate

More information

Computational Medical Imaging Analysis Chapter 4: Image Visualization

Computational Medical Imaging Analysis Chapter 4: Image Visualization Computational Medical Imaging Analysis Chapter 4: Image Visualization Jun Zhang Laboratory for Computational Medical Imaging & Data Analysis Department of Computer Science University of Kentucky Lexington,

More information

Sparsity Based Spectral Embedding: Application to Multi-Atlas Echocardiography Segmentation!

Sparsity Based Spectral Embedding: Application to Multi-Atlas Echocardiography Segmentation! Sparsity Based Spectral Embedding: Application to Multi-Atlas Echocardiography Segmentation Ozan Oktay, Wenzhe Shi, Jose Caballero, Kevin Keraudren, and Daniel Rueckert Department of Compu.ng Imperial

More information

Computational Neuroanatomy

Computational Neuroanatomy Computational Neuroanatomy John Ashburner john@fil.ion.ucl.ac.uk Smoothing Motion Correction Between Modality Co-registration Spatial Normalisation Segmentation Morphometry Overview fmri time-series kernel

More information

Geometric Transformations and Image Warping Chapter 2.6.5

Geometric Transformations and Image Warping Chapter 2.6.5 Geometric Transformations and Image Warping Chapter 2.6.5 Ross Whitaker (modified by Guido Gerig) SCI Institute, School of Computing University of Utah Univ of Utah, CS6640 2010 1 Geometric Transformations

More information

3D Statistical Shape Model Building using Consistent Parameterization

3D Statistical Shape Model Building using Consistent Parameterization 3D Statistical Shape Model Building using Consistent Parameterization Matthias Kirschner, Stefan Wesarg Graphisch Interaktive Systeme, TU Darmstadt matthias.kirschner@gris.tu-darmstadt.de Abstract. We

More information

Large-Deformation Image Registration using Fluid Landmarks

Large-Deformation Image Registration using Fluid Landmarks Large-Deformation Image Registration using Fluid Landmarks G.E. Christensen 1,P.Yin 1,.W. Vannier 2, K.S.C. Chao 3, J.F. Dempsey 3, and J.F. Williamson 3 1 Department of Electrical and Computer Engineering

More information

Methodological progress in image registration for ventilation estimation, segmentation propagation and multi-modal fusion

Methodological progress in image registration for ventilation estimation, segmentation propagation and multi-modal fusion Methodological progress in image registration for ventilation estimation, segmentation propagation and multi-modal fusion Mattias P. Heinrich Julia A. Schnabel, Mark Jenkinson, Sir Michael Brady 2 Clinical

More information

Image Segmentation and Registration

Image Segmentation and Registration Image Segmentation and Registration Dr. Christine Tanner (tanner@vision.ee.ethz.ch) Computer Vision Laboratory, ETH Zürich Dr. Verena Kaynig, Machine Learning Laboratory, ETH Zürich Outline Segmentation

More information

A METHODICAL WAY OF IMAGE REGISTRATION IN DIGITAL IMAGE PROCESSING

A METHODICAL WAY OF IMAGE REGISTRATION IN DIGITAL IMAGE PROCESSING International Journal of Technical Research and Applications e-issn: 2320-8163, www.ijtra.com Volume 2, Issue 1 (jan-feb 2014), PP. 40-44 A METHODICAL WAY OF IMAGE REGISTRATION IN DIGITAL IMAGE PROCESSING

More information

Medicale Image Analysis

Medicale Image Analysis Medicale Image Analysis Registration Validation Prof. Dr. Philippe Cattin MIAC, University of Basel Prof. Dr. Philippe Cattin: Registration Validation Contents 1 Validation 1.1 Validation of Registration

More information

DRAMMS: Deformable Registration via Attribute Matching and Mutual-Saliency weighting

DRAMMS: Deformable Registration via Attribute Matching and Mutual-Saliency weighting DRAMMS: Deformable Registration via Attribute Matching and Mutual-Saliency weighting Yangming Ou, Christos Davatzikos Section of Biomedical Image Analysis (SBIA) University of Pennsylvania Outline 1. Background

More information

PROSTATE CANCER DETECTION USING LABEL IMAGE CONSTRAINED MULTIATLAS SELECTION

PROSTATE CANCER DETECTION USING LABEL IMAGE CONSTRAINED MULTIATLAS SELECTION PROSTATE CANCER DETECTION USING LABEL IMAGE CONSTRAINED MULTIATLAS SELECTION Ms. Vaibhavi Nandkumar Jagtap 1, Mr. Santosh D. Kale 2 1 PG Scholar, 2 Assistant Professor, Department of Electronics and Telecommunication,

More information

Is deformable image registration a solved problem?

Is deformable image registration a solved problem? Is deformable image registration a solved problem? Marcel van Herk On behalf of the imaging group of the RT department of NKI/AVL Amsterdam, the Netherlands DIR 1 Image registration Find translation.deformation

More information

ASSESSING REGISTRATION QUALITY VIA REGISTRATION CIRCUITS

ASSESSING REGISTRATION QUALITY VIA REGISTRATION CIRCUITS ASSESSING REGISTRATION QUALITY VIA REGISTRATION CIRCUITS By Ryan Datteri Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements

More information

Knowledge-Based Deformable Matching for Pathology Detection

Knowledge-Based Deformable Matching for Pathology Detection Knowledge-Based Deformable Matching for Pathology Detection Thesis Proposal Mei Chen CMU-RI-TR-97-20 The Robotics Institute Carnegie Mellon University Pittsburgh, Pennsylvania 15213 May 1997 c 1997 Carnegie

More information

Registration-Based Segmentation of Medical Images

Registration-Based Segmentation of Medical Images School of Computing National University of Singapore Graduate Research Paper Registration-Based Segmentation of Medical Images by Li Hao under guidance of A/Prof. Leow Wee Kheng July, 2006 Abstract Medical

More information

Interactive Computer Graphics. Warping and morphing. Warping and Morphing. Warping and Morphing. Lecture 14+15: Warping and Morphing. What is.

Interactive Computer Graphics. Warping and morphing. Warping and Morphing. Warping and Morphing. Lecture 14+15: Warping and Morphing. What is. Interactive Computer Graphics Warping and morphing Lecture 14+15: Warping and Morphing Lecture 14: Warping and Morphing: Slide 1 Lecture 14: Warping and Morphing: Slide 2 Warping and Morphing What is Warping

More information

Comparison Study of Clinical 3D MRI Brain Segmentation Evaluation

Comparison Study of Clinical 3D MRI Brain Segmentation Evaluation Comparison Study of Clinical 3D MRI Brain Segmentation Evaluation Ting Song 1, Elsa D. Angelini 2, Brett D. Mensh 3, Andrew Laine 1 1 Heffner Biomedical Imaging Laboratory Department of Biomedical Engineering,

More information

Shape-based Diffeomorphic Registration on Hippocampal Surfaces Using Beltrami Holomorphic Flow

Shape-based Diffeomorphic Registration on Hippocampal Surfaces Using Beltrami Holomorphic Flow Shape-based Diffeomorphic Registration on Hippocampal Surfaces Using Beltrami Holomorphic Flow Abstract. Finding meaningful 1-1 correspondences between hippocampal (HP) surfaces is an important but difficult

More information

Deformable Image Registration, Contour Propagation and Dose Mapping: 101 and 201. Please do not (re)redistribute

Deformable Image Registration, Contour Propagation and Dose Mapping: 101 and 201. Please do not (re)redistribute Deformable Registration, Contour Deformable Registration, Contour Propagation and Dose Mapping: 101 and 201 Marc Kessler, PhD The University of Michigan Jean Pouliot, PhD University of California Learning

More information

Estimating 3D Respiratory Motion from Orbiting Views

Estimating 3D Respiratory Motion from Orbiting Views Estimating 3D Respiratory Motion from Orbiting Views Rongping Zeng, Jeffrey A. Fessler, James M. Balter The University of Michigan Oct. 2005 Funding provided by NIH Grant P01 CA59827 Motivation Free-breathing

More information

A SYSTEMATIC WAY OF AFFINE TRANSFORMATION USING IMAGE REGISTRATION

A SYSTEMATIC WAY OF AFFINE TRANSFORMATION USING IMAGE REGISTRATION International Journal of Information Technology and Knowledge Management July-December 2012, Volume 5, No. 2, pp. 239-243 A SYSTEMATIC WAY OF AFFINE TRANSFORMATION USING IMAGE REGISTRATION Jimmy Singla

More information

Cluster of Workstation based Nonrigid Image Registration Using Free-Form Deformation

Cluster of Workstation based Nonrigid Image Registration Using Free-Form Deformation Cluster of Workstation based Nonrigid Image Registration Using Free-Form Deformation Xiaofen Zheng, Jayaram K. Udupa, and Xinjian Chen Medical Image Processing Group, Department of Radiology 423 Guardian

More information

Integrated Approaches to Non-Rigid Registration in Medical Images

Integrated Approaches to Non-Rigid Registration in Medical Images Work. on Appl. of Comp. Vision, pg 102-108. 1 Integrated Approaches to Non-Rigid Registration in Medical Images Yongmei Wang and Lawrence H. Staib + Departments of Electrical Engineering and Diagnostic

More information

Coordinate transformations. 5554: Packet 8 1

Coordinate transformations. 5554: Packet 8 1 Coordinate transformations 5554: Packet 8 1 Overview Rigid transformations are the simplest Translation, rotation Preserve sizes and angles Affine transformation is the most general linear case Homogeneous

More information

Elastic registration of medical images using finite element meshes

Elastic registration of medical images using finite element meshes Elastic registration of medical images using finite element meshes Hartwig Grabowski Institute of Real-Time Computer Systems & Robotics, University of Karlsruhe, D-76128 Karlsruhe, Germany. Email: grabow@ira.uka.de

More information

fmri pre-processing Juergen Dukart

fmri pre-processing Juergen Dukart fmri pre-processing Juergen Dukart Outline Why do we need pre-processing? fmri pre-processing Slice time correction Realignment Unwarping Coregistration Spatial normalisation Smoothing Overview fmri time-series

More information

A Generic Framework for Non-rigid Registration Based on Non-uniform Multi-level Free-Form Deformations

A Generic Framework for Non-rigid Registration Based on Non-uniform Multi-level Free-Form Deformations A Generic Framework for Non-rigid Registration Based on Non-uniform Multi-level Free-Form Deformations Julia A. Schnabel 1, Daniel Rueckert 2, Marcel Quist 3, Jane M. Blackall 1, Andy D. Castellano-Smith

More information

Nonrigid Motion Compensation of Free Breathing Acquired Myocardial Perfusion Data

Nonrigid Motion Compensation of Free Breathing Acquired Myocardial Perfusion Data Nonrigid Motion Compensation of Free Breathing Acquired Myocardial Perfusion Data Gert Wollny 1, Peter Kellman 2, Andrés Santos 1,3, María-Jesus Ledesma 1,3 1 Biomedical Imaging Technologies, Department

More information

Registration D.A. Forsyth, UIUC

Registration D.A. Forsyth, UIUC Registration D.A. Forsyth, UIUC Registration Place a geometric model in correspondence with an image could be 2D or 3D model up to some transformations possibly up to deformation Applications very important

More information

l ealgorithms for Image Registration

l ealgorithms for Image Registration FAIR: exib Image Registration l F l ealgorithms for Jan Modersitzki Computing And Software, McMaster University 1280 Main Street West, Hamilton On, L8S 4K1, Canada modersit@cas.mcmaster.ca August 13, 2008

More information

Rigid and Deformable Vasculature-to-Image Registration : a Hierarchical Approach

Rigid and Deformable Vasculature-to-Image Registration : a Hierarchical Approach Rigid and Deformable Vasculature-to-Image Registration : a Hierarchical Approach Julien Jomier and Stephen R. Aylward Computer-Aided Diagnosis and Display Lab The University of North Carolina at Chapel

More information

Probabilistic Registration of 3-D Medical Images

Probabilistic Registration of 3-D Medical Images Probabilistic Registration of 3-D Medical Images Mei Chen, Takeo Kanade, Dean Pomerleau, Jeff Schneider CMU-RI-TR-99-16 The Robotics Institute Carnegie Mellon University Pittsburgh, Pennsylvania 1513 July,

More information

MR-Guided Mixed Reality for Breast Conserving Surgical Planning

MR-Guided Mixed Reality for Breast Conserving Surgical Planning MR-Guided Mixed Reality for Breast Conserving Surgical Planning Suba Srinivasan (subashini7@gmail.com) March 30 th 2017 Mentors: Prof. Brian A. Hargreaves, Prof. Bruce L. Daniel MEDICINE MRI Guided Mixed

More information

Fast Image Registration via Joint Gradient Maximization: Application to Multi-Modal Data

Fast Image Registration via Joint Gradient Maximization: Application to Multi-Modal Data MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Fast Image Registration via Joint Gradient Maximization: Application to Multi-Modal Data Xue Mei, Fatih Porikli TR-19 September Abstract We

More information

A Study of Medical Image Analysis System

A Study of Medical Image Analysis System Indian Journal of Science and Technology, Vol 8(25), DOI: 10.17485/ijst/2015/v8i25/80492, October 2015 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 A Study of Medical Image Analysis System Kim Tae-Eun

More information

Machine Learning for Medical Image Analysis. A. Criminisi

Machine Learning for Medical Image Analysis. A. Criminisi Machine Learning for Medical Image Analysis A. Criminisi Overview Introduction to machine learning Decision forests Applications in medical image analysis Anatomy localization in CT Scans Spine Detection

More information

Computer Vision/Graphics -- Dr. Chandra Kambhamettu for SIGNEWGRAD 11/24/04

Computer Vision/Graphics -- Dr. Chandra Kambhamettu for SIGNEWGRAD 11/24/04 Computer Vision/Graphics -- Dr. Chandra Kambhamettu for SIGNEWGRAD 11/24/04 Computer Vision : Understanding of images Computer Graphics : Creation of images Courses offered: CISC4/640, CISC4/689, CISC849,

More information

For each question, indicate whether the statement is true or false by circling T or F, respectively.

For each question, indicate whether the statement is true or false by circling T or F, respectively. True/False For each question, indicate whether the statement is true or false by circling T or F, respectively. 1. (T/F) Rasterization occurs before vertex transformation in the graphics pipeline. 2. (T/F)

More information

Manual image registration in BrainVoyager QX Table of Contents

Manual image registration in BrainVoyager QX Table of Contents Manual image registration in BrainVoyager QX Table of Contents Manual image registration in BrainVoyager QX......1 Performing manual alignment for functional to anatomical images......2 Step 1: preparation......2

More information

2D Transformations Introduction to Computer Graphics Arizona State University

2D Transformations Introduction to Computer Graphics Arizona State University 2D Transformations Introduction to Computer Graphics Arizona State University Gerald Farin January 31, 2006 1 Introduction When you see computer graphics images moving, spinning, or changing shape, you

More information

Surgery Simulation and Planning

Surgery Simulation and Planning Surgery Simulation and Planning S. H. Martin Roth Dr. Rolf M. Koch Daniel Bielser Prof. Dr. Markus Gross Facial surgery project in collaboration with Prof. Dr. Dr. H. Sailer, University Hospital Zurich,

More information

Assessing Accuracy Factors in Deformable 2D/3D Medical Image Registration Using a Statistical Pelvis Model

Assessing Accuracy Factors in Deformable 2D/3D Medical Image Registration Using a Statistical Pelvis Model Assessing Accuracy Factors in Deformable 2D/3D Medical Image Registration Using a Statistical Pelvis Model Jianhua Yao National Institute of Health Bethesda, MD USA jyao@cc.nih.gov Russell Taylor The Johns

More information

Alignment and Image Comparison

Alignment and Image Comparison Alignment and Image Comparison Erik Learned- Miller University of Massachuse>s, Amherst Alignment and Image Comparison Erik Learned- Miller University of Massachuse>s, Amherst Alignment and Image Comparison

More information

Deformable Registration Using Scale Space Keypoints

Deformable Registration Using Scale Space Keypoints Deformable Registration Using Scale Space Keypoints Mehdi Moradi a, Purang Abolmaesoumi a,b and Parvin Mousavi a a School of Computing, Queen s University, Kingston, Ontario, Canada K7L 3N6; b Department

More information

Measuring longitudinal brain changes in humans and small animal models. Christos Davatzikos

Measuring longitudinal brain changes in humans and small animal models. Christos Davatzikos Measuring longitudinal brain changes in humans and small animal models Christos Davatzikos Section of Biomedical Image Analysis University of Pennsylvania (Radiology) http://www.rad.upenn.edu/sbia Computational

More information

Lecture 14 Shape. ch. 9, sec. 1-8, of Machine Vision by Wesley E. Snyder & Hairong Qi. Spring (CMU RI) : BioE 2630 (Pitt)

Lecture 14 Shape. ch. 9, sec. 1-8, of Machine Vision by Wesley E. Snyder & Hairong Qi. Spring (CMU RI) : BioE 2630 (Pitt) Lecture 14 Shape ch. 9, sec. 1-8, 12-14 of Machine Vision by Wesley E. Snyder & Hairong Qi Spring 2018 16-725 (CMU RI) : BioE 2630 (Pitt) Dr. John Galeotti The content of these slides by John Galeotti,

More information

B-Spline Registration of 3D Images with Levenberg-Marquardt Optimization

B-Spline Registration of 3D Images with Levenberg-Marquardt Optimization B-Spline Registration of 3D Images with Levenberg-Marquardt Optimization Sven Kabus a,b, Thomas Netsch b, Bernd Fischer a, Jan Modersitzki a a Institute of Mathematics, University of Lübeck, Wallstraße

More information

REAL-TIME ADAPTIVITY IN HEAD-AND-NECK AND LUNG CANCER RADIOTHERAPY IN A GPU ENVIRONMENT

REAL-TIME ADAPTIVITY IN HEAD-AND-NECK AND LUNG CANCER RADIOTHERAPY IN A GPU ENVIRONMENT REAL-TIME ADAPTIVITY IN HEAD-AND-NECK AND LUNG CANCER RADIOTHERAPY IN A GPU ENVIRONMENT Anand P Santhanam Assistant Professor, Department of Radiation Oncology OUTLINE Adaptive radiotherapy for head and

More information

Image Processing for fmri John Ashburner. Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK.

Image Processing for fmri John Ashburner. Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK. Iage Processing for fmri John Ashburner Wellcoe Trust Centre for Neuroiaging, 12 Queen Square, London, UK. Contents * Preliinaries * Rigid-Body and Affine Transforations * Optiisation and Objective Functions

More information

Non linear Registration of Pre and Intraoperative Volume Data Based On Piecewise Linear Transformations

Non linear Registration of Pre and Intraoperative Volume Data Based On Piecewise Linear Transformations Non linear Registration of Pre and Intraoperative Volume Data Based On Piecewise Linear Transformations C. Rezk Salama, P. Hastreiter, G. Greiner, T. Ertl University of Erlangen, Computer Graphics Group

More information

VALIDATION OF DIR. Raj Varadhan, PhD, DABMP Minneapolis Radiation Oncology

VALIDATION OF DIR. Raj Varadhan, PhD, DABMP Minneapolis Radiation Oncology VALIDATION OF DIR Raj Varadhan, PhD, DABMP Minneapolis Radiation Oncology Overview Basics: Registration Framework, Theory Discuss Validation techniques Using Synthetic CT data & Phantoms What metrics to

More information

Multi-Atlas Segmentation of the Cardiac MR Right Ventricle

Multi-Atlas Segmentation of the Cardiac MR Right Ventricle Multi-Atlas Segmentation of the Cardiac MR Right Ventricle Yangming Ou, Jimit Doshi, Guray Erus, and Christos Davatzikos Section of Biomedical Image Analysis (SBIA) Department of Radiology, University

More information

SPM8 for Basic and Clinical Investigators. Preprocessing. fmri Preprocessing

SPM8 for Basic and Clinical Investigators. Preprocessing. fmri Preprocessing SPM8 for Basic and Clinical Investigators Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization Spatial

More information

Überatlas: Robust Speed-Up of Feature-Based Registration and Multi-Atlas Based Segmentation. Jennifer Alvén

Überatlas: Robust Speed-Up of Feature-Based Registration and Multi-Atlas Based Segmentation. Jennifer Alvén Überatlas: Robust Speed-Up of Feature-Based Registration and Multi-Atlas Based Segmentation Jennifer Alvén January 2015 Abstract Registration is a key component in multi-atlas approaches to medical image

More information

Non-Rigid Registration of Medical Images: Theory, Methods and Applications

Non-Rigid Registration of Medical Images: Theory, Methods and Applications Non-Rigid Registration of Medical Images: Theory, Methods and Applications Daniel Rueckert Paul Aljabar Medical mage registration [1] plays an increasingly important role in many clinical applications

More information