Physics 222 Spring 2009 Exam 3 Version D (852430)

Size: px
Start display at page:

Download "Physics 222 Spring 2009 Exam 3 Version D (852430)"

Transcription

1 Physics 222 Spring 2009 Exam 3 Version D (852430) Question Instructions Be sure to answer every question. Follow the rules shown on the first page for filling in the Scantron form. Each problem is worth 10% of the exam. When you are finished, check with Dr. Mike or his TA to be sure you have finished the scantron correctly. 1. Question DetailsMirror Equation or Ray Trace (3) [750394] A concave mirror (R = 64 cm) is used to project a transparent slide onto a wall. The slide is located at a distance of 35.0 cm from the mirror, and a small flashlight shines light through the slide and onto the mirror. The setup is similar to that in Figure 25.19a. Figure 25.19a. The height of the object on the slide is 1.00 cm. What is the height of the image? (Make sure you give the proper sign in this case!) w*05*10.67 cm v*10* cm y*04*-0.09 cm x*03*2.21 cm z*02*0.09 cm Since the mirror is concave and spherical, it has a focal length of +R/2 = cm. Also, since the image is in front of the mirror, it is positive as well cm is the object distance since the slide is the object and it is positive too. The image is the projection on the wall, so the distance to the wall from the mirror must be the image distance. Thus, we can use the mirror equation to find d i = (1/f - 1/d o ) -1 = cm. The height of the object on the slide is h o and may be positive or negative depending on whether the object is considered to be right side up or upside down. Normally, we assume the object to be positive in height regardless of its actual orientation. This is why we use a positive number here for the object height. Using the linear magnification equation, we have h i = - h o d i / d o = cm. Note that this is negative because it is inverted and the object height is positive. 2. Question DetailsRay Trace or Thin-Lens Equation (1) [ ] Do a ray trace for the object and mirror shown here or use the number of blocks to do the thin-lens equation. Determine which of the following describes the image.

2 x*04*it is virtual, upright, and smaller than the object. z*02*it is virtual, inverted and smaller than the object. v*10*it is virtual, upright, and larger than the object. w*04*it is real, inverted, and larger than the object. y*02*it is real, upright, and smaller than the object. The ray trace is shown below.

3 3. Question DetailsRay Trace or Thin-Lens Equation (1) [ ] Do a ray trace for the object and mirror shown here or use the number of blocks to do the thin-lens equation. Determine which of the following describes the image.

4 z*02*it is virtual, inverted and larger than the object. x*04*it is virtual, upright, and larger than the object. w*04*it is real, inverted, and smaller than the object. v*10*it is virtual, upright, and smaller than the object. y*02*it is real, upright, and larger than the object.

5 4. Question DetailsReflection and Mirrors (1) [750389] Bailey-the-Wonderdog sees a reflection of herself in a mirror. When she does so she notices that the dog she sees in the image is smaller than she is. What is the shape of the mirror? v*10*convex or Concave would both give this result. y*05*convex z*01*there is no mirror that would give this result. x*01*flat w*05*concave There are cases where this is true for both types of mirror. For instance, if we combine the mirror equation with the magnification equation, we get m = 1 / (d o / f -1). Then, when f = 1 and d o = 3, we have m = -1/2. Also, when f = -3 and and d o = 3, we get m = 1/2. In both cases, the absolute value of the magnification is less than 1 and the image is smaller. There really is no way to tell without drawing the ray trace or doing the equations. Although both mirrors can give smaller images, the two types of mirrors do NOT both give larger images. Only one does this. Can you figure out which one?

6 5. Question DetailsTotal Internal Reflection (2) [749486] A ray of light falls on a rectangular glass block (n = 1.55) that is almost completely submerged in water (n = 1.33) as shown in Figure Figure In this case, we can find an angle for which total internal reflection occurs at the point P. Would total internal reflection occur at point P for this same value of if the water were replaced by another fluid with index of refraction n = 1.41? v*10*no w*04*yes x*03*it depends on the value of. y*03*it depends on the frequency of the light. z*01*there is no way to determine the answer. The angle necessary to get total internal reflection is given by the equation c = sin-1 (n 2 / n 1 ). Any angle less than this will also refract. For the case with water we have n 2 = 1.33 and for the other fluid n 2 = The value of n 1 = 1.44 in both cases. As you can see by chacking the equations, c is greater for the other fluid than it is for water. If to be c when the water is present, then the same less than the c for the fluid and refraction will occur. was just big enough for the angle at P gives us the same angle at P even with the fluid present. Thus, the new angle is 6. Question DetailsWhat can we see? (3) [750393] A person 1.62 m tall wants to be able to see her full image in a plane mirror. How far above the floor should the bottom of the mirror be placed so that she can see her feet, assuming that the top of the person's head is 20 cm above her eye level? y*06*0.81 m z*01*0.2 m w*05*1.01 m x*03*1.52 m v*10*0.71 m This problem is easy if you draw a diagram! The minimum height for the mirror must allow for light from her feet and the top of her head to reach her eyes. A ray diagram will easily show this to be 1/2 her height. If the top of her head is 20 cm above her eyes, then the light from her head as it goes to her eyes must hit the mirror 10 cm below her head (the position of the top of her head is her height.) Thus, the top of the mirror is 10 cm less than her height (1.52 m) and the bottom is half her height below that (0.810 m), or m. 7. Question DetailsMirror Equation (4) [750392]

7 Plane mirrors and convex mirrors form virtual images. With a plane mirror, the image may be infinitely far behind the mirror, depending on where the object is located in front of the mirror. For an object in front of a single convex mirror, what is the greatest distance behind the mirror at which the image can be found? Assume that R is the radius of the mirror z*03*4r/3 w*05*r v*10*r/2 y*03*3r/4 x*05*2r Look at the mirror equation, and solve for the image distance. d i = (1/f - 1/d o ) -1. If f is a negative number (as it is for a convex mirror) and d o is positive (as it always is for a single mirror or lens), then the largest possible distance of the image behind the mirror is when the object is infinitely far away. Thus, the image is at d i = -f = -R/2, which is R/2 behind the mirror. 8. Question DetailsMirror Equations and Magnification (3) [750390] Dr. Mike stands in front of a CONVEX mirror. He looks at the image of his eye. It is UPRIGHT and half the size of his real eye. If f is the focal point of the mirror, how far is he standing from the front of the mirror? x*03*3f/8 z*04*2f y*04*f/2 v*10*f w*03*2f/3 For this situation, the linear magnification is +1/2. Thus, we have +1/2 = - d i / d o or d i = - d o / 2. Using this in the mirror equation, we find f = [1 / d o - 2 / d o ] -1 = - d o. Therefore, d o = - f. 9. Question DetailsRay Trace or Mirror Equation (1) [ ] Do a ray trace for the object and mirror shown here or use the number of blocks to do the mirror equation. Determine which of the following describes the image.

8 y*02*it is real, upright, and smaller than the object. w*04*it is real, inverted, and larger than the object. v*10*it is virtual, upright, and larger than the object. z*02*it is virtual, inverted and smaller than the object. x*04*it is virtual, upright, and smaller than the object. The ray trace is shown below.

9 10. Question DetailsApparent Depth (1) [750391] A silver medallion is actually 2.27 cm beneath the surface of a calm pool. How far below the surface of the pool would someone see the medallion if they were viewing it from above the pool? (In other words, what is its apparent depth?) Note: The refractive index of water is y*03*0.44 cm w*01*3.02 cm v*10*1.70 cm z*00*2.27 cm x*04*0.59 cm The apparent depth is d' = d (1) / n water = 1.70 cm. Assignment Details Name (AID): Physics 222 Spring 2009 Exam 3 Version D (852430) Submissions Allowed: 100 Category: Exam Feedback Settings Before due date Nothing After due date Nothing

10 Code: Locked: No Author: DeAntonio, Michael ( mdeanton@nmsu.edu ) Last Saved: Apr 6, :07 PM MDT Permission: Protected Randomization: Person Which graded: Last

Physics 222 Spring 2009 Exam 3 Version A (851680)

Physics 222 Spring 2009 Exam 3 Version A (851680) Physics 222 Spring 2009 Exam 3 Version A (851680) Question 1 2 3 4 5 6 7 8 9 10 Instructions Be sure to answer every question. Follow the rules shown on the first page for filling in the Scantron form.

More information

Physics 212 Spring 2009 Exam 3 Version C (857202)

Physics 212 Spring 2009 Exam 3 Version C (857202) Page 1 of 6 Physics 212 Spring 2009 Exam 3 Version C (857202) Question 1 2 3 4 5 6 7 8 9 10 Instructions Be sure to answer every question. Follow the rules shown on the first page for filling in the Scantron

More information

Physics 212 Spring 2009 Final Exam Version B (872413)

Physics 212 Spring 2009 Final Exam Version B (872413) Physics 212 Spring 2009 Final Exam Version B (872413) Question 1 2 3 4 5 6 7 8 9 10 Instructions Be sure to answer every question. Follow the rules shown on the first page for filling in the Scantron form.

More information

Chapter 23. Geometrical Optics: Mirrors and Lenses and other Instruments

Chapter 23. Geometrical Optics: Mirrors and Lenses and other Instruments Chapter 23 Geometrical Optics: Mirrors and Lenses and other Instruments HITT1 A small underwater pool light is 1 m below the surface of a swimming pool. What is the radius of the circle of light on the

More information

Essential Physics I. Lecture 13:

Essential Physics I. Lecture 13: Essential Physics I E I Lecture 13: 11-07-16 Reminders No lecture: Monday 18th July (holiday) Essay due: Monday 25th July, 4:30 pm 2 weeks!! Exam: Monday 1st August, 4:30 pm Announcements 250 word essay

More information

Algebra Based Physics

Algebra Based Physics Slide 1 / 66 Slide 2 / 66 Algebra Based Physics Geometric Optics 2015-12-01 www.njctl.org Table of ontents Slide 3 / 66 lick on the topic to go to that section Reflection Spherical Mirror Refraction and

More information

Phys102 Lecture 21/22 Light: Reflection and Refraction

Phys102 Lecture 21/22 Light: Reflection and Refraction Phys102 Lecture 21/22 Light: Reflection and Refraction Key Points The Ray Model of Light Reflection and Mirrors Refraction, Snell s Law Total internal Reflection References 23-1,2,3,4,5,6. The Ray Model

More information

AP Physics: Curved Mirrors and Lenses

AP Physics: Curved Mirrors and Lenses The Ray Model of Light Light often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization, but is very useful for geometric

More information

Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc.

Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc. Chapter 32 Light: Reflection and Refraction Units of Chapter 32 The Ray Model of Light Reflection; Image Formation by a Plane Mirror Formation of Images by Spherical Mirrors Index of Refraction Refraction:

More information

General Physics II. Mirrors & Lenses

General Physics II. Mirrors & Lenses General Physics II Mirrors & Lenses Nothing New! For the next several lectures we will be studying geometrical optics. You already know the fundamentals of what is going on!!! Reflection: θ 1 = θ r incident

More information

3. For an incoming ray of light vacuum wavelength 589 nm, fill in the unknown values in the following table.

3. For an incoming ray of light vacuum wavelength 589 nm, fill in the unknown values in the following table. Homework Set 15A: Mirrors and Lenses 1. Find the angle of refraction for a ray of light that enters a bucket of water from air at an angle of 25 degrees to the normal. 2. A ray of light of vacuum wavelength

More information

Optics Course (Phys 311) Geometrical Optics Refraction through Lenses

Optics Course (Phys 311) Geometrical Optics Refraction through Lenses Optics Course (Phys ) Geometrical Optics Refraction through Lenses Lecturer: Dr Zeina Hashim Slide 1 Objectives covered in this lesson : 1. Refraction through single spherical refracting surfaces. 2. Lenses:

More information

Physics 102: Lecture 17 Reflection and Refraction of Light

Physics 102: Lecture 17 Reflection and Refraction of Light Physics 102: Lecture 17 Reflection and Refraction of Light Physics 102: Lecture 17, Slide 1 Recall from last time. Today Last Time Reflection: θ i = θ r Flat Mirror: image equidistant behind Spherical

More information

Welcome to: Physics I. I m Dr Alex Pettitt, and I ll be your guide!

Welcome to: Physics I. I m Dr Alex Pettitt, and I ll be your guide! Welcome to: Physics I I m Dr Alex Pettitt, and I ll be your guide! Physics I: x Mirrors and lenses Lecture 13: 6-11-2018 Last lecture: Reflection & Refraction Reflection: Light ray hits surface Ray moves

More information

LIGHT. Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses

LIGHT. Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses LIGHT Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses Light = Electromagnetic Wave Requires No Medium to Travel Oscillating Electric and Magnetic Field Travel at the speed of light

More information

PHYSICS 106. Assignment #10 Due by 10 pm Tuesday April 13, DISCUSSION SECTION: [ ] D1 W 9 am [ ] D2 W 10 am [ ] HS W 10 am

PHYSICS 106. Assignment #10 Due by 10 pm Tuesday April 13, DISCUSSION SECTION: [ ] D1 W 9 am [ ] D2 W 10 am [ ] HS W 10 am PHYSICS 106 Assignment #10 Due by 10 pm Tuesday April 13, 010 NAME: DISCUSSION SECTION: [ ] D1 W 9 am [ ] D W 10 am [ ] HS W 10 am [ ] D3 W 11 am [ ] D4 W 1 pm [ ] D5 W 1 pm (Sophie) [ ] D6 W 1 pm (Nima)

More information

Physics 102: Lecture 17 Reflection and Refraction of Light

Physics 102: Lecture 17 Reflection and Refraction of Light Physics 102: Lecture 17 Reflection and Refraction of Light Physics 102: Lecture 17, Slide 1 Today Last Time Recall from last time. Reflection: q i = q r Flat Mirror: image equidistant behind Spherical

More information

Chapter 23. Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian

Chapter 23. Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian Chapter 23 Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian Reflection and Refraction at a Plane Surface The light radiate from a point object in all directions The light reflected from a plane

More information

Chapter 7: Geometrical Optics. The branch of physics which studies the properties of light using the ray model of light.

Chapter 7: Geometrical Optics. The branch of physics which studies the properties of light using the ray model of light. Chapter 7: Geometrical Optics The branch of physics which studies the properties of light using the ray model of light. Overview Geometrical Optics Spherical Mirror Refraction Thin Lens f u v r and f 2

More information

Physics 1C. Lecture 23A. "If Dracula can t see his reflection in the mirror, how come his hair is always so neatly combed?

Physics 1C. Lecture 23A. If Dracula can t see his reflection in the mirror, how come his hair is always so neatly combed? Physics 1C Lecture 23A "If Dracula can t see his reflection in the mirror, how come his hair is always so neatly combed?" --Steven Wright Mirror Equation You can mathematically relate the object distance,

More information

Physics 11 Chapter 18: Ray Optics

Physics 11 Chapter 18: Ray Optics Physics 11 Chapter 18: Ray Optics "... Everything can be taken from a man but one thing; the last of the human freedoms to choose one s attitude in any given set of circumstances, to choose one s own way.

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics 1 Overview of Chapter 26 The Reflection of Light Forming Images with a Plane Mirror Spherical Mirrors Ray Tracing and the Mirror Equation The Refraction of Light Ray Tracing

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Geometric Optics Physics for Scientists & Engineers 2 Spring Semester 2005 Lecture 36! The study of light divides itself into three fields geometric optics wave optics quantum optics! In the previous chapter,

More information

Lecture Outlines Chapter 26

Lecture Outlines Chapter 26 Lecture Outlines Chapter 26 11/18/2013 2 Chapter 26 Geometrical Optics Objectives: After completing this module, you should be able to: Explain and discuss with diagrams, reflection and refraction of light

More information

Light, Photons, and MRI

Light, Photons, and MRI Light, Photons, and MRI When light hits an object, some of it will be reflected. The reflected light can form an image. We usually want to be able to characterize the image given what we know about the

More information

Chapter 34: Geometrical Optics

Chapter 34: Geometrical Optics Chapter 34: Geometrical Optics Mirrors Plane Spherical (convex or concave) Lenses The lens equation Lensmaker s equation Combination of lenses E! Phys Phys 2435: 22: Chap. 34, 3, Pg Mirrors New Topic Phys

More information

Light: Geometric Optics

Light: Geometric Optics Light: Geometric Optics 23.1 The Ray Model of Light Light very often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization,

More information

The Law of Reflection

The Law of Reflection If the surface off which the light is reflected is smooth, then the light undergoes specular reflection (parallel rays will all be reflected in the same directions). If, on the other hand, the surface

More information

Homework Set 3 Due Thursday, 07/14

Homework Set 3 Due Thursday, 07/14 Homework Set 3 Due Thursday, 07/14 Problem 1 A room contains two parallel wall mirrors, on opposite walls 5 meters apart. The mirrors are 8 meters long. Suppose that one person stands in a doorway, in

More information

Physics 1C Lecture 26A. Beginning of Chapter 26

Physics 1C Lecture 26A. Beginning of Chapter 26 Physics 1C Lecture 26A Beginning of Chapter 26 Mirrors and Lenses! As we have noted before, light rays can be diverted by optical systems to fool your eye into thinking an object is somewhere that it is

More information

Image Formed by a Plane Mirror. point object A, source of light

Image Formed by a Plane Mirror. point object A, source of light Today s agenda: Plane Mirrors. You must be able to draw ray diagrams for plane mirrors, and be able to calculate image and object heights, distances, and magnifications. Spherical Mirrors: concave and

More information

1. What is the law of reflection?

1. What is the law of reflection? Name: Skill Sheet 7.A The Law of Reflection The law of reflection works perfectly with light and the smooth surface of a mirror. However, you can apply this law to other situations. For example, how would

More information

Quest Chapter 30. Same hint as in #1. Consider the shapes of lenses that make them converge or diverge.

Quest Chapter 30. Same hint as in #1. Consider the shapes of lenses that make them converge or diverge. 1 Consider the light rays depicted in the figure. 1. diverging mirror 2. plane mirror 3. converging mirror 4. converging lens 5. diverging lens 6. Unable to determine. 2 Consider the light rays depicted

More information

Light: Geometric Optics (Chapter 23)

Light: Geometric Optics (Chapter 23) Light: Geometric Optics (Chapter 23) Units of Chapter 23 The Ray Model of Light Reflection; Image Formed by a Plane Mirror Formation of Images by Spherical Index of Refraction Refraction: Snell s Law 1

More information

Ray Optics. Physics 11. Sources of Light Rays: Self-Luminous Objects. The Ray Model of Light

Ray Optics. Physics 11. Sources of Light Rays: Self-Luminous Objects. The Ray Model of Light Physics 11 Ray Optics Ray Model of Light Reflection Plane Mirrors Spherical Mirrors Ray Tracing Images from a Concave Mirror Images from a Convex Mirror Slide 18-3 The Ray Model of Light Sources of Light

More information

Chapter 7: Geometrical Optics

Chapter 7: Geometrical Optics Chapter 7: Geometrical Optics 7. Reflection at a Spherical Surface L.O 7.. State laws of reflection Laws of reflection state: L.O The incident ray, the reflected ray and the normal all lie in the same

More information

Light Refraction. 7. For the three situations below, draw a normal line and measure and record the angles of incidence and the angles of refraction.

Light Refraction. 7. For the three situations below, draw a normal line and measure and record the angles of incidence and the angles of refraction. Name: Light Refraction Read from Lesson 1 of the Refraction and Lenses chapter at The Physics Classroom: http://www.physicsclassroom.com/class/refrn/u14l1a.html http://www.physicsclassroom.com/class/refrn/u14l1b.html

More information

index of refraction-light speed

index of refraction-light speed AP Physics Study Guide Chapters 22, 23, 24 Reflection, Refraction and Interference Name Write each of the equations specified below, include units for all quantities. Law of Reflection Lens-Mirror Equation

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 26 Propagation of Light Hecht, chapter 5 Spring 2015 Semester Matthew Jones Geometric Optics Typical problems in geometric optics: Given an optical system, what

More information

Light Reflection. Not drawn to scale.

Light Reflection. Not drawn to scale. Physics 25 Chapter 25 Dr. Alward Light Reflection In the figure at the right, the angle of reflection for Ray 1 equals the angle of incidence. The same is true for Ray 2. Not drawn to scale. Any image

More information

Optics Homework. Assignment #2. Assignment #1. Textbook: Read Section 23-1 and 23-2

Optics Homework. Assignment #2. Assignment #1. Textbook: Read Section 23-1 and 23-2 Optics Homework Assignment #1 Textbook: Read Section 22-3 (Honors only) Textbook: Read Section 23-1 Online: Reflection Lesson 1a: * problems are for all students ** problems are for honors physics 1. *

More information

Conceptual Practice Problems for PHYS 1112 In-Class Exam #1A+1B

Conceptual Practice Problems for PHYS 1112 In-Class Exam #1A+1B Conceptual Practice Problems for PHYS 1112 In-Class Exam #1A+1B Thu. Feb. 4, 2010, 9:30am-10:45am and 11:00am-12:15pm CP 1.01: A student runs westward at 3m/s, away from a vertical plane mirror, while

More information

M = h' h = #i. n = c v

M = h' h = #i. n = c v Name: Physics Chapter 14 Study Guide ----------------------------------------------------------------------------------------------------- Useful Information: c = 3 "10 8 m s 1 i + 1 o = 1 f M = h' h =

More information

Dispersion (23.5) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 17

Dispersion (23.5) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 17 Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 1 / 17 Dispersion (23.5) The speed of light in a material depends on its wavelength White light is a mixture of wavelengths

More information

Light: Geometric Optics

Light: Geometric Optics Light: Geometric Optics The Ray Model of Light Light very often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization, but

More information

Chapter 23. Images and Mirrors 3/23/11. Mirrors and Lenses QUESTIONS? PLEASE ASK! Types of Images for Mirrors and Lenses.

Chapter 23. Images and Mirrors 3/23/11. Mirrors and Lenses QUESTIONS? PLEASE ASK! Types of Images for Mirrors and Lenses. 3/23/ LIGO mirror Announcements LIGO mirror Two exams down, one to go! No HW this week. Credit: LIGO Laboratory, Caltech Office hours: My office hours today from 2-3 pm (or make an appointment) Chapter

More information

a) Is the image real or virtual? Explain b) Is the image inverted or upright (non-inverted)?

a) Is the image real or virtual? Explain b) Is the image inverted or upright (non-inverted)? 1. An object that is 5.0 cm high is placed 35.0 cm from a converging lens that has a focal length of 25.0 cm. a) Is the image real or virtual? Explain b) Is the image inverted or upright (non-inverted)?

More information

Geometric Optics. The Law of Reflection. Physics Waves & Oscillations 3/20/2016. Spring 2016 Semester Matthew Jones

Geometric Optics. The Law of Reflection. Physics Waves & Oscillations 3/20/2016. Spring 2016 Semester Matthew Jones Physics 42200 Waves & Oscillations Lecture 27 Propagation of Light Hecht, chapter 5 Spring 2016 Semester Matthew Jones Geometric Optics Typical problems in geometric optics: Given an optical system, what

More information

AP* Optics Free Response Questions

AP* Optics Free Response Questions AP* Optics Free Response Questions 1978 Q5 MIRRORS An object 6 centimeters high is placed 30 centimeters from a concave mirror of focal length 10 centimeters as shown above. (a) On the diagram above, locate

More information

PHYS 202 Notes, Week 9

PHYS 202 Notes, Week 9 PHYS 202 Notes, Week 9 Greg Christian March 22 & 24, 206 Last updated: 03/24/206 at 2:23:56 This week we learn about images by mirrors, refraction, and thin lenses. Images Spherical Mirrors First let s

More information

Optics II. Reflection and Mirrors

Optics II. Reflection and Mirrors Optics II Reflection and Mirrors Geometric Optics Using a Ray Approximation Light travels in a straight-line path in a homogeneous medium until it encounters a boundary between two different media The

More information

LECTURE 17 MIRRORS AND THIN LENS EQUATION. Instructor: Kazumi Tolich

LECTURE 17 MIRRORS AND THIN LENS EQUATION. Instructor: Kazumi Tolich LECTURE 17 MIRRORS AND THIN LENS EQUATION Instructor: Kazumi Tolich Lecture 17 2 18.6 Image formation with spherical mirrors Concave mirrors Convex mirrors 18.7 The thin-lens equation Sign conventions

More information

34.2: Two Types of Image

34.2: Two Types of Image Chapter 34 Images 34.2: Two Types of Image For you to see an object, your eye intercepts some of the light rays spreading from the object and then redirect them onto the retina at the rear of the eye.

More information

Lecture Notes (Geometric Optics)

Lecture Notes (Geometric Optics) Lecture Notes (Geometric Optics) Intro: - plane mirrors are flat, smooth surfaces from which light is reflected by regular reflection - light rays are reflected with equal angles of incidence and reflection

More information

The Role of Light to Sight

The Role of Light to Sight Reflection The Role of Light to Sight The visual ability of humans and other animals is the result of the complex interaction of light, eyes and brain. Absence of Light Darkness. Luminous objects are objects

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics 26.1 The Reflection of Light 26.2 Forming Images With a Plane Mirror 26.3 Spherical Mirrors 26.4 Ray Tracing and the Mirror Equation 26.5 The Refraction of Light 26.6 Ray

More information

Reflection & Mirrors

Reflection & Mirrors Reflection & Mirrors Geometric Optics Using a Ray Approximation Light travels in a straight-line path in a homogeneous medium until it encounters a boundary between two different media A ray of light is

More information

The Reflection of Light

The Reflection of Light King Saud University College of Applied Studies and Community Service Department of Natural Sciences The Reflection of Light General Physics II PHYS 111 Nouf Alkathran nalkathran@ksu.edu.sa Outline Introduction

More information

4. Refraction. glass, air, Perspex and water.

4. Refraction. glass, air, Perspex and water. Mr. C. Grima 11 1. Rays and Beams A ray of light is a narrow beam of parallel light, which can be represented by a line with an arrow on it, in diagrams. A group of rays makes up a beam of light. In laboratory

More information

Kiangsu-Chekiang College (Shatin)

Kiangsu-Chekiang College (Shatin) Kiangsu-Chekiang College (Shatin) Physics Revision Test (2002-2003) Name : ( ) Time : 60 minutes Class : F.3 Marks : / 100 Date : 03-Apr-2003 Section A: Multiple-choice questions (30 marks) Answer ALL

More information

P06 ray diagrams with concave mirrors and intro to problem solving.notebook

P06 ray diagrams with concave mirrors and intro to problem solving.notebook Ray Diagrams Concave Mirror A concave mirror is a converging mirror because parallel rays will. For any object, millions and millions of rays are reflected in all directions. Some of these rays hit the

More information

Willis High School Physics Workbook Unit 7 Waves and Optics

Willis High School Physics Workbook Unit 7 Waves and Optics Willis High School Physics Workbook Unit 7 Waves and Optics This workbook belongs to Period Waves and Optics Pacing Guide DAY DATE TEXTBOOK PREREADING CLASSWORK HOMEWORK ASSESSMENT M 2/25 T 2/26 W 2/27

More information

Physics 123 Optics Review

Physics 123 Optics Review Physics 123 Optics Review I. Definitions & Facts concave converging convex diverging real image virtual image real object virtual object upright inverted dispersion nearsighted, farsighted near point,

More information

On Fig. 7.1, draw a ray diagram to show the formation of this image.

On Fig. 7.1, draw a ray diagram to show the formation of this image. 1- A small object is placed 30 cm from the centre of a convex lens of focal length 60 cm An enlarged image is observed from the other side of the lens (a) On Fig 71, draw a ray diagram to show the formation

More information

Textbook Reference: Glencoe Physics: Chapters 16-18

Textbook Reference: Glencoe Physics: Chapters 16-18 Honors Physics-121B Geometric Optics Introduction: A great deal of evidence suggests that light travels in straight lines. A source of light like the sun casts distinct shadows. We can hear sound from

More information

Recap: Refraction. Amount of bending depends on: - angle of incidence - refractive index of medium. (n 2 > n 1 ) n 2

Recap: Refraction. Amount of bending depends on: - angle of incidence - refractive index of medium. (n 2 > n 1 ) n 2 Amount of bending depends on: - angle of incidence - refractive index of medium Recap: Refraction λ 1 (n 2 > n 1 ) Snell s Law: When light passes from one transparent medium to another, the rays will be

More information

Ch. 25 The Reflection of Light

Ch. 25 The Reflection of Light Ch. 25 The Reflection of Light 25. Wave fronts and rays We are all familiar with mirrors. We see images because some light is reflected off the surface of the mirror and into our eyes. In order to describe

More information

4. A bulb has a luminous flux of 2400 lm. What is the luminous intensity of the bulb?

4. A bulb has a luminous flux of 2400 lm. What is the luminous intensity of the bulb? 1. Match the physical quantities (first column) with the units (second column). 4. A bulb has a luminous flux of 2400 lm. What is the luminous intensity of the bulb? (π=3.) Luminous flux A. candela Radiant

More information

Ch. 26: Geometrical Optics

Ch. 26: Geometrical Optics Sec. 6-1: The Reflection of Light Wave Fronts and Rays Ch. 6: Geometrical Optics Wave front: a surface on which E is a maximum. Figure 5-3: Plane Wave *For this wave, the wave fronts are a series of planes.

More information

Section 2 Flat Mirrors. Distinguish between specular and diffuse reflection of light. Apply the law of reflection for flat mirrors.

Section 2 Flat Mirrors. Distinguish between specular and diffuse reflection of light. Apply the law of reflection for flat mirrors. Section 2 Flat Mirrors Objectives Distinguish between specular and diffuse reflection of light. Apply the law of reflection for flat mirrors. Describe the nature of images formed by flat mirrors. Section

More information

Physics 1230 Light and Color Fall 2012 M. Goldman. Practice Exam #1 Tuesday, Sept 25, Your full name: Last First and middle.

Physics 1230 Light and Color Fall 2012 M. Goldman. Practice Exam #1 Tuesday, Sept 25, Your full name: Last First and middle. Physics 1230 Light and Color Fall 2012 M. Goldman Practice Exam #1 Tuesday, Sept 25, 2012 This exam will be worth 100 points. There are 10 multiple choice questions worth 4 points each and 3 problems worth

More information

PHYSICS. Chapter 34 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 34 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 34 Lecture RANDALL D. KNIGHT Chapter 34 Ray Optics IN THIS CHAPTER, you will learn about and apply the ray model of light Slide 34-2

More information

Ray Diagrams. Ray Diagrams Used for determining location, size, orientation, and type of image

Ray Diagrams. Ray Diagrams Used for determining location, size, orientation, and type of image Ray Diagrams Reflection for concave mirror: Any incident ray traveling parallel to the principal axis on the way to the mirror will pass through the focal point upon reflection. Any incident ray passing

More information

Chapter 36. Image Formation

Chapter 36. Image Formation Chapter 36 Image Formation Apr 22, 2012 Light from distant things We learn about a distant thing from the light it generates or redirects. The lenses in our eyes create images of objects our brains can

More information

GEOMETRIC OPTICS. LENSES refract light, so we need to know how light bends when entering and exiting a lens and how that interaction forms an image.

GEOMETRIC OPTICS. LENSES refract light, so we need to know how light bends when entering and exiting a lens and how that interaction forms an image. I. What is GEOMTERIC OPTICS GEOMETRIC OPTICS In geometric optics, LIGHT is treated as imaginary rays. How these rays interact with at the interface of different media, including lenses and mirrors, is

More information

Physics 228 Spring 2016 Analytical Physics IIB Lecture 2: Snell s Law Total Internal Reflection Images from Mirrors

Physics 228 Spring 2016 Analytical Physics IIB  Lecture 2: Snell s Law Total Internal Reflection Images from Mirrors Physics 228 Spring 2016 Analytical Physics IIB www.physics.rutgers.edu/ugrad/228 Lecture 2: Snell s Law Total Internal Reflection Images from Mirrors Recitations start this week, with quiz. Also: Labs

More information

Light travels in straight lines, this is referred to as... this means that light does not bend...

Light travels in straight lines, this is referred to as... this means that light does not bend... SNC 2DI - 10.2 Properties of Light and Reflection Light travels in straight lines, this is referred to as... this means that light does not bend... Reflection : Light travels in a straight line as long

More information

PH 222-2A Spring 2015

PH 222-2A Spring 2015 PH 222-2A Spring 2015 Images Lectures 24-25 Chapter 34 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) 3 Chapter 34 Images One of the most important uses of the basic laws governing light

More information

Part Images Formed by Flat Mirrors. This Chapter. Phys. 281B Geometric Optics. Chapter 2 : Image Formation. Chapter 2: Image Formation

Part Images Formed by Flat Mirrors. This Chapter. Phys. 281B Geometric Optics. Chapter 2 : Image Formation. Chapter 2: Image Formation Phys. 281B Geometric Optics This Chapter 3 Physics Department Yarmouk University 21163 Irbid Jordan 1- Images Formed by Flat Mirrors 2- Images Formed by Spherical Mirrors 3- Images Formed by Refraction

More information

LIGHT & OPTICS. Fundamentals of Physics 2112 Chapter 34 1

LIGHT & OPTICS. Fundamentals of Physics 2112 Chapter 34 1 LIGHT & OPTICS Fundamentals of Physics 22 Chapter 34 Chapter 34 Images. Two Types of Images 2. Plane Mirrors 3. Spherical Mirrors 4. Images from Spherical Mirrors 5. Spherical Refracting Surfaces 6. Thin

More information

Lecture Outline Chapter 26. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 26. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 26 Physics, 4 th Edition James S. Walker Chapter 26 Geometrical Optics Units of Chapter 26 The Reflection of Light Forming Images with a Plane Mirror Spherical Mirrors Ray Tracing

More information

Image Formation and the Lens: Object Beyond The Focal Point

Image Formation and the Lens: Object Beyond The Focal Point Image Formation and the Lens: Object Beyond The Focal Point A convex lens is shown below with its focal points displayed (the dots). An object is located to the left of and at a distance of 2f to the lens.

More information

PHYS1004 Problem Sheet - Optics - with Solutions

PHYS1004 Problem Sheet - Optics - with Solutions PHYS004 Problem Sheet - Optics - with Solutions Do not write on these question sheets - there is not enough room to do a good job of answering these questions. The answers need to be written in your life

More information

2t = (m+ 1 /2) λ = (m+ 1 /2)(λ/n); min, m = 0, 1, 2,... n1 < n2 < n3 2t = m λ = m(λ/n); min, m = 0, 1, 2,... n1 < n2 > n3

2t = (m+ 1 /2) λ = (m+ 1 /2)(λ/n); min, m = 0, 1, 2,... n1 < n2 < n3 2t = m λ = m(λ/n); min, m = 0, 1, 2,... n1 < n2 > n3 PHY1160C Exam #3 July 8, 1997 Possibly useful information: For reflection, θinc = θref For refraction, image equation apparent depth Young s Double Slit: n1 sin θ1 = n2 sin θ2 n = c/v M = h i = d i h o

More information

Lecture 36: FRI 17 APR

Lecture 36: FRI 17 APR Physics 2102 Jonathan Dowling Lecture 36: FRI 17 APR 34.1 4: Geometrical optics Geometrical Optics Geometrical optics (rough approximation): light rays ( particles ) that travel in straight lines. Physical

More information

The Ray model of Light. Reflection. Class 18

The Ray model of Light. Reflection. Class 18 The Ray model of Light Over distances of a terrestrial scale light travels in a straight line. The path of a laser is now the best way we have of defining a straight line. The model of light which assumes

More information

Nicholas J. Giordano. Chapter 24. Geometrical Optics. Marilyn Akins, PhD Broome Community College

Nicholas J. Giordano.   Chapter 24. Geometrical Optics. Marilyn Akins, PhD Broome Community College Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 24 Geometrical Optics Marilyn Akins, PhD Broome Community College Optics The study of light is called optics Some highlights in the history

More information

What is it? How does it work? How do we use it?

What is it? How does it work? How do we use it? What is it? How does it work? How do we use it? Dual Nature http://www.youtube.com/watch?v=dfpeprq7ogc o Electromagnetic Waves display wave behavior o Created by oscillating electric and magnetic fields

More information

Unit 11 Light and Optics Holt Chapter 14 Student Outline Light and Refraction

Unit 11 Light and Optics Holt Chapter 14 Student Outline Light and Refraction Holt Chapter 14 Student Outline Light and Refraction Variables introduced or used in chapter: Quantity Symbol Units Speed of light frequency wavelength angle Object Distance Image Distance Radius of Curvature

More information

Save My Exams! The Home of Revision For more awesome GCSE and A level resources, visit us at Light.

Save My Exams! The Home of Revision For more awesome GCSE and A level resources, visit us at Light. For more awesome GSE and level resources, visit us at www.savemyexams.co.uk/ 3.2 Light Question Paper Level IGSE Subject Physics (0625) Exam oard Topic Sub Topic ooklet ambridge International Examinations(IE)

More information

CHAPTER 29: REFLECTION

CHAPTER 29: REFLECTION CHAPTER 29: REFLECTION 29.1 REFLECTION The return of a wave back to its original medium is called reflection. Fasten a spring to a wall and send a pulse along the spring s length. The wall is a very rigid

More information

Physics 1230: Light and Color. Guest Lecture 18 Jack Houlton Lenses, Rays, and Math!

Physics 1230: Light and Color. Guest Lecture 18 Jack Houlton Lenses, Rays, and Math! Physics 230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys230 Guest Lecture 8 Jack Houlton Lenses, Rays, and

More information

PHYS 219 Spring semester Lecture 19: Mirrors. Ron Reifenberger Birck Nanotechnology Center Purdue University

PHYS 219 Spring semester Lecture 19: Mirrors. Ron Reifenberger Birck Nanotechnology Center Purdue University PHYS 219 Spring semester 2016 Lecture 19: Mirrors Ron Reifenberger Birck Nanotechnology Center Purdue University PHYS 219 Test II Wednesday; March 30, 2016 6:30 PM PHYS 203 Lecture 19 1 a) Interaction

More information

12:40-2:40 3:00-4:00 PM

12:40-2:40 3:00-4:00 PM Physics 294H l Professor: Joey Huston l email:huston@msu.edu l office: BPS3230 l Homework will be with Mastering Physics (and an average of 1 hand-written problem per week) Help-room hours: 12:40-2:40

More information

Phys 104: College Physics EXAM 3

Phys 104: College Physics EXAM 3 Phys 14: College Physics Key Name I. VERY SHORT ANSWER: EXAM 3 FRIDAY, APRIL 16, 21 1) 3 A cat plays with a butterfly at dawn and looks directly up at light from the sun rising in the east that has been

More information

Chapter 33 Continued Properties of Light. Law of Reflection Law of Refraction or Snell s Law Chromatic Dispersion Brewsters Angle

Chapter 33 Continued Properties of Light. Law of Reflection Law of Refraction or Snell s Law Chromatic Dispersion Brewsters Angle Chapter 33 Continued Properties of Light Law of Reflection Law of Refraction or Snell s Law Chromatic Dispersion Brewsters Angle Dispersion: Different wavelengths have different velocities and therefore

More information

Light and Mirrors MIRRORS

Light and Mirrors MIRRORS Light and Mirrors MIRRORS 1 Polarized Sunglasses- How do they work? light waves vibrate in more than one plane light waves can be made to vibrate in a single plane by use of polarizing filters. 2 polarizing

More information

Lecture Notes (Reflection & Mirrors)

Lecture Notes (Reflection & Mirrors) Lecture Notes (Reflection & Mirrors) Intro: - plane mirrors are flat, smooth surfaces from which light is reflected by regular reflection - light rays are reflected with equal angles of incidence and reflection

More information

Stevens High School AP Physics II Work for Not-school

Stevens High School AP Physics II Work for Not-school 1. Gravitational waves are ripples in the fabric of space-time (more on this in the next unit) that travel at the speed of light (c = 3.00 x 10 8 m/s). In 2016, the LIGO (Laser Interferometry Gravitational

More information

Inaugural University of Michigan Science Olympiad Invitational Tournament. Optics

Inaugural University of Michigan Science Olympiad Invitational Tournament. Optics Inaugural University of Michigan Science Olympiad Invitational Tournament Test length: 50 Minutes Optics Team number: Team name: Student names: Instructions: Do not open this test until told to do so.

More information