3D Rendering Pipeline (for direct illumination)

Size: px
Start display at page:

Download "3D Rendering Pipeline (for direct illumination)"

Transcription

1 Clipping

2 3D Rendering Pipeline (for direct illumination) 3D Primitives 3D Modeling Coordinates Modeling Transformation Lighting 3D Camera Coordinates Projection Transformation Clipping 2D Screen Coordinates Viewport Transformation 2D Image Coordinates Scan Conversion Image 3D World Coordinates 3D World Coordinates Viewing Transformation 2D Screen Coordinates 2D Image Coordinates

3 3D Rendering Pipeline (for direct illumination) 3D Primitives 3D Modeling Coordinates Modeling Transformation Lighting 3D Camera Coordinates Projection Transformation Clipping 2D Screen Coordinates Viewport Transformation 2D Image Coordinates Scan Conversion Image 3D World Coordinates 3D World Coordinates Viewing Transformation 2D Screen Coordinates 2D Image Coordinates

4 2D Rendering Pipeline 3D Primitives 2D Primitives Clipping Viewport Transformation Scan Conversion Clip portions of geometric primitives residing outside the window Transform the clipped primitives from screen to image coordinates Fill pixels representing primitives in screen coordinates Image

5 2D Rendering Pipeline 3D Primitives 2D Primitives Clipping Viewport Transformation Scan Conversion Clip portions of geometric primitives residing outside the window Transform the clipped primitives from screen to image coordinates Fill pixels representing primitives in screen coordinates Image

6 Clipping Avoid drawing parts of primitives outside window o Window defines part of scene being viewed o Must draw geometric primitives only inside window Window Screen Coordinates

7 Clipping Avoid drawing parts of primitives outside window o Window defines part of scene being viewed o Must draw geometric primitives only inside window Viewing Window

8 Clipping Avoid drawing parts of primitives outside window o Points o Lines o Polygons o Circles o etc. Viewing Window

9 Point Clipping Is point (x,y) inside the clip window? wy2 (x,y) inside = (x >= wx1) && (x <= wx2) && (y >= wy1) && (y <= wy2); wy1 wx1 Window wx2

10 Line Clipping Find the part of a line inside the clip window P 7 P 1 P 3 P 4 P 8 P 2 P 6 P 10 P 5 P 9 Before Clipping

11 Line Clipping Find the part of a line inside the clip window P 7 P 3 P 4 P 8 P 6 P 5 After Clipping

12 Cohen Sutherland Line Clipping Use simple tests to classify easy cases first P 7 P 1 P 3 P 4 P 8 P 2 P 6 P 10 P 5 P 9

13 Cohen Sutherland Line Clipping Unique 4-bit binary number: b 0 b 1 b 2 b 3 (outcode) b 0 = 1 if x<x min, 0 otherwise b 1 = 1 if x>x max, 0 otherwise b 2 = 1 if y<y min, 0 otherwise b 3 = 1 if y>y max, 0 otherwise y max y min x min x max

14 Cohen Sutherland Line Clipping 1001 P Bit 4 P P 3 P 4 P P 2 P 5 P 6 P P Bit 1 Bit 2 Bit 3

15 Cohen Sutherland Line Clipping Classify some lines quickly by AND of bit codes representing regions of two endpoints (must be 0) 1001 P Bit 4 P P 3 P 4 P P 2 P 5 P 6 P P Bit 1 Bit 2 Bit 3

16 Cohen Sutherland Line Clipping Classify some lines quickly by AND of bit codes representing regions of two endpoints (must be 0) 1001 P Bit P 3 P 4 P P 5 P 6 P P Bit 1 Bit 2 Bit 3

17 Cohen Sutherland Line Clipping Classify some lines quickly by AND of bit codes representing regions of two endpoints (must be 0) 1001 P Bit P 3 P 4 P P 5 P 6 P P Bit 1 Bit 2 Bit 3

18 Cohen-Sutherland Line Clipping Compute interesections with window boundary for lines that can t be classified quickly: y=mx+h 1001 P Bit P 3 P 4 P P 5 P 6 P P Bit 1 Bit 2 Bit 3

19 Cohen-Sutherland Line Clipping Compute interesections with window boundary for lines that can t be classified quickly 1001 P Bit P 3 P 4 P P 5 P 6 P P Bit 1 Bit 2 Bit 3

20 Cohen-Sutherland Line Clipping Compute interesections with window boundary for lines that can t be classified quickly 1001 P Bit P 3 P 4 P P 5 P 6 P P Bit 1 Bit 2 Bit 3

21 Cohen-Sutherland Line Clipping Compute interesections with window boundary for lines that can t be classified quickly 1001 P Bit P 3 P 4 P P 5 P 6 P P Bit 1 Bit 2 Bit 3

22 Cohen-Sutherland Line Clipping Compute interesections with window boundary for lines that can t be classified quickly 1001 P Bit P 3 P 4 P P 5 P 6 P P Bit 1 Bit 2 Bit 3

23 Cohen-Sutherland Line Clipping Compute interesections with window boundary for lines that can t be classified quickly 1001 P Bit P 3 P 4 P P 5 P 6 P P Bit 1 Bit 2 Bit 3

24 Cohen-Sutherland Line Clipping Compute interesections with window boundary for lines that can t be classified quickly P 7 Bit P 3 P 4 P P 5 P 6 P P Bit 1 Bit 2 Bit 3

25 Cohen-Sutherland Line Clipping Compute interesections with window boundary for lines that can t be classified quickly P 7 Bit P 3 P 4 P P 5 P 6 P P Bit 1 Bit 2 Bit 3

26 Cohen-Sutherland Line Clipping Compute interesections with window boundary for lines that can t be classified quickly P 7 Bit P 3 P 4 P P 5 P 6 P P Bit 1 Bit 2 Bit 3

27 Cohen-Sutherland Line Clipping Compute interesections with window boundary for lines that can t be classified quickly P 7 Bit P 3 P 4 P P 5 P 6 P P Bit 1 Bit 2 Bit 3

28 Cohen-Sutherland Line Clipping Compute interesections with window boundary for lines that can t be classified quickly P 7 Bit P 3 P 4 P P 5 P 6 P P Bit 1 Bit 2 Bit 3

29 Cohen-Sutherland Line Clipping Compute interesections with window boundary for lines that can t be classified quickly P 7 Bit P 3 P 4 P P 5 P 6 P P Bit 1 Bit 2 Bit 3

30 Cohen-Sutherland Line Clipping Compute interesections with window boundary for lines that can t be classified quickly P 7 Bit P 3 P 4 P P 5 P 6 P 10 P Bit 1 Bit 2 Bit 3

31 Cohen-Sutherland Line Clipping Compute interesections with window boundary for lines that can t be classified quickly P 7 Bit P 3 P 4 P P 5 P 6 P 10 P Bit 1 Bit 2 Bit 3

32 Cohen-Sutherland Line Clipping Compute interesections with window boundary for lines that can t be classified quickly P 7 Bit P 3 P 4 P P 5 P Bit 1 Bit 2 Bit 3

33 Liang-Barsky Clipping Use parametric form for lines More efficient Line segment, p 1 and p 2 Matrix form p(α)=(1-α)p 1 + αp 2 Scalar form x(α)=(1- α)x 1 + αx 2 y(α)=(1- α)y 1 + αy 2

34 Liang-Barksy Clipping α varies from 0 1 moving along line from p 1 to p 2 -α yields points on other side of p 1 from p 2 α>1 yields points past on one past p 2 going off to infinity Intersection at 4 points of extended window

35 Liang-Barksy Clipping α α α α α α α α

36 Liang-Barksy Order the points 1>α 4 > α 3 > α 2 > α 1 >0 accept, α 3 and α 2 define clipped line 1>α 4 > α 2 > α 3 > α 1 >0 trivially reject entire line ymax y1 α = y2 y1 y(α)=(1- α)y 1 + αy 2 intersection at top of window similar for other sides, ymin, Xmax, and Xmin

37 Liang-Barksy Rewrite the equation as: α(y 2 -y 1 )=α y=y max -y 1 = y max All tests can be rewritten in the form of y max, y, x max, x No floating point division for any testing Only required if line must be shortened Many lines can be rejected before all computations are done

38 Clipping Avoid drawing parts of primitives outside window o Points o Lines o Polygons o Circles o etc. Window 2D Screen Coordinates

39 Polygon Clipping

40 Polygon Clipping Find the part of a polygon inside the clip window? Before Clipping

41 Polygon Clipping Find the part of a polygon inside the clip window? After Clipping

42 Sutherland Hodgeman Clipping Clip to each window boundary one at a time

43 Sutherland Hodgeman Clipping Clip to each window boundary one at a time

44 Sutherland Hodgeman Clipping Clip to each window boundary one at a time

45 Sutherland Hodgeman Clipping Clip to each window boundary one at a time

46 Sutherland Hodgeman Clipping Clip to each window boundary one at a time

47 Clipping to a Boundary Do inside test for each point in sequence, Insert new points when cross window boundary, Remove points outside window boundary P 2 P 1 Window Boundary Inside Outside P 3 P 5 P 4

48 Clipping to a Boundary Do inside test for each point in sequence, Insert new points when cross window boundary, Remove points outside window boundary P 2 P 1 Window Boundary Inside Outside P 3 P 5 P 4

49 Clipping to a Boundary Do inside test for each point in sequence, Insert new points when cross window boundary, Remove points outside window boundary P 2 P 1 Window Boundary Inside Outside P 3 P 5 P 4

50 Clipping to a Boundary Do inside test for each point in sequence, Insert new points when cross window boundary, Remove points outside window boundary P 2 P 1 Window Boundary Inside Outside P 3 P 5 P 4

51 Clipping to a Boundary Do inside test for each point in sequence, Insert new points when cross window boundary, Remove points outside window boundary P 2 P 1 Window Boundary P Inside Outside P 3 P 5 P 4

52 Clipping to a Boundary Do inside test for each point in sequence, Insert new points when cross window boundary, Remove points outside window boundary P 2 P 1 Window Boundary P Inside Outside P 3 P 5 P 4

53 Clipping to a Boundary Do inside test for each point in sequence, Insert new points when cross window boundary, Remove points outside window boundary P 2 P 1 Window Boundary P Inside Outside P 3 P 5 P 4

54 Clipping to a Boundary Do inside test for each point in sequence, Insert new points when cross window boundary, Remove points outside window boundary P 2 P 1 Window Boundary P P Inside Outside P 3 P 5 P 4

55 Clipping to a Boundary Do inside test for each point in sequence, Insert new points when cross window boundary, Remove points outside window boundary P 2 P 1 Window Boundary P P Inside Outside

56 Polygon Clipping Single polygon with edges that overlap along the sides of the window Causes implementation difficulties

57 Polygon Clipping Divide (tessellate) a given polygon into a set of convex polygons

58 Problems With Clipping Polygons Forbid concave polygons Convex polygons result in at most one convex polygon Unpredictable results o Multiple Polygons o How to handle? Tesselate concave polygons Clip each line in a polygon

59 Sutherland-Hodgeman Clipping Fits well with pipeline architectures Black Box Input: pair of vertices from segment Output: pair of vertices of clipped line segment or nothing.

60 Sutherland-Hodgeman Clipping Instead of clipping window with four line segments, think of an object created by the intersection of four infinite lines for the top, bottom, right and left sides of the window Subdivide clipper into a pipeline of simpler clippers Each clipper works against a single line that is an extension of an edge of the window

61 Sutherland-Hodgeman Clipping Clipping against the top Black Box Input: pair of vertices from segment Output: one of three pairs {(x 1,y 1 ),(x 2,y 2 )}, {(x 1,y 1 ),(x i,y max )}, {(x i,y max ),(x 2,y 2 )} Parameter: y max

62 Sutherland-Hodgeman Clipping Arrange the four clippers in a pipeline

63 Sutherland-Hodgeman Clipping Build into hardware and clipper works on four vertices concurrently

64 Bounding Boxes Entire polygon lies outside the clipping window Bounding Box of the polygon is the smallest rectangle, aligned with the window, that contains the polygon. Go through the vertices of the polygon and find the min and max of both the x and y values

65 Bounding Boxes Detailed clipping only if bounding box straddles the window Powerful technique for 2D and 3D Modeling systems automatically compute and store the bounding box with the object

66 Curves, Surfaces and Text Approximate curves with line segments; surfaces with planar polygons Use bounding boxes Extremes: bitmapped vs stroke characters

67 Clipping in the Frame Buffer Scissoring is a technique for clipping in the frame buffer Generally used only on raster objects or blocks of pixels OpenGL allows both techniques: bitmapped in frame buffer, or clip geometric objects (stroke char)

68 Clipping in Three Dimensions Cohen-Sutherland o Extend 4 bit outcode to 6 bits o Set if in front or behind clipping volume Liang-Barsky o Add equation: z(α)=(1-α)z 1 +αz 2 o Six Intersections Clipping against surfaces instead of lines o p(α)=(1-α)p 1 +αp 2 o n (p(α)-p 0 )=0 o α=(n p 0 -p 1 ))/ (n p 2 -p 1 ))

69 Cohen-Sutherland

70 Clipping Against Surfaces

71 2D Rendering Pipeline 3D Primitives 2D Primitives Clipping Viewport Transformation Scan Conversion Clip portions of geometric primitives residing outside the window Transform the clipped primitives from screen to image coordinates Fill pixels representing primitives in screen coordinates Image

72 Viewport Transformation Transform 2D geometric primitives from screen coordinate system (normalized device coordinates) to image coordinate system (pixels) Screen Image Viewport Window

73 Viewport Transformation Window-to-viewport mapping wy2 Window vy2 Viewport (wx,wy) wy1 wx1 wx2 Screen Coordinates (vx,vy) vy1 vx1 vx2 Image Coordinates vx = vx1 + (wx - wx1) * (vx2 - vx1) / (wx2 - wx1); vy = vy1 + (wy - wy1) * (vy2 - vy1) / (wy2 - wy1);

74 Summary of Transformations p(x,y,z) 3D Object Coordinates Modeling Transformation 3D World Coordinates Viewing Transformation 3D Camera Coordinates Projection Transformation 2D Screen Coordinates Window-to-Viewport Transformation p (x,y ) 2D Image Coordinates } Modeling } Viewport transformation Viewing transformations transformation

75 Summary 3D Primitives 2D Primitives Clipping Viewport Transformation Scan Conversion Clip portions of geometric primitives residing outside the window Transform the clipped primitives from screen to image coordinates Fill pixels representing primitives in screen coordinates Image

76 Summary 3D Primitives 3D Modeling Coordinates Modeling Transformation Lighting 3D World Coordinates 3D World Coordinates Viewing Transformation 3D Camera Coordinates Projection Transformation Clipping 2D Screen Coordinates Viewport Transformation 2D Image Coordinates Scan Conversion Image 2D Screen Coordinates 2D Image Coordinates Viewing Window

77 Next Time 3D Primitives 3D Modeling Coordinates Modeling Transformation Lighting 3D Camera Coordinates Projection Transformation Clipping 3D World Coordinates 3D World Coordinates Viewing Transformation 2D Screen Coordinates P 2 P 1 2D Screen Coordinates Viewport Transformation 2D Image Coordinates Scan Conversion 2D Image Coordinates Image Scan Conversion! P 3

Overview. Pipeline implementation I. Overview. Required Tasks. Preliminaries Clipping. Hidden Surface removal

Overview. Pipeline implementation I. Overview. Required Tasks. Preliminaries Clipping. Hidden Surface removal Overview Pipeline implementation I Preliminaries Clipping Line clipping Hidden Surface removal Overview At end of the geometric pipeline, vertices have been assembled into primitives Must clip out primitives

More information

From Vertices To Fragments-1

From Vertices To Fragments-1 From Vertices To Fragments-1 1 Objectives Clipping Line-segment clipping polygon clipping 2 Overview At end of the geometric pipeline, vertices have been assembled into primitives Must clip out primitives

More information

Clipping and Scan Conversion

Clipping and Scan Conversion 15-462 Computer Graphics I Lecture 14 Clipping and Scan Conversion Line Clipping Polygon Clipping Clipping in Three Dimensions Scan Conversion (Rasterization) [Angel 7.3-7.6, 7.8-7.9] March 19, 2002 Frank

More information

Examples. Clipping. The Rendering Pipeline. View Frustum. Normalization. How it is done. Types of operations. Removing what is not seen on the screen

Examples. Clipping. The Rendering Pipeline. View Frustum. Normalization. How it is done. Types of operations. Removing what is not seen on the screen Computer Graphics, Lecture 0 November 7, 006 Eamples Clipping Types of operations Accept Reject Clip Removing what is not seen on the screen The Rendering Pipeline The Graphics pipeline includes one stage

More information

CS452/552; EE465/505. Clipping & Scan Conversion

CS452/552; EE465/505. Clipping & Scan Conversion CS452/552; EE465/505 Clipping & Scan Conversion 3-31 15 Outline! From Geometry to Pixels: Overview Clipping (continued) Scan conversion Read: Angel, Chapter 8, 8.1-8.9 Project#1 due: this week Lab4 due:

More information

Realtime 3D Computer Graphics Virtual Reality

Realtime 3D Computer Graphics Virtual Reality Realtime 3D Computer Graphics Virtual Reality From Vertices to Fragments Overview Overall goal recapitulation: Input: World description, e.g., set of vertices and states for objects, attributes, camera,

More information

Two-Dimensional Viewing. Chapter 6

Two-Dimensional Viewing. Chapter 6 Two-Dimensional Viewing Chapter 6 Viewing Pipeline Two-Dimensional Viewing Two dimensional viewing transformation From world coordinate scene description to device (screen) coordinates Normalization and

More information

Topics. From vertices to fragments

Topics. From vertices to fragments Topics From vertices to fragments From Vertices to Fragments Assign a color to every pixel Pass every object through the system Required tasks: Modeling Geometric processing Rasterization Fragment processing

More information

FROM VERTICES TO FRAGMENTS. Lecture 5 Comp3080 Computer Graphics HKBU

FROM VERTICES TO FRAGMENTS. Lecture 5 Comp3080 Computer Graphics HKBU FROM VERTICES TO FRAGMENTS Lecture 5 Comp3080 Computer Graphics HKBU OBJECTIVES Introduce basic implementation strategies Clipping Scan conversion OCTOBER 9, 2011 2 OVERVIEW At end of the geometric pipeline,

More information

Clipping. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015

Clipping. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015 Clipping 1 Objectives Clipping lines First of implementation algorithms Clipping polygons (next lecture) Focus on pipeline plus a few classic algorithms 2 Clipping 2D against clipping window 3D against

More information

Clipping Lines. Dr. Scott Schaefer

Clipping Lines. Dr. Scott Schaefer Clipping Lines Dr. Scott Schaefer Why Clip? We do not want to waste time drawing objects that are outside of viewing window (or clipping window) 2/94 Clipping Points Given a point (x, y) and clipping window

More information

CS 591B Lecture 9: The OpenGL Rendering Pipeline

CS 591B Lecture 9: The OpenGL Rendering Pipeline CS 591B Lecture 9: The OpenGL Rendering Pipeline 3D Polygon Rendering Many applications use rendering of 3D polygons with direct illumination Spring 2007 Rui Wang 3D Polygon Rendering Many applications

More information

3D Graphics Pipeline II Clipping. Instructor Stephen J. Guy

3D Graphics Pipeline II Clipping. Instructor Stephen J. Guy 3D Graphics Pipeline II Clipping Instructor Stephen J. Guy 3D Rendering Pipeline (for direct illumination) 3D Geometric Primitives 3D Model Primitives Modeling Transformation 3D World Coordinates Lighting

More information

3D Polygon Rendering. Many applications use rendering of 3D polygons with direct illumination

3D Polygon Rendering. Many applications use rendering of 3D polygons with direct illumination Rendering Pipeline 3D Polygon Rendering Many applications use rendering of 3D polygons with direct illumination 3D Polygon Rendering What steps are necessary to utilize spatial coherence while drawing

More information

Computer Graphics (CS 543) Lecture 9 (Part 2): Clipping. Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI)

Computer Graphics (CS 543) Lecture 9 (Part 2): Clipping. Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI) Computer Graphics (CS 543) Lecture 9 (Part 2): Clipping Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) OpenGL Stages After projection, several stages before objects drawn

More information

Computer Graphics Viewing Objective

Computer Graphics Viewing Objective Computer Graphics Viewing Objective The aim of this lesson is to make the student aware of the following concepts: Window Viewport Window to Viewport Transformation line clipping Polygon Clipping Introduction

More information

Chapter 8: Implementation- Clipping and Rasterization

Chapter 8: Implementation- Clipping and Rasterization Chapter 8: Implementation- Clipping and Rasterization Clipping Fundamentals Cohen-Sutherland Parametric Polygons Circles and Curves Text Basic Concepts: The purpose of clipping is to remove objects or

More information

Clipping & Culling. Lecture 11 Spring Trivial Rejection Outcode Clipping Plane-at-a-time Clipping Backface Culling

Clipping & Culling. Lecture 11 Spring Trivial Rejection Outcode Clipping Plane-at-a-time Clipping Backface Culling Clipping & Culling Trivial Rejection Outcode Clipping Plane-at-a-time Clipping Backface Culling Lecture 11 Spring 2015 What is Clipping? Clipping is a procedure for spatially partitioning geometric primitives,

More information

Computer Graphics Geometry and Transform

Computer Graphics Geometry and Transform ! Computer Graphics 2014! 5. Geometry and Transform Hongxin Zhang State Key Lab of CAD&CG, Zhejiang University 2014-10-11! Today outline Triangle rasterization Basic vector algebra ~ geometry! Antialiasing

More information

Renderer Implementation: Basics and Clipping. Overview. Preliminaries. David Carr Virtual Environments, Fundamentals Spring 2005

Renderer Implementation: Basics and Clipping. Overview. Preliminaries. David Carr Virtual Environments, Fundamentals Spring 2005 INSTITUTIONEN FÖR SYSTEMTEKNIK LULEÅ TEKNISKA UNIVERSITET Renderer Implementation: Basics and Clipping David Carr Virtual Environments, Fundamentals Spring 2005 Feb-28-05 SMM009, Basics and Clipping 1

More information

2D Viewing. Viewing Pipeline: Window-Viewport Transf.

2D Viewing. Viewing Pipeline: Window-Viewport Transf. Viewing Pipeline: Window-Viewport Transf. 2D Viewing yw max clipping window: what to display viewport: where to be viewed translation, rotation, scaling, clipping,... Clipping Window yv max Viewport yv

More information

2D Image Synthesis. 2D image synthesis. Raster graphics systems. Modeling transformation. Vectorization. u x u y 0. o x o y 1

2D Image Synthesis. 2D image synthesis. Raster graphics systems. Modeling transformation. Vectorization. u x u y 0. o x o y 1 General scheme of a 2D CG application 2D Image Synthesis Balázs Csébfalvi modeling image synthesis Virtual world model world defined in a 2D plane Department of Control Engineering and Information Technology

More information

CSCI 4620/8626. Computer Graphics Clipping Algorithms (Chapter 8-5 )

CSCI 4620/8626. Computer Graphics Clipping Algorithms (Chapter 8-5 ) CSCI 4620/8626 Computer Graphics Clipping Algorithms (Chapter 8-5 ) Last update: 2016-03-15 Clipping Algorithms A clipping algorithm is any procedure that eliminates those portions of a picture outside

More information

Part IV. 2D Clipping

Part IV. 2D Clipping Part IV 2D Clipping The Liang-Barsky algorithm Boolean operations on polygons Outline The Liang-Barsky algorithm Boolean operations on polygons Clipping The goal of clipping is mainly to eliminate parts

More information

2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into

2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into 2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into the viewport of the current application window. A pixel

More information

CS123 INTRODUCTION TO COMPUTER GRAPHICS. Clipping. Concepts, Algorithms for line clipping. 1 of 16. Andries van Dam. Clipping - 10/12/17

CS123 INTRODUCTION TO COMPUTER GRAPHICS. Clipping. Concepts, Algorithms for line clipping. 1 of 16. Andries van Dam. Clipping - 10/12/17 Clipping Concepts, Algorithms for line clipping 1 of 16 Line Clipping in 2D Clipping endpoints If x min x x max and y min y y max, the point is inside the clip rectangle. Endpoint analysis for lines: if

More information

Last class. A vertex (w x, w y, w z, w) - clipping is in the - windowing and viewport normalized view volume if: - scan conversion/ rasterization

Last class. A vertex (w x, w y, w z, w) - clipping is in the - windowing and viewport normalized view volume if: - scan conversion/ rasterization Lecture 6 Last class Last lecture (clip coordinates): A vertex (w x, w y, w z, w) - clipping is in the - windowing and viewport normalized view volume if: - scan conversion/ rasterization normalized view

More information

Computer Graphics. - Clipping - Philipp Slusallek & Stefan Lemme

Computer Graphics. - Clipping - Philipp Slusallek & Stefan Lemme Computer Graphics - Clipping - Philipp Slusallek & Stefan Lemme Clipping Motivation Projected primitive might fall (partially) outside of the visible display window E.g. if standing inside a building Eliminate

More information

CS602 MCQ,s for midterm paper with reference solved by Shahid

CS602 MCQ,s for midterm paper with reference solved by Shahid #1 Rotating a point requires The coordinates for the point The rotation angles Both of above Page No 175 None of above #2 In Trimetric the direction of projection makes unequal angle with the three principal

More information

Cs602-computer graphics MCQS MIDTERM EXAMINATION SOLVED BY ~ LIBRIANSMINE ~

Cs602-computer graphics MCQS MIDTERM EXAMINATION SOLVED BY ~ LIBRIANSMINE ~ Cs602-computer graphics MCQS MIDTERM EXAMINATION SOLVED BY ~ LIBRIANSMINE ~ Question # 1 of 10 ( Start time: 08:04:29 PM ) Total Marks: 1 Sutherland-Hodgeman clipping algorithm clips any polygon against

More information

Computer Graphics. The Two-Dimensional Viewing. Somsak Walairacht, Computer Engineering, KMITL

Computer Graphics. The Two-Dimensional Viewing. Somsak Walairacht, Computer Engineering, KMITL Computer Graphics Chapter 6 The Two-Dimensional Viewing Somsak Walairacht, Computer Engineering, KMITL Outline The Two-Dimensional Viewing Pipeline The Clipping Window Normalization and Viewport Transformations

More information

Introduction to Computer Graphics 5. Clipping

Introduction to Computer Graphics 5. Clipping Introduction to Computer Grapics 5. Clipping I-Cen Lin, Assistant Professor National Ciao Tung Univ., Taiwan Textbook: E.Angel, Interactive Computer Grapics, 5 t Ed., Addison Wesley Ref:Hearn and Baker,

More information

CS602- Computer Graphics Solved MCQS From Midterm Papers. MIDTERM EXAMINATION Spring 2013 CS602- Computer Graphics

CS602- Computer Graphics Solved MCQS From Midterm Papers. MIDTERM EXAMINATION Spring 2013 CS602- Computer Graphics CS602- Computer Graphics Solved MCQS From Midterm Papers Dec 18,2013 MC100401285 Moaaz.pk@gmail.com Mc100401285@gmail.com PSMD01 Question No: 1 ( Marks: 1 ) - Please choose one DDA abbreviated for. Discrete

More information

Windowing And Clipping (14 Marks)

Windowing And Clipping (14 Marks) Window: 1. A world-coordinate area selected for display is called a window. 2. It consists of a visual area containing some of the graphical user interface of the program it belongs to and is framed by

More information

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI Department of Computer Science and Engineering CS6504-COMPUTER GRAPHICS Anna University 2 & 16 Mark Questions & Answers Year / Semester: III / V Regulation:

More information

Clipping Algorithms; 8-5. Computer Graphics. Spring CS4815

Clipping Algorithms; 8-5. Computer Graphics. Spring CS4815 Computer Graphics Spring 2016-2017 Outline Clipping Algorithms; 8-5 1 Clipping Algorithms; 8-5 Announcements Mid-term: Week07?? Clipping: Introduction It is common for a region to be defined so that only

More information

Clipping and Intersection

Clipping and Intersection Clipping and Intersection Clipping: Remove points, line segments, polygons outside a region of interest. Need to discard everything that s outside of our window. Point clipping: Remove points outside window.

More information

Rendering. Converting a 3D scene to a 2D image. Camera. Light. Rendering. View Plane

Rendering. Converting a 3D scene to a 2D image. Camera. Light. Rendering. View Plane Rendering Pipeline Rendering Converting a 3D scene to a 2D image Rendering Light Camera 3D Model View Plane Rendering Converting a 3D scene to a 2D image Basic rendering tasks: Modeling: creating the world

More information

VISIBILITY & CULLING. Don t draw what you can t see. Thomas Larsson, Afshin Ameri DVA338, Spring 2018, MDH

VISIBILITY & CULLING. Don t draw what you can t see. Thomas Larsson, Afshin Ameri DVA338, Spring 2018, MDH VISIBILITY & CULLING Don t draw what you can t see. Thomas Larsson, Afshin Ameri DVA338, Spring 2018, MDH Visibility Visibility Given a set of 3D objects, which surfaces are visible from a specific point

More information

Computer Graphics Geometry and Transform

Computer Graphics Geometry and Transform Computer Graphics 2012 5. Geometry and Transform Hongxin Zhang State Key Lab of CAD&CG, Zhejiang University 2012-09-26 上机实践 地址 :ftp://give.zju.edu.cn 用户 :cgzhang 密码 :cgzhang 请大家把上机作业结果和报告内容, 上传至 学号 _ 姓名

More information

CS184 : Foundations of Computer Graphics Professor David Forsyth Final Examination

CS184 : Foundations of Computer Graphics Professor David Forsyth Final Examination CS184 : Foundations of Computer Graphics Professor David Forsyth Final Examination (Total: 100 marks) Figure 1: A perspective view of a polyhedron on an infinite plane. Cameras and Perspective Rendering

More information

CS184 : Foundations of Computer Graphics Professor David Forsyth Final Examination (Total: 100 marks)

CS184 : Foundations of Computer Graphics Professor David Forsyth Final Examination (Total: 100 marks) CS184 : Foundations of Computer Graphics Professor David Forsyth Final Examination (Total: 100 marks) Cameras and Perspective Figure 1: A perspective view of a polyhedron on an infinite plane. Rendering

More information

521493S Computer Graphics Exercise 1 (Chapters 1-3)

521493S Computer Graphics Exercise 1 (Chapters 1-3) 521493S Computer Graphics Exercise 1 (Chapters 1-3) 1. Consider the clipping of a line segment defined by the latter s two endpoints (x 1, y 1 ) and (x 2, y 2 ) in two dimensions against a rectangular

More information

CS488 2D Graphics. Luc RENAMBOT

CS488 2D Graphics. Luc RENAMBOT CS488 2D Graphics Luc RENAMBOT 1 Topics Last time, hardware and frame buffer Now, how lines and polygons are drawn in the frame buffer. Then, how 2D and 3D models drawing into the frame buffer Then, more

More information

The Traditional Graphics Pipeline

The Traditional Graphics Pipeline Last Time? The Traditional Graphics Pipeline Participating Media Measuring BRDFs 3D Digitizing & Scattering BSSRDFs Monte Carlo Simulation Dipole Approximation Today Ray Casting / Tracing Advantages? Ray

More information

Clipping Points Consider a clip window which is rectangular in shape. P(x, y) is a point to be displayed.

Clipping Points Consider a clip window which is rectangular in shape. P(x, y) is a point to be displayed. Usually only a specified region of a picture needs to be displayed. This region is called the clip window. An algorithm which displays only those primitives (or part of the primitives) which lie inside

More information

From 3D World to 2D Screen. Hendrik Speleers

From 3D World to 2D Screen. Hendrik Speleers Hendrik Speleers Overview Synthetic camera Rendering pipeline World window versus viewport Clipping Cohen-Sutherland algorithm Rasterizing Bresenham algorithm Three different actors in a scene Objects:

More information

Set the Viewport. Set the Viewport Clipping. Set the Viewport. Set the Viewport. Set the Viewport. Resizing the Viewport W = H

Set the Viewport. Set the Viewport Clipping. Set the Viewport. Set the Viewport. Set the Viewport. Resizing the Viewport W = H To draw an undistorted version of the data in a viewport, you need to ensure the viewport and the window have the same aspect ratio. i.e. W H window window W = H viewport viewport Computer Graphics CSC470

More information

Sung-Eui Yoon ( 윤성의 )

Sung-Eui Yoon ( 윤성의 ) CS380: Computer Graphics Clipping and Culling Sung-Eui Yoon ( 윤성의 ) Course URL: http://sglab.kaist.ac.kr/~sungeui/cg/ Class Objectives Understand clipping and culling Understand view-frustum, back-face

More information

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY SRM INSTITUTE OF SCIENCE AND TECHNOLOGY DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK SUB.NAME: COMPUTER GRAPHICS SUB.CODE: IT307 CLASS : III/IT UNIT-1 2-marks 1. What is the various applications

More information

The Traditional Graphics Pipeline

The Traditional Graphics Pipeline Final Projects Proposals due Thursday 4/8 Proposed project summary At least 3 related papers (read & summarized) Description of series of test cases Timeline & initial task assignment The Traditional Graphics

More information

What is Clipping? Why do we Clip? Lecture 9 Comp 236 Spring Clipping is an important optimization

What is Clipping? Why do we Clip? Lecture 9 Comp 236 Spring Clipping is an important optimization Clipping, Culling, Picking & Selection Trivial Rejection Outcode Clipping Plane-at-a-time Clipping Backface Culling Picking Selection Programming Assignment #2 Lecture 9 Comp 236 Spring 2005 What is Clipping?

More information

Rasterization, Depth Sorting and Culling

Rasterization, Depth Sorting and Culling Rasterization, Depth Sorting and Culling Rastrerzation How can we determine which pixels to fill? Reading Material These slides OH 17-26, OH 65-79 and OH 281-282, by Magnus Bondesson You may also read

More information

Unit 3 Transformations and Clipping

Unit 3 Transformations and Clipping Transformation Unit 3 Transformations and Clipping Changes in orientation, size and shape of an object by changing the coordinate description, is known as Geometric Transformation. Translation To reposition

More information

The Traditional Graphics Pipeline

The Traditional Graphics Pipeline Last Time? The Traditional Graphics Pipeline Reading for Today A Practical Model for Subsurface Light Transport, Jensen, Marschner, Levoy, & Hanrahan, SIGGRAPH 2001 Participating Media Measuring BRDFs

More information

Hidden Surfaces II. Week 9, Mon Mar 15

Hidden Surfaces II. Week 9, Mon Mar 15 University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2010 Tamara Munzner Hidden Surfaces II Week 9, Mon Mar 15 http://www.ugrad.cs.ubc.ca/~cs314/vjan2010 ews yes, I'm granting the request

More information

CSE528 Computer Graphics: Theory, Algorithms, and Applications

CSE528 Computer Graphics: Theory, Algorithms, and Applications CSE528 Computer Graphics: Theory, Algorithms, and Applications Hong Qin Stony Brook University (SUNY at Stony Brook) Stony Brook, New York 11794-2424 Tel: (631)632-845; Fax: (631)632-8334 qin@cs.stonybrook.edu

More information

Illumination Models III: Ray Tracing (View Dependent Global Illumination)

Illumination Models III: Ray Tracing (View Dependent Global Illumination) Illumination Models III: Ray Tracing (View Dependent Global Illumination) The University of Texas at Austin 1 Basic Definitions Ray Tracing/Casting: Setting: eyepoint, virtual screen (an array of virtual

More information

Lecture 7 of 41. Viewing 4 of 4: Culling and Clipping Lab 1b: Flash Intro

Lecture 7 of 41. Viewing 4 of 4: Culling and Clipping Lab 1b: Flash Intro Viewing 4 of 4: Culling and Clipping Lab 1b: Flash Intro William H. Hsu Department of Computing and Information Sciences, KSU KSOL course pages: http://bit.ly/hgvxlh / http://bit.ly/evizre Public mirror

More information

MODULE - 9. Subject: Computer Science. Module: Line Clipping. Module No: CS/CGV/9

MODULE - 9. Subject: Computer Science. Module: Line Clipping. Module No: CS/CGV/9 Quadrant 1 e-text e-pg Pathshala MODULE - 9 Subject: Computer Science Paper: Computer Graphics and Visualization Module: Line Clipping Module No: CS/CGV/9 Objectives: Understand Cohen-Sutherland Line Clipping

More information

Computer Graphics: Two Dimensional Viewing

Computer Graphics: Two Dimensional Viewing Computer Graphics: Two Dimensional Viewing Clipping and Normalized Window By: A. H. Abdul Hafez Abdul.hafez@hku.edu.tr, 1 Outlines 1. End 2 Transformation between 2 coordinate systems To transform positioned

More information

Binghamton University. EngiNet. Thomas J. Watson. School of Engineering and Applied Science. Computer Graphics. State University of New York.

Binghamton University. EngiNet. Thomas J. Watson. School of Engineering and Applied Science. Computer Graphics. State University of New York. Binghamton University EngiNet State University of New York EngiNet Thomas J. Watson School of Engineering and Applied Science WARNING All rights reserved. No Part of this video lecture series may be reproduced

More information

CSE328 Fundamentals of Computer Graphics

CSE328 Fundamentals of Computer Graphics CSE328 Fundamentals of Computer Graphics Hong Qin State University of New York at Stony Brook (Stony Brook University) Stony Brook, New York 794--44 Tel: (63)632-845; Fax: (63)632-8334 qin@cs.sunysb.edu

More information

CS2401 COMPUTER GRAPHICS ANNA UNIV QUESTION BANK

CS2401 COMPUTER GRAPHICS ANNA UNIV QUESTION BANK CS2401 Computer Graphics CS2401 COMPUTER GRAPHICS ANNA UNIV QUESTION BANK CS2401- COMPUTER GRAPHICS UNIT 1-2D PRIMITIVES 1. Define Computer Graphics. 2. Explain any 3 uses of computer graphics applications.

More information

Werner Purgathofer

Werner Purgathofer Einführung in Visual Computing 186.822 Visible Surface Detection Werner Purgathofer Visibility in the Rendering Pipeline scene objects in object space object capture/creation ti modeling viewing projection

More information

Computer Graphics: 7-Polygon Rasterization, Clipping

Computer Graphics: 7-Polygon Rasterization, Clipping Computer Graphics: 7-Polygon Rasterization, Clipping Prof. Dr. Charles A. Wüthrich, Fakultät Medien, Medieninformatik Bauhaus-Universität Weimar caw AT medien.uni-weimar.de Filling polygons (and drawing

More information

CHAPTER 1 Graphics Systems and Models 3

CHAPTER 1 Graphics Systems and Models 3 ?????? 1 CHAPTER 1 Graphics Systems and Models 3 1.1 Applications of Computer Graphics 4 1.1.1 Display of Information............. 4 1.1.2 Design.................... 5 1.1.3 Simulation and Animation...........

More information

CS602 Midterm Subjective Solved with Reference By WELL WISHER (Aqua Leo)

CS602 Midterm Subjective Solved with Reference By WELL WISHER (Aqua Leo) CS602 Midterm Subjective Solved with Reference By WELL WISHER (Aqua Leo) www.vucybarien.com Question No: 1 What are the two focusing methods in CRT? Explain briefly. Page no : 26 1. Electrostatic focusing

More information

The Graphics Pipeline. Interactive Computer Graphics. The Graphics Pipeline. The Graphics Pipeline. The Graphics Pipeline: Clipping

The Graphics Pipeline. Interactive Computer Graphics. The Graphics Pipeline. The Graphics Pipeline. The Graphics Pipeline: Clipping Interactive Computer Graphics The Graphics Pipeline: The Graphics Pipeline Input: - geometric model - illumination model - camera model - viewport Some slides adopted from F. Durand and B. Cutler, MIT

More information

Einführung in Visual Computing

Einführung in Visual Computing Einführung in Visual Computing 186.822 Rasterization Werner Purgathofer Rasterization in the Rendering Pipeline scene objects in object space transformed vertices in clip space scene in normalized device

More information

Viewing Transformation. Clipping. 2-D Viewing Transformation

Viewing Transformation. Clipping. 2-D Viewing Transformation Viewing Transformation Clipping 2-D Viewing Transformation 2-D Viewing Transformation Convert from Window Coordinates to Viewport Coordinates (xw, yw) --> (xv, yv) Maps a world coordinate window to a screen

More information

CS452/552; EE465/505. Geometry Transformations

CS452/552; EE465/505. Geometry Transformations CS452/552; EE465/505 Geometry Transformations 1-26-15 Outline! Geometry: scalars, points & vectors! Transformations Read: Angel, Chapter 4 (study cube.html/cube.js example) Appendix B: Spaces (vector,

More information

EECE 478. Learning Objectives. Learning Objectives. Rasterization & Scenes. Rasterization. Compositing

EECE 478. Learning Objectives. Learning Objectives. Rasterization & Scenes. Rasterization. Compositing EECE 478 Rasterization & Scenes Rasterization Learning Objectives Be able to describe the complete graphics pipeline. Describe the process of rasterization for triangles and lines. Compositing Manipulate

More information

Motivation. Culling Don t draw what you can t see! What can t we see? Low-level Culling

Motivation. Culling Don t draw what you can t see! What can t we see? Low-level Culling Motivation Culling Don t draw what you can t see! Thomas Larsson Mälardalen University April 7, 2016 Image correctness Rendering speed One day we will have enough processing power!? Goals of real-time

More information

Geometry. CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science

Geometry. CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science Geometry CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science E. Angel and D. Shreiner: Interactive Computer Graphics 6E Addison-Wesley 2012. 1 Objectives Introduce

More information

SE Mock Online Test 1-CG

SE Mock Online Test 1-CG SE Mock Online Test 1-CG 1. Email address * 2. 1. For gentle slope line, slope m is -1

More information

UNIT 2. Translation/ Scaling/ Rotation. Unit-02/Lecture-01

UNIT 2. Translation/ Scaling/ Rotation. Unit-02/Lecture-01 UNIT 2 Translation/ Scaling/ Rotation Unit-02/Lecture-01 Translation- (RGPV-2009,10,11,13,14) Translation is to move, or parallel shift, a figure. We use a simple point as a starting point. This is a simple

More information

Computer Science 474 Spring 2010 Viewing Transformation

Computer Science 474 Spring 2010 Viewing Transformation Viewing Transformation Previous readings have described how to transform objects from one position and orientation to another. One application for such transformations is to create complex models from

More information

(a) rotating 45 0 about the origin and then translating in the direction of vector I by 4 units and (b) translating and then rotation.

(a) rotating 45 0 about the origin and then translating in the direction of vector I by 4 units and (b) translating and then rotation. Code No: R05221201 Set No. 1 1. (a) List and explain the applications of Computer Graphics. (b) With a neat cross- sectional view explain the functioning of CRT devices. 2. (a) Write the modified version

More information

Last week. Machiraju/Zhang/Möller

Last week. Machiraju/Zhang/Möller Last week Machiraju/Zhang/Möller 1 Overview of a graphics system Output device Input devices Image formed and stored in frame buffer Machiraju/Zhang/Möller 2 Introduction to CG Torsten Möller 3 Ray tracing:

More information

Page 1. Area-Subdivision Algorithms z-buffer Algorithm List Priority Algorithms BSP (Binary Space Partitioning Tree) Scan-line Algorithms

Page 1. Area-Subdivision Algorithms z-buffer Algorithm List Priority Algorithms BSP (Binary Space Partitioning Tree) Scan-line Algorithms Visible Surface Determination Visibility Culling Area-Subdivision Algorithms z-buffer Algorithm List Priority Algorithms BSP (Binary Space Partitioning Tree) Scan-line Algorithms Divide-and-conquer strategy:

More information

CSE 167: Lecture #5: Rasterization. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012

CSE 167: Lecture #5: Rasterization. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 CSE 167: Introduction to Computer Graphics Lecture #5: Rasterization Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 Announcements Homework project #2 due this Friday, October

More information

S U N G - E U I YO O N, K A I S T R E N D E R I N G F R E E LY A VA I L A B L E O N T H E I N T E R N E T

S U N G - E U I YO O N, K A I S T R E N D E R I N G F R E E LY A VA I L A B L E O N T H E I N T E R N E T S U N G - E U I YO O N, K A I S T R E N D E R I N G F R E E LY A VA I L A B L E O N T H E I N T E R N E T Copyright 2018 Sung-eui Yoon, KAIST freely available on the internet http://sglab.kaist.ac.kr/~sungeui/render

More information

Computer Graphics (CS 543) Lecture 10 (Part 1): 3D Clipping. Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI)

Computer Graphics (CS 543) Lecture 10 (Part 1): 3D Clipping. Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI) Computer Graphics (CS 543) Lecture 10 (Part 1): 3D Clipping Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) Liang Barsky 3D Clipping Goal: Clip object edge-by-edge against

More information

UNIVERSITY OF NEBRASKA AT OMAHA Computer Science 4620/8626 Computer Graphics Spring 2014 Homework Set 1 Suggested Answers

UNIVERSITY OF NEBRASKA AT OMAHA Computer Science 4620/8626 Computer Graphics Spring 2014 Homework Set 1 Suggested Answers UNIVERSITY OF NEBRASKA AT OMAHA Computer Science 4620/8626 Computer Graphics Spring 2014 Homework Set 1 Suggested Answers 1. How long would it take to load an 800 by 600 frame buffer with 16 bits per pixel

More information

Visible Surface Detection Methods

Visible Surface Detection Methods Visible urface Detection Methods Visible-urface Detection identifying visible parts of a scene (also hidden- elimination) type of algorithm depends on: complexity of scene type of objects available equipment

More information

Announcements. Midterms graded back at the end of class Help session on Assignment 3 for last ~20 minutes of class. Computer Graphics

Announcements. Midterms graded back at the end of class Help session on Assignment 3 for last ~20 minutes of class. Computer Graphics Announcements Midterms graded back at the end of class Help session on Assignment 3 for last ~20 minutes of class 1 Scan Conversion Overview of Rendering Scan Conversion Drawing Lines Drawing Polygons

More information

OXFORD ENGINEERING COLLEGE (NAAC Accredited with B Grade) DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING LIST OF QUESTIONS

OXFORD ENGINEERING COLLEGE (NAAC Accredited with B Grade) DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING LIST OF QUESTIONS OXFORD ENGINEERING COLLEGE (NAAC Accredited with B Grade) DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING LIST OF QUESTIONS YEAR/SEM.: III/V STAFF NAME: T.ELANGOVAN SUBJECT NAME: Computer Graphics SUB. CODE:

More information

The University of Calgary

The University of Calgary The University of Calgary Department of Computer Science Final Examination, Questions ENEL/CPSC 555 Computer Graphics Time: 2 Hours Closed Book, calculators are permitted. The questions carry equal weight.

More information

CS475m - Computer Graphics. Lecture 1 : Rasterization Basics

CS475m - Computer Graphics. Lecture 1 : Rasterization Basics CS475m - Computer Graphics Lecture 1 : Rasterization Basics Image Formation Light Source Camera Image World Image Formation Light Source Incident Ray Camera Reflected Ray Image World Transmitted Ray Image

More information

https://ilearn.marist.edu/xsl-portal/tool/d4e4fd3a-a3...

https://ilearn.marist.edu/xsl-portal/tool/d4e4fd3a-a3... Assessment Preview - This is an example student view of this assessment done Exam 2 Part 1 of 5 - Modern Graphics Pipeline Question 1 of 27 Match each stage in the graphics pipeline with a description

More information

QUESTION BANK 10CS65 : COMPUTER GRAPHICS AND VISUALIZATION

QUESTION BANK 10CS65 : COMPUTER GRAPHICS AND VISUALIZATION QUESTION BANK 10CS65 : COMPUTER GRAPHICS AND VISUALIZATION INTRODUCTION OBJECTIVE: This chapter deals the applications of computer graphics and overview of graphics systems and imaging. UNIT I 1 With clear

More information

Today. CS-184: Computer Graphics. Lecture #10: Clipping and Hidden Surfaces. Clipping. Hidden Surface Removal

Today. CS-184: Computer Graphics. Lecture #10: Clipping and Hidden Surfaces. Clipping. Hidden Surface Removal Today CS-184: Computer Graphics Lecture #10: Clipping and Hidden Surfaces!! Prof. James O Brien University of California, Berkeley! V2015-S-10-1.0 Clipping Clipping to view volume Clipping arbitrary polygons

More information

Graphics and Interaction Rendering pipeline & object modelling

Graphics and Interaction Rendering pipeline & object modelling 433-324 Graphics and Interaction Rendering pipeline & object modelling Department of Computer Science and Software Engineering The Lecture outline Introduction to Modelling Polygonal geometry The rendering

More information

From Vertices to Fragments: Rasterization. Reading Assignment: Chapter 7. Special memory where pixel colors are stored.

From Vertices to Fragments: Rasterization. Reading Assignment: Chapter 7. Special memory where pixel colors are stored. From Vertices to Fragments: Rasterization Reading Assignment: Chapter 7 Frame Buffer Special memory where pixel colors are stored. System Bus CPU Main Memory Graphics Card -- Graphics Processing Unit (GPU)

More information

C O M P U T E R G R A P H I C S. Computer Graphics. Three-Dimensional Graphics I. Guoying Zhao 1 / 52

C O M P U T E R G R A P H I C S. Computer Graphics. Three-Dimensional Graphics I. Guoying Zhao 1 / 52 Computer Graphics Three-Dimensional Graphics I Guoying Zhao 1 / 52 Geometry Guoying Zhao 2 / 52 Objectives Introduce the elements of geometry Scalars Vectors Points Develop mathematical operations among

More information

Course Title: Computer Graphics Course no: CSC209

Course Title: Computer Graphics Course no: CSC209 Course Title: Computer Graphics Course no: CSC209 Nature of the Course: Theory + Lab Semester: III Full Marks: 60+20+20 Pass Marks: 24 +8+8 Credit Hrs: 3 Course Description: The course coversconcepts of

More information

SRI VENKATESWARA COLLEGE OF ENGINEERING. COURSE DELIVERY PLAN - THEORY Page 1 of 6

SRI VENKATESWARA COLLEGE OF ENGINEERING. COURSE DELIVERY PLAN - THEORY Page 1 of 6 COURSE DELIVERY PLAN - THEORY Page 1 of 6 Department of Information Technology B.E/B.Tech/M.E/M.Tech : IT Regulation: 2016 PG Specialisation : -- Sub. Code / Sub. Name : IT16501 / Graphics and Multimedia

More information

Direct Rendering of Trimmed NURBS Surfaces

Direct Rendering of Trimmed NURBS Surfaces Direct Rendering of Trimmed NURBS Surfaces Hardware Graphics Pipeline 2/ 81 Hardware Graphics Pipeline GPU Video Memory CPU Vertex Processor Raster Unit Fragment Processor Render Target Screen Extended

More information

COMP30019 Graphics and Interaction Scan Converting Polygons and Lines

COMP30019 Graphics and Interaction Scan Converting Polygons and Lines COMP30019 Graphics and Interaction Scan Converting Polygons and Lines Department of Computer Science and Software Engineering The Lecture outline Introduction Scan conversion Scan-line algorithm Edge coherence

More information