Non-rigid Image Registration

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Non-rigid Image Registration"

Transcription

1 Overview Non-rigid Image Registration Introduction to image registration - he goal of image registration - Motivation for medical image registration - Classification of image registration - Nonrigid registration approaches My research method ransformation properties - Symmetry - ransitivity Validation of image registration algorithms Future work Department of Biomedical Engineering Georgia Institute of echnology Yi-Yu Chou March, 004 he Goal of Image Registration Motivation for Medical Image Registration Image registration consists in finding a transformation that realigns two or several images (in D) or image volumes (in 3D). o fuse information from multiple imaging devices to correlate different measures of structures and function Beonit M. Dawant, Non-Rigid Registration of Medical Images: Purpose and Methods, A Short Survey, IEEE ISBI, pages , 00. he goal of image registration is to determine a common coordinate system in which images can be compared or fused on a pixel-by-pixel basis. PE image with MRI Motivation for Medical Image Registration o measure dynamic patterns of structure change during brain development, tumor growth, degenerative disease processes or pre- and post intervention images. Normal brain image / Alzheimer s brain image Pre- and post-surgery of brain MRI Head and neck MRI-C image Motivation for Medical Image Registration Passing segmentation or labeling information from the atlas to subject image Brain atlas and MRI

2 Classification of Image Registration Rigid ransformation Geometric transformations:. Rigid. Affine 3. Projective 4. Non-rigid Original Rigid Affine Projective Nonrigid Rotation(R) ranslation(t) x x p r p r t = = t r = y y t r r = Rp + t r p cos( θ ) R = sin( θ ) sin( θ ) cos( θ ) Preservation of length and angle Affine ransformation Projective ransformation Rotation ranslation Scale Shear x a = y a a x a + a y a 3 3 No more preservation of lengths and angles Parallel lines are preserved Straight lines are preserved Nonrigid ransformation Gemeral Registration Approaches Elastic transformation Nonlinear Curved Can not generally be expressed in a matrix notation Involve a large number of parameters Can map straight lines into curves Feature based (points, edges, surfaces) Intensity based (work directly with image intensity value) Hybrid

3 Nonrigid Registration Approaches Basis function expansions ( Fourier basis, wavelet basis, radial basis, B-splines, etc) Physical models Optical flow-based methods My Research Method Non-rigid : Rigid or affine registration do not have enough degrees of freedom or flexibility to accommodate local shape differences. Intensity based : Feature based registration require extra work (segmentation, feature extraction, etc ), and requires user interaction to specify landmarks unique correspondences can not always be specified, and such methods usually only provide coarse registration due to the small number of correspondences specified. Spline warps. Cubic B-Spline. hin-plate Spline Registration Algorithm Registration Algorithm I Initial ransform Update Nonrigid image registration is an optimization problem, where the goal is to optimize an image similarity measure with respect to the transformation parameters. I I* Measure Similarity Optimal? he most widely used image similarity measures are mean square difference and normalized mutual information. Final Optimization Methods Registration Procedures Gradient Descent : ISM Γ( I, I ) = arg max[ ISM ( I, I opt opt )] In theory, similarity measures have more local optimum as the dimension of the transformation increases. ransformation Multi-resolution search : Coarse to fine strategy

4 Registration Procedures Registration Procedures D Experimental Results Case - weighted coronal brain image D Experimental Results Case - hin-plate Spline + Mean Square Difference Original image Deformed image x size = 6 mm Computed image Displacement Field y size = 86 mm maximal displacement :.6 mm Max Error :.9 mm D Experimental Results Case - Short axis MR cardiac image D Experimental Results Case - Cubic B-Spline + Normalized Mutual Information Original image x size = 386 pixel Deformed image Computed image Displacement Field y size = 33 pixel Max Error :.4 pixel maximal displacement : 3.3 pixel

5 3D Experimental Results Cubic B-Spline + Mean Square Difference 3D Experimental Results Cubic B-Spline + Mean Square difference Original image Image Dimensions: (6, 6, 0) Voxel Size: (.38,.38, ) mm maximal displacement : 9.93 mm Deformed image rue vector field maximal error :.09 mm Computed vector field Symmetry ransitivity ransformation Properties Most image registration algorithms do not produce transformations with these properties. Satisfying the symmetry and transitivity properties are necessary but not sufficient conditions for establishing whether or not a registration algorithm produces biologically meaningful transformations. Symmetry When an image registration operator is applied to two (different) images, the obtained transformation should be the inverse of the transformation obtained, when the order of images is reversed. his symmetry property can be formalized as : Γ ( I, I ) = [ Γ ( I, I )] Symmetry Many nonrigid image registration algorithms have difficulty producing symmetry property because numerical optimization techniques used to find the optimal image transformation often get struck in local minima. Symmetry In 999 Christensen [] proposed the consistent linear-elastic image registration algorithm that minimizes the pairwise inverse consistency error between pairwise transformation.. Jointly estimate the forward and reverse transformations.. Constrain the forward and reverse transformations to be inversed. [] Gary E. Christensen, "Consistent Linear-Elastic ransformations for Image Matching", IPMI 999: 4-3

6 Symmetry Symmetry est for Affine Registration In this research, we proposed : Γ( I, I ) = arg min[ ISM ( I, I opt opt ) + ISM ( I, I opt )] a b c d e f g (a) Original image (b) Deformed image (c) Computed image using affine registration (d) Computed image using affine registration with symmetry property (e) Differences image of a and b (f) Difference image of b and c (g) Difference image of b and d ransitivity Image registration algorithms that have a difficult time producing symmetry property have an even harder time producing transformation that satisfy the transitivity property. ransformations with the transitivity property allow a corresponding point to be mapped from A to B to C to A z= AC (x) y= AB (x) x= BA (y) y= CB (z) A B C BC [ AB (x)] = AC (x) A B C ransitivity M AB BC AC = = = ransitivity D ransitivity est y= AB (x) z= AC (x) x= BA (y) y= CB (z) A B C BC = [ = = AC AB ] o[ ] a b c d e f hree randomly selected images from a sequence of D short axis cardiac MR images are shown in (a), (b), and (c). he computed displacement field from image (a) to image (b) is shown in (d), the computed displacement field from image (b) to image (c) is shown in (e), and the computed displacement field from image (a) to image (c) is shown in (f).

7 D ransitivity est (cont.) 3D ransitivity est a b c he transitivity error (max, mean, std) for random triples of images (I, I, I 3 ) with a given model (M) of D short axis cardiac MR images. he units for the errors are pixels. Oskar Skrinjar, Yi-Yu Chou, and Hemant agare, ransitive Nonrigid Image Registration: Application to Cardiac MR Image Sequences, SPIE Medical Imaging, February 004, San Diego, CA. d e f hree randomly selected images from a sequence of 3D short axis cardiac MR images are shown in (a), (b), and (c). he computed displacement field from image (a) to image (b) is shown in (d), the computed displacement field from image (b) to image (c) is shown in (e), and the computed displacement field from image (a) to image (c) is shown in (f). I I 6 3D ransitivity est (cont.) I M max.x0-4.x0-4.x0-4.3x0-4.x0-4.4x0-4.0x0-4.4x0-4 mean.x0 -.9x0 -.x0 -.x0 -.x0 -.x0 -.x0 -.x0 - std 3.x0-3.4x0-3.x0-3.6x0-3.x0-3.x0-3.x0-3.6x0 - he transitivity error (max, mean, std) for random triples of images (I, I, I 3 ) with a given model (M) of 3D short axis cardiac MR images. he units for the errors are voxels. Related Issues: Validation Validation strategies: Visual assessment : contour overlays; difference images Simulation : artificially deformed image; biomechanical model Gold Standard : implanted markers; (only suitable for rigid registrations) Consistency : (A,B) (B,C) = (A,C) Future Work D symmetry test 3D symmetry test

Biomedical Image Analysis based on Computational Registration Methods. João Manuel R. S. Tavares

Biomedical Image Analysis based on Computational Registration Methods. João Manuel R. S. Tavares Biomedical Image Analysis based on Computational Registration Methods João Manuel R. S. Tavares tavares@fe.up.pt, www.fe.up.pt/~tavares Outline 1. Introduction 2. Methods a) Spatial Registration of (2D

More information

Hybrid Spline-based Multimodal Registration using a Local Measure for Mutual Information

Hybrid Spline-based Multimodal Registration using a Local Measure for Mutual Information Hybrid Spline-based Multimodal Registration using a Local Measure for Mutual Information Andreas Biesdorf 1, Stefan Wörz 1, Hans-Jürgen Kaiser 2, Karl Rohr 1 1 University of Heidelberg, BIOQUANT, IPMB,

More information

Image Registration I

Image Registration I Image Registration I Comp 254 Spring 2002 Guido Gerig Image Registration: Motivation Motivation for Image Registration Combine images from different modalities (multi-modality registration), e.g. CT&MRI,

More information

Introduction to Medical Image Registration

Introduction to Medical Image Registration Introduction to Medical Image Registration Sailesh Conjeti Computer Aided Medical Procedures (CAMP), Technische Universität München, Germany sailesh.conjeti@tum.de Partially adapted from slides by: 1.

More information

Image Warping. Srikumar Ramalingam School of Computing University of Utah. [Slides borrowed from Ross Whitaker] 1

Image Warping. Srikumar Ramalingam School of Computing University of Utah. [Slides borrowed from Ross Whitaker] 1 Image Warping Srikumar Ramalingam School of Computing University of Utah [Slides borrowed from Ross Whitaker] 1 Geom Trans: Distortion From Optics Barrel Distortion Pincushion Distortion Straight lines

More information

Implementation of Advanced Image Guided Radiation Therapy

Implementation of Advanced Image Guided Radiation Therapy Image Acquisition Course Outline Principles, characteristics& applications of the available modalities Image Processing in the T x room Image guided treatment delivery What can / can t we do in the room

More information

Lecture 13 Theory of Registration. ch. 10 of Insight into Images edited by Terry Yoo, et al. Spring (CMU RI) : BioE 2630 (Pitt)

Lecture 13 Theory of Registration. ch. 10 of Insight into Images edited by Terry Yoo, et al. Spring (CMU RI) : BioE 2630 (Pitt) Lecture 13 Theory of Registration ch. 10 of Insight into Images edited by Terry Yoo, et al. Spring 2018 16-725 (CMU RI) : BioE 2630 (Pitt) Dr. John Galeotti The content of these slides by John Galeotti,

More information

TG 132: Use of Image Registration and Fusion in RT

TG 132: Use of Image Registration and Fusion in RT TG 132: Use of Image Registration and Fusion in RT Kristy K Brock, PhD, DABR, FAAPM Associate Professor Department of Radiation Oncology, University of Michigan Chair, AAPM TG 132: Image Registration and

More information

Biomedical Image Processing

Biomedical Image Processing Biomedical Image Processing Jason Thong Gabriel Grant 1 2 Motivation from the Medical Perspective MRI, CT and other biomedical imaging devices were designed to assist doctors in their diagnosis and treatment

More information

Smart point landmark distribution for thin-plate splines

Smart point landmark distribution for thin-plate splines Smart point landmark distribution for thin-plate splines John Lewis a, Hea-Juen Hwang a, Ulrich Neumann a, and Reyes Enciso b a Integrated Media Systems Center, University of Southern California, 3740

More information

CSE 554 Lecture 7: Deformation II

CSE 554 Lecture 7: Deformation II CSE 554 Lecture 7: Deformation II Fall 2011 CSE554 Deformation II Slide 1 Review Rigid-body alignment Non-rigid deformation Intrinsic methods: deforming the boundary points An optimization problem Minimize

More information

Medical Image Registration by Maximization of Mutual Information

Medical Image Registration by Maximization of Mutual Information Medical Image Registration by Maximization of Mutual Information EE 591 Introduction to Information Theory Instructor Dr. Donald Adjeroh Submitted by Senthil.P.Ramamurthy Damodaraswamy, Umamaheswari Introduction

More information

Image Registration + Other Stuff

Image Registration + Other Stuff Image Registration + Other Stuff John Ashburner Pre-processing Overview fmri time-series Motion Correct Anatomical MRI Coregister m11 m 21 m 31 m12 m13 m14 m 22 m 23 m 24 m 32 m 33 m 34 1 Template Estimate

More information

Image processing and features

Image processing and features Image processing and features Gabriele Bleser gabriele.bleser@dfki.de Thanks to Harald Wuest, Folker Wientapper and Marc Pollefeys Introduction Previous lectures: geometry Pose estimation Epipolar geometry

More information

DRAMMS: Deformable Registration via Attribute Matching and Mutual-Saliency weighting

DRAMMS: Deformable Registration via Attribute Matching and Mutual-Saliency weighting DRAMMS: Deformable Registration via Attribute Matching and Mutual-Saliency weighting Yangming Ou, Christos Davatzikos Section of Biomedical Image Analysis (SBIA) University of Pennsylvania Outline 1. Background

More information

Medicale Image Analysis

Medicale Image Analysis Medicale Image Analysis Registration Validation Prof. Dr. Philippe Cattin MIAC, University of Basel Prof. Dr. Philippe Cattin: Registration Validation Contents 1 Validation 1.1 Validation of Registration

More information

Comparison Study of Clinical 3D MRI Brain Segmentation Evaluation

Comparison Study of Clinical 3D MRI Brain Segmentation Evaluation Comparison Study of Clinical 3D MRI Brain Segmentation Evaluation Ting Song 1, Elsa D. Angelini 2, Brett D. Mensh 3, Andrew Laine 1 1 Heffner Biomedical Imaging Laboratory Department of Biomedical Engineering,

More information

Cluster of Workstation based Nonrigid Image Registration Using Free-Form Deformation

Cluster of Workstation based Nonrigid Image Registration Using Free-Form Deformation Cluster of Workstation based Nonrigid Image Registration Using Free-Form Deformation Xiaofen Zheng, Jayaram K. Udupa, and Xinjian Chen Medical Image Processing Group, Department of Radiology 423 Guardian

More information

Coordinate transformations. 5554: Packet 8 1

Coordinate transformations. 5554: Packet 8 1 Coordinate transformations 5554: Packet 8 1 Overview Rigid transformations are the simplest Translation, rotation Preserve sizes and angles Affine transformation is the most general linear case Homogeneous

More information

A SYSTEMATIC WAY OF AFFINE TRANSFORMATION USING IMAGE REGISTRATION

A SYSTEMATIC WAY OF AFFINE TRANSFORMATION USING IMAGE REGISTRATION International Journal of Information Technology and Knowledge Management July-December 2012, Volume 5, No. 2, pp. 239-243 A SYSTEMATIC WAY OF AFFINE TRANSFORMATION USING IMAGE REGISTRATION Jimmy Singla

More information

A Generic Framework for Non-rigid Registration Based on Non-uniform Multi-level Free-Form Deformations

A Generic Framework for Non-rigid Registration Based on Non-uniform Multi-level Free-Form Deformations A Generic Framework for Non-rigid Registration Based on Non-uniform Multi-level Free-Form Deformations Julia A. Schnabel 1, Daniel Rueckert 2, Marcel Quist 3, Jane M. Blackall 1, Andy D. Castellano-Smith

More information

Elastic registration of medical images using finite element meshes

Elastic registration of medical images using finite element meshes Elastic registration of medical images using finite element meshes Hartwig Grabowski Institute of Real-Time Computer Systems & Robotics, University of Karlsruhe, D-76128 Karlsruhe, Germany. Email: grabow@ira.uka.de

More information

Registration D.A. Forsyth, UIUC

Registration D.A. Forsyth, UIUC Registration D.A. Forsyth, UIUC Registration Place a geometric model in correspondence with an image could be 2D or 3D model up to some transformations possibly up to deformation Applications very important

More information

Assessing Accuracy Factors in Deformable 2D/3D Medical Image Registration Using a Statistical Pelvis Model

Assessing Accuracy Factors in Deformable 2D/3D Medical Image Registration Using a Statistical Pelvis Model Assessing Accuracy Factors in Deformable 2D/3D Medical Image Registration Using a Statistical Pelvis Model Jianhua Yao National Institute of Health Bethesda, MD USA jyao@cc.nih.gov Russell Taylor The Johns

More information

Überatlas: Robust Speed-Up of Feature-Based Registration and Multi-Atlas Based Segmentation. Jennifer Alvén

Überatlas: Robust Speed-Up of Feature-Based Registration and Multi-Atlas Based Segmentation. Jennifer Alvén Überatlas: Robust Speed-Up of Feature-Based Registration and Multi-Atlas Based Segmentation Jennifer Alvén January 2015 Abstract Registration is a key component in multi-atlas approaches to medical image

More information

3D Geometry and Camera Calibration

3D Geometry and Camera Calibration 3D Geometry and Camera Calibration 3D Coordinate Systems Right-handed vs. left-handed x x y z z y 2D Coordinate Systems 3D Geometry Basics y axis up vs. y axis down Origin at center vs. corner Will often

More information

Free-Form B-spline Deformation Model for Groupwise Registration

Free-Form B-spline Deformation Model for Groupwise Registration Free-Form B-spline Deformation Model for Groupwise Registration Serdar K. Balci 1, Polina Golland 1, Martha Shenton 2, and William M. Wells 2 1 CSAIL, MIT, Cambridge, MA, USA, 2 Brigham & Women s Hospital,

More information

VALIDATION OF DIR. Raj Varadhan, PhD, DABMP Minneapolis Radiation Oncology

VALIDATION OF DIR. Raj Varadhan, PhD, DABMP Minneapolis Radiation Oncology VALIDATION OF DIR Raj Varadhan, PhD, DABMP Minneapolis Radiation Oncology Overview Basics: Registration Framework, Theory Discuss Validation techniques Using Synthetic CT data & Phantoms What metrics to

More information

Lecture 14 Shape. ch. 9, sec. 1-8, of Machine Vision by Wesley E. Snyder & Hairong Qi. Spring (CMU RI) : BioE 2630 (Pitt)

Lecture 14 Shape. ch. 9, sec. 1-8, of Machine Vision by Wesley E. Snyder & Hairong Qi. Spring (CMU RI) : BioE 2630 (Pitt) Lecture 14 Shape ch. 9, sec. 1-8, 12-14 of Machine Vision by Wesley E. Snyder & Hairong Qi Spring 2018 16-725 (CMU RI) : BioE 2630 (Pitt) Dr. John Galeotti The content of these slides by John Galeotti,

More information

Distance Transforms in Multi Channel MR Image Registration

Distance Transforms in Multi Channel MR Image Registration Distance Transforms in Multi Channel MR Image Registration Min Chen 1, Aaron Carass 1, John Bogovic 1, Pierre-Louis Bazin 2 and Jerry L. Prince 1 1 Image Analysis and Communications Laboratory, 2 The Laboratory

More information

Free Form Deformations Guided by Gradient Vector Flow: a Surface Registration Method in Thoracic and Abdominal PET-CT Applications

Free Form Deformations Guided by Gradient Vector Flow: a Surface Registration Method in Thoracic and Abdominal PET-CT Applications Free Form Deformations Guided by Gradient Vector Flow: a Surface Registration Method in Thoracic and Abdominal PET-CT Applications Oscar Camara, Gaspar Delso, and Isabelle Bloch Ecole Nationale Supérieure

More information

A Multiple-Layer Flexible Mesh Template Matching Method for Nonrigid Registration between a Pelvis Model and CT Images

A Multiple-Layer Flexible Mesh Template Matching Method for Nonrigid Registration between a Pelvis Model and CT Images A Multiple-Layer Flexible Mesh Template Matching Method for Nonrigid Registration between a Pelvis Model and CT Images Jianhua Yao 1, Russell Taylor 2 1. Diagnostic Radiology Department, Clinical Center,

More information

Marginal Space Learning for Efficient Detection of 2D/3D Anatomical Structures in Medical Images

Marginal Space Learning for Efficient Detection of 2D/3D Anatomical Structures in Medical Images Marginal Space Learning for Efficient Detection of 2D/3D Anatomical Structures in Medical Images Yefeng Zheng, Bogdan Georgescu, and Dorin Comaniciu Integrated Data Systems Department, Siemens Corporate

More information

Atlas Based Segmentation of the prostate in MR images

Atlas Based Segmentation of the prostate in MR images Atlas Based Segmentation of the prostate in MR images Albert Gubern-Merida and Robert Marti Universitat de Girona, Computer Vision and Robotics Group, Girona, Spain {agubern,marly}@eia.udg.edu Abstract.

More information

Non linear Registration of Pre and Intraoperative Volume Data Based On Piecewise Linear Transformations

Non linear Registration of Pre and Intraoperative Volume Data Based On Piecewise Linear Transformations Non linear Registration of Pre and Intraoperative Volume Data Based On Piecewise Linear Transformations C. Rezk Salama, P. Hastreiter, G. Greiner, T. Ertl University of Erlangen, Computer Graphics Group

More information

4 Parametrization of closed curves and surfaces

4 Parametrization of closed curves and surfaces 4 Parametrization of closed curves and surfaces Parametrically deformable models give rise to the question of obtaining parametrical descriptions of given pixel or voxel based object contours or surfaces,

More information

A Pyramid Approach For Multimodality Image Registration Based On Mutual Information

A Pyramid Approach For Multimodality Image Registration Based On Mutual Information Pyramid pproach For Multimodality Image Registration ased On Mutual Information Hua-mei Chen Department of Electrical Engineering and Computer Science 121 Link Hall Syracuse University Syracuse, NY 13244

More information

Introduction to Medical Image Processing

Introduction to Medical Image Processing Introduction to Medical Image Processing Δ Essential environments of a medical imaging system Subject Image Analysis Energy Imaging System Images Image Processing Feature Images Image processing may be

More information

Anomaly Detection through Registration

Anomaly Detection through Registration Anomaly Detection through Registration Mei Chen, Takeo Kanade, Henry A. Rowley, Dean Pomerleau CMU-RI-TR-97-41 The Robotics Institute Carnegie Mellon University Pittsburgh, Pennsylvania 15213 November,

More information

Algorithms for medical image registration and segmentation

Algorithms for medical image registration and segmentation Algorithms for medical image registration and segmentation Multi-atlas methods ernst.schwartz@meduniwien.ac.at www.cir.meduniwien.ac.at Overview Medical imaging hands-on Data formats: DICOM, NifTI Software:

More information

An Anatomical Atlas to Support the Virtual Planning of Hip Operations

An Anatomical Atlas to Support the Virtual Planning of Hip Operations An Anatomical Atlas to Support the Virtual Planning of Hip Operations J. Ehrhardt a, H. Handels a, T. Malina a, B. Strathmann b, W. Plötz b, S. J. Pöppl a a Institute for Medical Informatics and b Department

More information

Laser sensors. Transmitter. Receiver. Basilio Bona ROBOTICA 03CFIOR

Laser sensors. Transmitter. Receiver. Basilio Bona ROBOTICA 03CFIOR Mobile & Service Robotics Sensors for Robotics 3 Laser sensors Rays are transmitted and received coaxially The target is illuminated by collimated rays The receiver measures the time of flight (back and

More information

FROM IMAGE RECONSTRUCTION TO CONNECTIVITY ANALYSIS: A JOURNEY THROUGH THE BRAIN'S WIRING. Francesca Pizzorni Ferrarese

FROM IMAGE RECONSTRUCTION TO CONNECTIVITY ANALYSIS: A JOURNEY THROUGH THE BRAIN'S WIRING. Francesca Pizzorni Ferrarese FROM IMAGE RECONSTRUCTION TO CONNECTIVITY ANALYSIS: A JOURNEY THROUGH THE BRAIN'S WIRING Francesca Pizzorni Ferrarese Pipeline overview WM and GM Segmentation Registration Data reconstruction Tractography

More information

Bildverarbeitung für die Medizin 2007

Bildverarbeitung für die Medizin 2007 Bildverarbeitung für die Medizin 2007 Image Registration with Local Rigidity Constraints Jan Modersitzki Institute of Mathematics, University of Lübeck, Wallstraße 40, D-23560 Lübeck 1 Summary Registration

More information

Ripplet: a New Transform for Feature Extraction and Image Representation

Ripplet: a New Transform for Feature Extraction and Image Representation Ripplet: a New Transform for Feature Extraction and Image Representation Dr. Dapeng Oliver Wu Joint work with Jun Xu Department of Electrical and Computer Engineering University of Florida Outline Motivation

More information

CHAPTER 4. Numerical Models. descriptions of the boundary conditions, element types, validation, and the force

CHAPTER 4. Numerical Models. descriptions of the boundary conditions, element types, validation, and the force CHAPTER 4 Numerical Models This chapter presents the development of numerical models for sandwich beams/plates subjected to four-point bending and the hydromat test system. Detailed descriptions of the

More information

Guidelines for proper use of Plate elements

Guidelines for proper use of Plate elements Guidelines for proper use of Plate elements In structural analysis using finite element method, the analysis model is created by dividing the entire structure into finite elements. This procedure is known

More information

EPI Data Are Acquired Serially. EPI Data Are Acquired Serially 10/23/2011. Functional Connectivity Preprocessing. fmri Preprocessing

EPI Data Are Acquired Serially. EPI Data Are Acquired Serially 10/23/2011. Functional Connectivity Preprocessing. fmri Preprocessing Functional Connectivity Preprocessing Geometric distortion Head motion Geometric distortion Head motion EPI Data Are Acquired Serially EPI Data Are Acquired Serially descending 1 EPI Data Are Acquired

More information

SCAPE: Shape Completion and Animation of People

SCAPE: Shape Completion and Animation of People SCAPE: Shape Completion and Animation of People By Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Jim Rodgers, James Davis From SIGGRAPH 2005 Presentation for CS468 by Emilio Antúnez

More information

Nonrigid Registration Using a Rigidity Constraint

Nonrigid Registration Using a Rigidity Constraint Nonrigid Registration Using a Rigidity Constraint Marius Staring, Stefan Klein and Josien P.W. Pluim Image Sciences Institute, University Medical Center Utrecht, P.O. Box 85500, 3508 GA, Room Q0S.459,

More information

Non-Rigid Registration of Medical Images: Theory, Methods and Applications

Non-Rigid Registration of Medical Images: Theory, Methods and Applications Non-Rigid Registration of Medical Images: Theory, Methods and Applications Daniel Rueckert Paul Aljabar Medical image registration [1] plays an increasingly important role in many clinical applications

More information

Segmentation of 3D CT Volume Images Using a Single 2D Atlas

Segmentation of 3D CT Volume Images Using a Single 2D Atlas Segmentation of 3D CT Volume Images Using a Single 2D Atlas Feng Ding 1, Wee Kheng Leow 1, and Shih-Chang Wang 2 1 Dept. of Computer Science, National University of Singapore, 3 Science Drive 2, Singapore

More information

Two pixel computer generated hologram using a zero twist nematic liquid crystal spatial light modulator

Two pixel computer generated hologram using a zero twist nematic liquid crystal spatial light modulator Two pixel computer generated hologram using a zero twist nematic liquid crystal spatial light modulator Philip M. Birch, Rupert Young, David Budgett, Chris Chatwin School of Engineering, University of

More information

CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES

CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES YINGYING REN Abstract. In this paper, the applications of homogeneous coordinates are discussed to obtain an efficient model

More information

2D-3D Registration using Gradient-based MI for Image Guided Surgery Systems

2D-3D Registration using Gradient-based MI for Image Guided Surgery Systems 2D-3D Registration using Gradient-based MI for Image Guided Surgery Systems Yeny Yim 1*, Xuanyi Chen 1, Mike Wakid 1, Steve Bielamowicz 2, James Hahn 1 1 Department of Computer Science, The George Washington

More information

Non-Rigid Image Registration III

Non-Rigid Image Registration III Non-Rigid Image Registration III CS6240 Multimedia Analysis Leow Wee Kheng Department of Computer Science School of Computing National University of Singapore Leow Wee Kheng (CS6240) Non-Rigid Image Registration

More information

Medical Image Analysis Active Shape Models

Medical Image Analysis Active Shape Models Medical Image Analysis Active Shape Models Mauricio Reyes, Ph.D. mauricio.reyes@istb.unibe.ch ISTB - Institute for Surgical Technology and Biomechanics University of Bern Lecture Overview! Statistical

More information

Model-Based Human Motion Capture from Monocular Video Sequences

Model-Based Human Motion Capture from Monocular Video Sequences Model-Based Human Motion Capture from Monocular Video Sequences Jihun Park 1, Sangho Park 2, and J.K. Aggarwal 2 1 Department of Computer Engineering Hongik University Seoul, Korea jhpark@hongik.ac.kr

More information

Pattern Matching & Image Registration

Pattern Matching & Image Registration Pattern Matching & Image Registration Philippe Latour 26/11/2014 1 / 53 Table of content Introduction Applications Some solutions and their corresponding approach Pattern matching components Implementation

More information

Transforms. COMP 575/770 Spring 2013

Transforms. COMP 575/770 Spring 2013 Transforms COMP 575/770 Spring 2013 Transforming Geometry Given any set of points S Could be a 2D shape, a 3D object A transform is a function T that modifies all points in S: T S S T v v S Different transforms

More information

Computer Vision. Coordinates. Prof. Flávio Cardeal DECOM / CEFET- MG.

Computer Vision. Coordinates. Prof. Flávio Cardeal DECOM / CEFET- MG. Computer Vision Coordinates Prof. Flávio Cardeal DECOM / CEFET- MG cardeal@decom.cefetmg.br Abstract This lecture discusses world coordinates and homogeneous coordinates, as well as provides an overview

More information

1. Two double lectures about deformable contours. 4. The transparencies define the exam requirements. 1. Matlab demonstration

1. Two double lectures about deformable contours. 4. The transparencies define the exam requirements. 1. Matlab demonstration Practical information INF 5300 Deformable contours, I An introduction 1. Two double lectures about deformable contours. 2. The lectures are based on articles, references will be given during the course.

More information

AUTOMATIC SEGMENTATION OF BRAIN STRUCTURES FOR RADIOTHERAPY PLANNING. Pallavi V. Joshi. Thesis. Submitted to the Faculty of the

AUTOMATIC SEGMENTATION OF BRAIN STRUCTURES FOR RADIOTHERAPY PLANNING. Pallavi V. Joshi. Thesis. Submitted to the Faculty of the AUTOMATIC SEGMENTATION OF BRAIN STRUCTURES FOR RADIOTHERAPY PLANNING By Pallavi V. Joshi Thesis Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements

More information

Math in image processing

Math in image processing Math in image processing Math in image processing Nyquist theorem Math in image processing Discrete Fourier Transformation Math in image processing Image enhancement: scaling Math in image processing Image

More information

Homogeneous Coordinates and Transformations of the Plane

Homogeneous Coordinates and Transformations of the Plane 2 Homogeneous Coordinates and Transformations of the Plane 2. Introduction In Chapter planar objects were manipulated by applying one or more transformations. Section.7 identified the problem that the

More information

Practical Image and Video Processing Using MATLAB

Practical Image and Video Processing Using MATLAB Practical Image and Video Processing Using MATLAB Chapter 18 Feature extraction and representation What will we learn? What is feature extraction and why is it a critical step in most computer vision and

More information

A Binary Entropy Measure to Assess Nonrigid Registration Algorithms

A Binary Entropy Measure to Assess Nonrigid Registration Algorithms A Binary Entropy Measure to Assess Nonrigid Registration Algorithms Simon K. Warfield 1, Jan Rexilius 1, Petra S. Huppi 2, Terrie E. Inder 3, Erik G. Miller 1, William M. Wells III 1, Gary P. Zientara

More information

Intuitive, Localized Analysis of Shape Variability

Intuitive, Localized Analysis of Shape Variability Intuitive, Localized Analysis of Shape Variability Paul Yushkevich, Stephen M. Pizer, Sarang Joshi, and J. S. Marron Medical Image Display and Analysis Group, University of North Carolina at Chapel Hill.

More information

Fast Free-Form Deformation using the Normalised Mutual Information gradient and Graphics Processing Units

Fast Free-Form Deformation using the Normalised Mutual Information gradient and Graphics Processing Units Fast Free-Form Deformation using the Normalised Mutual Information gradient and Graphics Processing Units Marc Modat 1, Zeike A. Taylor 1, Josephine Barnes 2, David J. Hawkes 1, Nick C. Fox 2, and Sébastien

More information

Morphological Analysis of Brain Structures Using Spatial Normalization

Morphological Analysis of Brain Structures Using Spatial Normalization Morphological Analysis of Brain Structures Using Spatial Normalization C. Davatzikos 1, M. Vaillant 1, S. Resnick 2, J.L. Prince 3;1, S. Letovsky 1, and R.N. Bryan 1 1 Department of Radiology, Johns Hopkins

More information

High-fidelity Structural Optimization of a Tow-Steered Composite Wing

High-fidelity Structural Optimization of a Tow-Steered Composite Wing 11 th World Congress on Structural and Multidisciplinary Optimization 7 th - 12 th, June 2015, Sydney Australia High-fidelity Structural Optimization of a Tow-Steered Composite Wing Timothy R. Brooks 1,

More information

PERFORMANCE CAPTURE FROM SPARSE MULTI-VIEW VIDEO

PERFORMANCE CAPTURE FROM SPARSE MULTI-VIEW VIDEO Stefan Krauß, Juliane Hüttl SE, SoSe 2011, HU-Berlin PERFORMANCE CAPTURE FROM SPARSE MULTI-VIEW VIDEO 1 Uses of Motion/Performance Capture movies games, virtual environments biomechanics, sports science,

More information

Elastic Shape Registration using an Incremental Free Form Deformation Approach with the ICP Algorithm

Elastic Shape Registration using an Incremental Free Form Deformation Approach with the ICP Algorithm Elastic Shape Registration using an Incremental Free Form Deformation Approach with the ICP Algorithm Hossam Abdelmunim Computer & Systems Engineering Department, Faculty of Engineering, Ain Shams University,

More information

3D Finite Element Software for Cracks. Version 3.2. Benchmarks and Validation

3D Finite Element Software for Cracks. Version 3.2. Benchmarks and Validation 3D Finite Element Software for Cracks Version 3.2 Benchmarks and Validation October 217 1965 57 th Court North, Suite 1 Boulder, CO 831 Main: (33) 415-1475 www.questintegrity.com http://www.questintegrity.com/software-products/feacrack

More information

Non-Rigid Multimodal Medical Image Registration using Optical Flow and Gradient Orientation

Non-Rigid Multimodal Medical Image Registration using Optical Flow and Gradient Orientation M. HEINRICH et al.: MULTIMODAL REGISTRATION USING GRADIENT ORIENTATION 1 Non-Rigid Multimodal Medical Image Registration using Optical Flow and Gradient Orientation Mattias P. Heinrich 1 mattias.heinrich@eng.ox.ac.uk

More information

Module 4F12: Computer Vision and Robotics Solutions to Examples Paper 2

Module 4F12: Computer Vision and Robotics Solutions to Examples Paper 2 Engineering Tripos Part IIB FOURTH YEAR Module 4F2: Computer Vision and Robotics Solutions to Examples Paper 2. Perspective projection and vanishing points (a) Consider a line in 3D space, defined in camera-centered

More information

APPLICATION OF RADON TRANSFORM IN CT IMAGE MATCHING Yufang Cai, Kuan Shen, Jue Wang ICT Research Center of Chongqing University, Chongqing, P.R.

APPLICATION OF RADON TRANSFORM IN CT IMAGE MATCHING Yufang Cai, Kuan Shen, Jue Wang ICT Research Center of Chongqing University, Chongqing, P.R. APPLICATION OF RADON TRANSFORM IN CT IMAGE MATCHING Yufang Cai, Kuan Shen, Jue Wang ICT Research Center of Chongqing University, Chongqing, P.R.China Abstract: When Industrial Computerized Tomography (CT)

More information

Image Transformations

Image Transformations Image Transformations Outline Gre-level transformations Histogram equalization Geometric transformations Affine transformations Interpolation Warping and morphing. Gre-level transformations Changes the

More information

Automatic Construction of 3D Statistical Deformation Models Using Non-rigid Registration

Automatic Construction of 3D Statistical Deformation Models Using Non-rigid Registration Automatic Construction of 3D Statistical Deformation Models Using Non-rigid Registration D. Rueckert 1, A.F. Frangi 2,3, and J.A. Schnabel 4 1 Visual Information Processing, Department of Computing, Imperial

More information

Automatic Registration-Based Segmentation for Neonatal Brains Using ANTs and Atropos

Automatic Registration-Based Segmentation for Neonatal Brains Using ANTs and Atropos Automatic Registration-Based Segmentation for Neonatal Brains Using ANTs and Atropos Jue Wu and Brian Avants Penn Image Computing and Science Lab, University of Pennsylvania, Philadelphia, USA Abstract.

More information

Dense Deformation Field Estimation for Atlas-based Segmentation of Pathological MR Brain Images

Dense Deformation Field Estimation for Atlas-based Segmentation of Pathological MR Brain Images Dense Deformation Field Estimation for Atlas-based Segmentation of Pathological MR Brain Images M. Bach Cuadra a, M. De Craene b,v. Duay a, B. Macq b,c. Pollo a,c, and J.-P. Thiran a a Signal Processing

More information

better images mean better results

better images mean better results better images mean better results A better way for YOU and YOUR patient brought to you by Advanced Neuro analysis with access to studies wherever you need it Advanced Neuro from Invivo Advancements in

More information

Anatomical landmark and region mapping based on a template surface deformation for foot bone morphology

Anatomical landmark and region mapping based on a template surface deformation for foot bone morphology Anatomical landmark and region mapping based on a template surface deformation for foot bone morphology Jaeil Kim 1, Sang Gyo Seo 2, Dong Yeon Lee 2, Jinah Park 1 1 Department of Computer Science, KAIST,

More information

Automatic Construction of Statistical Children Brain Atlas with MRI

Automatic Construction of Statistical Children Brain Atlas with MRI Automatic Construction of Statistical Children Brain Atlas with MRI Project ANIM Christian Wachinger, Patric Somlo Celine Hudelot, Isabelle Bloch December 19, 2005 1 Contents 1. Introduction 3 2. Project

More information

Non-Rigid Image Registration

Non-Rigid Image Registration Proceedings of the Twenty-First International FLAIRS Conference (8) Non-Rigid Image Registration Rhoda Baggs Department of Computer Information Systems Florida Institute of Technology. 15 West University

More information

Functional MRI data preprocessing. Cyril Pernet, PhD

Functional MRI data preprocessing. Cyril Pernet, PhD Functional MRI data preprocessing Cyril Pernet, PhD Data have been acquired, what s s next? time No matter the design, multiple volumes (made from multiple slices) have been acquired in time. Before getting

More information

EECS 556 Image Processing W 09

EECS 556 Image Processing W 09 EECS 556 Image Processing W 09 Motion estimation Global vs. Local Motion Block Motion Estimation Optical Flow Estimation (normal equation) Man slides of this lecture are courtes of prof Milanfar (UCSC)

More information

108 6 Automatic 3-D statistical shape model construction aims at automating the landmarking procedure while still relying on the existence of a segmen

108 6 Automatic 3-D statistical shape model construction aims at automating the landmarking procedure while still relying on the existence of a segmen For we must not misunderstand ourselves; we are as much automatic as intellectual; and hence it comes that the instrument by which conviction is attained is not demonstrated alone. How few things are demonstrated!

More information

Figure 1: Derivation of Bragg s Law

Figure 1: Derivation of Bragg s Law What is Bragg s Law and why is it Important? Bragg s law refers to a simple equation derived by English physicists Sir W. H. Bragg and his son Sir W. L. Bragg in 1913. This equation explains why the faces

More information

Gradient Enhanced Image Pyramid for Improved Nonlinear Image Registration

Gradient Enhanced Image Pyramid for Improved Nonlinear Image Registration Gradient Enhanced Image Pyramid for Improved Nonlinear Image Registration Lin Gan and Gady Agam, Illinois Institute of Technology, Chicago, IL, USA Abstract In this paper we investigate the use of image

More information

Shape Classification and Cell Movement in 3D Matrix Tutorial (Part I)

Shape Classification and Cell Movement in 3D Matrix Tutorial (Part I) Shape Classification and Cell Movement in 3D Matrix Tutorial (Part I) Fred Park UCI icamp 2011 Outline 1. Motivation and Shape Definition 2. Shape Descriptors 3. Classification 4. Applications: Shape Matching,

More information

Subcortical Structure Segmentation using Probabilistic Atlas Priors

Subcortical Structure Segmentation using Probabilistic Atlas Priors Subcortical Structure Segmentation using Probabilistic Atlas Priors Sylvain Gouttard 1, Martin Styner 1,2, Sarang Joshi 3, Brad Davis 2, Rachel G. Smith 1, Heather Cody Hazlett 1, Guido Gerig 1,2 1 Department

More information

Occluded Facial Expression Tracking

Occluded Facial Expression Tracking Occluded Facial Expression Tracking Hugo Mercier 1, Julien Peyras 2, and Patrice Dalle 1 1 Institut de Recherche en Informatique de Toulouse 118, route de Narbonne, F-31062 Toulouse Cedex 9 2 Dipartimento

More information

Perspective Projection Transformation

Perspective Projection Transformation Perspective Projection Transformation Where does a point of a scene appear in an image?? p p Transformation in 3 steps:. scene coordinates => camera coordinates. projection of camera coordinates into image

More information

Information-Theoretic Unification of Groupwise Non-Rigid Registration and Model Building.

Information-Theoretic Unification of Groupwise Non-Rigid Registration and Model Building. Information-Theoretic Unification of Groupwise Non-Rigid Registration and Model Building. Carole J. Twining a, T.F. Cootes a, S. Marsland b, V. Petrovic a, R. Schestowitz a, and C.J. Taylor a a Imaging

More information

This Time. fmri Data analysis

This Time. fmri Data analysis This Time Reslice example Spatial Normalization Noise in fmri Methods for estimating and correcting for physiologic noise SPM Example Spatial Normalization: Remind ourselves what a typical functional image

More information

Terrain correction. Backward geocoding. Terrain correction and ortho-rectification. Why geometric terrain correction? Rüdiger Gens

Terrain correction. Backward geocoding. Terrain correction and ortho-rectification. Why geometric terrain correction? Rüdiger Gens Terrain correction and ortho-rectification Terrain correction Rüdiger Gens Why geometric terrain correction? Backward geocoding remove effects of side looking geometry of SAR images necessary step to allow

More information

Image Warping. August 20, Abstract

Image Warping. August 20, Abstract Image Warping Mikkel B. Stegmann Informatics and Mathematical Modelling, Technical University of Denmark Richard Petersens Plads, Building 32, DK-2800 Kgs. Lyngby, Denmark August 20, 200 Abstract This

More information

Shape Classification Using Regional Descriptors and Tangent Function

Shape Classification Using Regional Descriptors and Tangent Function Shape Classification Using Regional Descriptors and Tangent Function Meetal Kalantri meetalkalantri4@gmail.com Rahul Dhuture Amit Fulsunge Abstract In this paper three novel hybrid regional descriptor

More information

Computer Vision II Lecture 4

Computer Vision II Lecture 4 Computer Vision II Lecture 4 Color based Tracking 29.04.2014 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Course Outline Single-Object Tracking Background modeling

More information