GE Healthcare. Agile Ultrasound. The Next Revolution in Ultrasound Imaging

Size: px
Start display at page:

Download "GE Healthcare. Agile Ultrasound. The Next Revolution in Ultrasound Imaging"

Transcription

1 Agile Ultrasound The Next Revolution in Ultrasound Imaging

2 Abstract Diagnostic use of ultrasound has greatly expanded over the past couple of decades because it offers many advantages as an imaging modality. Over that time, image quality has improved significantly, however, fundamental issues remain. The human body consists of a variety of tissue types, each of which affects the ultrasound beam differently. It is theoretically possible to compensate for the sound characteristics of different tissue types, but because ultrasound must provide real-time images, the time permitted for computation of those corrections is short. Because of this time constraint, conventional ultrasound systems must limit computational complexity, making many simplifying assumptions about the body in order to achieve real-time imaging. This leads to compromised image quality and requires that the user make many system adjustments to compensate for the resulting reductions in image quality. Advances in ultrasound system designs over the past ten years have made many improvements to the backend post-processing capabilities, but have not addressed the fundamental acquisition of data that drives image quality. To address these issues, GE has developed a new Agile Acoustic Architecture that uses advanced models of sound interaction with different tissue types and powerful distributed intelligence to bring image quality to new levels. Introduction Ultrasound is an indispensable diagnostic tool because of its non-invasive, non-ionizing, real-time, portable, and low-cost nature. However, when compared with other imaging modalities, ultrasound image quality is more variable, depending both on type of patient and the expertise of the operator. Reducing the patient and user dependencies would have a great impact on ultrasound acceptance. The root cause of these image quality dependencies is the complex interaction of the human body with the ultrasound signal. Compared with other modalities, ultrasound users have become accustomed to making many more system adjustments to improve the image quality to compensate for the distortions that come from these complex interactions. The complex interaction of sound in the human body The human body consists of many different tissue types and structures, the properties of which have been well studied and characterized for differences in attenuation and speed of sound. Tissue 1 MHz Sound Speed (m/s) (db/cm) Water Blood Liver Muscle Kidney Fat Bone Table 1: Ultrasound attenuation and speed of sound for various tissue types 1 Page 2 of 10

3 Figure 1: Transverse section of upper Figure 2: Attenuation versus frequency for abdominal viscera 1 various tissue types 2 As ultrasound passes through multiple different tissues in the body, variations in the speed and attenuation along the ultrasound beam cause an aberration or distortion in the beam. As an example, sound passing through the body along the dashed white line in Figure 1 passes through skin, subcutaneous fat, muscle, and liver tissue before it reaches the kidney, and passes through the same mix of tissues on return. Figure 3 shows the effect on an ultrasound waveform after passing through such tissue types, which induces a depth dependent distortion. Near field Middle field Far field Ideal propagation Attenuation Attenuation + Phase aberration Attenuation + Phase aberration + Nonlinear propagation Figure 3: Distortion of ultrasound waveform over depth due to various causes As shown in figure 2, attenuation of ultrasound is not only tissue dependent but also frequency dependent, and thus different frequencies will experience different levels of distortion. Since Page 3 of 10

4 broadband ultrasound is widely used in modern ultrasound systems, distortion of the ultrasound beam is a rather complex function of both tissue type and depth. Uncompensated, this distortion introduced by each tissue type degrades the spatial and contrast resolution in the ultrasound image and leads to reduced image uniformity. Figure 4: Image quality degradation caused by distortion in the ultrasound beam The role of the beamformer in an ultrasound system Point Spherica l Transdu Beamform ing Coheren t Front-end Back-end Processing Figure 5 Beamforming of a point source Time-Gain Compensation Time-Frequency Compensation S ti l filt i Ultrasound systems form images by sequentially transmitting acoustic energy into the body, receiving the returned echoes, and processing the received signals to extract information about the location and strength of reflectors in the body. The part of the ultrasound system that does this image formation is the beamformer. Since signals returning from the body arrive at different points along ultrasound transducer face at different times, beamformers use a system of delays to realign the signals returning from the body. Both on transmission and on reception, the beamformer uses this system of delays to focus energy in specific regions of the body. The better the system can enhance signals from the desired region and eliminate unwanted signal from other regions, the better the image quality. In a dynamic receive focus system, the focusing delays are continuously updated for every point in space. To counteract the effects caused by the physics of sound waves in the body affecting signal propagation and attenuation, an ultrasound system must continuously adjust a multitude of internal system parameters in the beamformer to Page 4 of 10

5 create the best image quality for every point in the image. (These three-dimensional points are called voxels.) This process must be done in real-time to provide reasonable imaging frame rates. The more parameters that can be adjusted, and the closer they match what is happening in the body, the better the image quality, and the higher the computational complexity. Moreover, as the spatial resolution of ultrasound systems increases, the reduction of the size of each image voxel requires a corresponding increase the number of voxels required to cover a given region of space, and thus dramatically increases the number of imaging computations required. Transmit voltage, waveform, transmit time delay, receive time delay, f-number, dynamic range, TGC, compression,,temporal averaging,, are just a few of the multitude of internal system parameters that must be adjusted to form an image. Figure 6: Computational complexity in forming an ultrasound image Given the number of parameters that must be adjusted for every image voxel in every frame, and the increasing number of image voxels in today s high-resolution ultrasound systems, the computational challenge is extraordinary. Conventional ultrasound system design In a conventional ultrasound system, the user selects a probe type and an imaging preset or collection of stored user control settings for the image formation. To be able to keep up with real-time imaging, the ultrasound operating system must calculate in advance what each channel must do for every image voxel. Prior to the start of imaging, the appropriate calculations for the given probe type and preset are loaded into each of the beamformer channels so that each beamformer channel simply executes the preprogrammed instructions as the image is produced. When the user selects a new probe or system preset, the system recalculates a new set of instructions for each channel and reloads each beamforming channel before scanning resumes. Page 5 of 10

6 Figure 7: Diagram of a Conventional Ultrasound System Design Every time the user changes a system operating parameter such as depth, focal zone position, or imaging frequency, the operating system must re-compute a portion of the beamforming information and again reprogram every channel. If perfect image quality were the goal, even today s fastest computers could not keep up with this process of channel-by-channel computation, loading, and resuming imaging. As a result, ultrasound engineers reduce the computational complexity by simplifying the assumptions about how sound interacts with the body so that they can reduce the number of parameters that must be calculated and downloaded to each channel. As an example, conventional ultrasound systems employ a rigid model of the human body using a single value for the speed and attenuation of sound in the body. These simplifications in a conventional ultrasound system lead to compromised image quality, and thus require the user to compensate by making many adjustments to system controls as they attempt to further improve image quality for each patient and organ. GE introduces a new Agile Acoustic Architecture with Agile Beamformer To address the fundamental limitations of a conventional system design, GE has developed a new system architecture and beamformer design based on the concept of agility. This new architecture and beamformer employ a series of powerful distributed processors, which when combined provide an order of magnitude increase in processing power and extremely high data rates, allowing the use of dynamic clinical models that more accurately represent the interaction of sound in the body. The result is dramatically improved image quality and reduced need for user optimization. Page 6 of 10

7 Patented Agile Acoustic Architecture The Agile Acoustic Architecture starts with the development of complex acoustic models based on clinical data. These models take into account more realistic and dynamic physics profiles for different tissue types, more precisely modeling differences in parameters like attenuation and speed of sound. Prior to scanning, the user selects the appropriate clinical model for the anatomy of interest. Unlike presets, which provide a starting point for the keyboard controls available to the user, the agile model adjusts internal system parameters not available to the user, and continuously adjusts those parameters based on any changes the user makes to keyboard controls. These models give the agile ultrasound system significant flexibility to compensate for the complexity of sound/body interaction and can be more dynamic and realistic than the rigid assumptions required in conventional systems. Figure 8: Agile Acoustic Architecture Design Due to their complexity, these acoustic models require significantly more processing power. Rather than relying on the central operating system to pre-calculate system parameters for each beamforming channel, the Agile Acoustic Architecture is built around powerful distributed processors on each beamforming channel. Each channel has been made intelligent and can calculate on its own what it needs to do for every voxel in the image. The models run in real-time on each distributed processor. When the user chooses a new model or changes an operating parameter only a minimal amount of information is loaded to each beamforming channel, and the channels do the rest to provide optimal image quality. Page 7 of 10

8 The distributed processing in the Agile Acoustic Architecture provides significantly more computational capacity. As a result, more internal parameters are brought to bear on the problem of compensating for the complex ultrasound/body interactions. Less image quality is lost because of the difference between reality and simplifying assumptions. Since the image formation is better to start with, fewer user adjustments are required to obtain an optimal image. An analogy: The Agile Acoustic Architecture is like a well-trained sports team. In practice the coach teaches all the plays to the players. But once the game starts, the coach simply relays the play and each player makes optimal decisions independently based on the game situation and the actions of the opposing players at the time. Enabling Technology Miniaturization - Packs an order of magnitude more processing power in same volume - Harness the same technology allowing laptop sized ultrasound Ultra-high speed data links - Allows transfer of over 3 Gigabytes of data per second (30 x conventional systems) - Equivalent to downloading the entire Lord of the Rings movie trilogy in under 4 seconds Scalable architecture - Expandable for higher performance levels - Platform for new innovations Enabling technologies Having developed seven laptop-sized ultrasound systems, GE has made significant investments in miniaturization in order to put the processing power of a high-end ultrasound system in a hand-carried package. This miniaturization expertise, also allowed GE to pack an order of magnitude greater processing power into the space of a full-sized ultrasound system. This gives Agile ultrasound systems the power needed to run the new clinical models. Because Agile ultrasound is so data-intense, new intra-system communication methods are needed to transfer the data within the beamformer. Ultra high-speed data links have been developed to transmit both data and imaging parameters efficiently. These links allow transfer rates of 3 gigabytes of data every second, thirty times the data rate of a conventional ultrasound system. The implementation of more sophisticated sound/body models is just the beginning of Agile ultrasound. These more sophisticated models open up a new branch of ultrasound science that will drive other innovations in the coming years. Agile ultrasound s distributed processing makes it more scalable than other designs. This scalability should enable the practical implementation of the future scientific discoveries based these ideas. Benefits of the Agile Acoustic Architecture One benefit of the agile acoustic architecture is the excellent image uniformity with very few user adjustments. For example, when the user changes a control like focal zone position, a conventional ultrasound system will re-compute the focusing delay for each channel and download that data into all channels. Since this process can take much time, the conventional system will limit the number of internal parameters to simplify the calculation. Also to reduce the calculation burden, most systems Page 8 of 10

9 will compute large tables in advance for a limited number of potential focal zone locations and simply load these tables into each channel. Since the data is pre-computed without knowing what most of the other operating parameters will be, the number of parameters will also be limited. With limited internal parameters adjusted by the system, and simplified calculations, the likelihood that the imaging parameters used match the ideal imaging parameters needed is low and the resulting image quality is degraded. To compensate, the user will adjust a number of keyboard controls, such as gain, TCG, as they attempt to optimize the image. With the agile acoustic architecture, every channel has sufficient distributed intelligence to know what to do on its own. When the user changes a focal zone position, only the new location needs to be relayed to each channel where the distributed processor will make all new calculations for that channel. Since the imaging parameters do not have to be pre-calculated, focal zone positions are not limited to preset locations, and can be placed flexibly based on the clinical need. The intelligence in the dynamic model results in a more accurate calculation using tissue specific acoustic profiles. The result is more optimal image quality, improved near-field, and better uniformity, with fewer user adjustments. Clinical benefits The results of Agile Acoustic Architecture can be seen in the exquisite imaging performance of the system. Agile ultrasound can provide deep penetration in even the most difficult to image patients. The image quality is uniformly excellent, maintaining tight spatial resolution throughout the image. The more sophisticated Agile models allow the use of higher-than-normal imaging frequencies, even deep in the body, resulting in a pleasing high-resolution look from top to bottom. Since images are optimized automatically by the dynamic mathematical model, optimal imaging is provided with minimal user interaction. Figure 9: (Left) Normal liver image showing excellent spatial and contrast resolution and image uniformity. (Right) Hyperemic flow at 2mm around veins following laser venous ablation showing high-frequency imaging and great B-mode image quality behind the color flow. Page 9 of 10

10 Conclusion A new Agile Acoustic Architecture with advanced clinical models and powerful distributed intelligence provides dramatic improvements in image quality on a greater variety of patients with fewer user adjustments required. Despite these advances, Agile ultrasound is still in its infancy. The models employed today are a significant improvement over the conventional approach, but do not come close to reaching their potential. With the basic architecture in place, the opportunities to further refine sound-tissue models hold great promise for clinician and engineer alike. References 1 Color Atlas of Human Anatomy, McMinn & Hutchings, Mosby Year Book, 1998 pg Zagzebski, Essentials of Ultrasound Physics Page 10 of 10

Certificate in Clinician Performed Ultrasound (CCPU)

Certificate in Clinician Performed Ultrasound (CCPU) Certificate in Clinician Performed Ultrasound (CCPU) Syllabus Physics Tutorial Physics Tutorial Purpose: Training: Assessments: This unit is designed to cover the theoretical and practical curriculum for

More information

CHAPTER 2 MEDICAL IMAGING WITH NON-IONIZING RADIATION

CHAPTER 2 MEDICAL IMAGING WITH NON-IONIZING RADIATION CHAPTER 2 MEDICAL IMAGING WITH NON-IONIZING RADIATION 1 Ultrasound Imaging 1.1 Ultrasound Production and Detection Ultrasound is frequency vibration. To produce and detect ultrasound, we use crystals which

More information

Resona 7. New Waves in Ultrasound Innovation. Premium Ultrasound System

Resona 7. New Waves in Ultrasound Innovation. Premium Ultrasound System Resona 7 Premium Ultrasound System New Waves in Ultrasound Innovation With over 20 years of experience, Mindray hosts a wide range of ultrasound imaging solutions including cart-based and portable systems.

More information

Resona 7. Premium Ultrasound System. New Waves in Ultrasound Innovation

Resona 7. Premium Ultrasound System. New Waves in Ultrasound Innovation Resona 7 Premium Ultrasound System New Waves in Ultrasound Innovation New Waves in Ultrasound Innovation Since the company was founded, Mindray is continuously exploring new ways to improve diagnostic

More information

LOGIQ. V2 Ultrasound. Part of LOGIQ Vision Series. Imagination at work LOGIQ is a trademark of General Electric Company.

LOGIQ. V2 Ultrasound. Part of LOGIQ Vision Series. Imagination at work LOGIQ is a trademark of General Electric Company. TM LOGIQ V2 Ultrasound Part of LOGIQ Vision Series Imagination at work The brilliance of color. The simplicity of GE. Now you can add the advanced capabilities of color Doppler to patient care with the

More information

연구용유방초음파질관리 원광대학병원김혜원

연구용유방초음파질관리 원광대학병원김혜원 연구용유방초음파질관리 원광대학병원김혜원 Why US QC? Quality control (QC) testing of ultrasound scanners is important to verify the proper and consistent operation of these devices. main goal ; quality improvement Guidelines

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS2007W1 SEMESTER 2 EXAMINATION 2014-2015 MEDICAL PHYSICS Duration: 120 MINS (2 hours) This paper contains 10 questions. Answer all questions in Section A and only two questions

More information

Classification of Abdominal Tissues by k-means Clustering for 3D Acoustic and Shear-Wave Modeling

Classification of Abdominal Tissues by k-means Clustering for 3D Acoustic and Shear-Wave Modeling 1 Classification of Abdominal Tissues by k-means Clustering for 3D Acoustic and Shear-Wave Modeling Kevin T. Looby klooby@stanford.edu I. ABSTRACT Clutter is an effect that degrades the quality of medical

More information

Image Optimisation. -How to Get the Most out of your Echo Machine. Katarina Winkler, Biomedicinsk analytiker, Barnhjärtcentrum i Lund

Image Optimisation. -How to Get the Most out of your Echo Machine. Katarina Winkler, Biomedicinsk analytiker, Barnhjärtcentrum i Lund Image Optimisation -How to Get the Most out of your Echo Machine analytiker, Barnhjärtcentrum i Lund Image Optimisation Helpful tips to improve the 2D-Image and Doppler registrations. Common adjustments

More information

Imaging Guide Pancreatic Imaging

Imaging Guide Pancreatic Imaging Imaging Guide Guide to Small Animal Pancreatic Imaging using the Vevo 2100 Imaging System Ver 1.0 Guide to Small Animal Pancreatic Imaging using the Vevo 2100 Imaging System Course Objectives: This guide

More information

High Resolution Multi-modal in vivo Imaging Platform

High Resolution Multi-modal in vivo Imaging Platform High Resolution Multi-modal in vivo Imaging Platform The world s only customizable imaging platform combining ultra high frequency ultrasound and photoacoustics Experience the next generation of in vivo

More information

Computed tomography - outline

Computed tomography - outline Computed tomography - outline Computed Tomography Systems Jørgen Arendt Jensen and Mikael Jensen (DTU Nutech) October 6, 216 Center for Fast Ultrasound Imaging, Build 349 Department of Electrical Engineering

More information

Advanced Image Reconstruction Methods for Photoacoustic Tomography

Advanced Image Reconstruction Methods for Photoacoustic Tomography Advanced Image Reconstruction Methods for Photoacoustic Tomography Mark A. Anastasio, Kun Wang, and Robert Schoonover Department of Biomedical Engineering Washington University in St. Louis 1 Outline Photoacoustic/thermoacoustic

More information

A powerful, software-based beamformer image reconstruction platform

A powerful, software-based beamformer image reconstruction platform csound A powerful, software-based beamformer image reconstruction platform Figure 1: Vivid S70 and E90/95; first GE systems built upon the csound platform Background GE s cardiovascular ultrasound imaging

More information

GE Healthcare. Vivid 7 Dimension 08 Cardiovascular ultrasound system

GE Healthcare. Vivid 7 Dimension 08 Cardiovascular ultrasound system GE Healthcare Vivid 7 Dimension 08 Cardiovascular ultrasound system ltra Definition. Technology. Performance. Start with a system that s proven its worth in LV quantification and 4D imaging. Then add even

More information

BME I5000: Biomedical Imaging

BME I5000: Biomedical Imaging 1 Lucas Parra, CCNY BME I5000: Biomedical Imaging Lecture 4 Computed Tomography Lucas C. Parra, parra@ccny.cuny.edu some slides inspired by lecture notes of Andreas H. Hilscher at Columbia University.

More information

OPTICAL COHERENCE TOMOGRAPHY:SIGNAL PROCESSING AND ALGORITHM

OPTICAL COHERENCE TOMOGRAPHY:SIGNAL PROCESSING AND ALGORITHM OPTICAL COHERENCE TOMOGRAPHY:SIGNAL PROCESSING AND ALGORITHM OCT Medical imaging modality with 1-10 µ m resolutions and 1-2 mm penetration depths High-resolution, sub-surface non-invasive or minimally

More information

Beyond Performance and Value

Beyond Performance and Value Putting the back in ultrasound Beyond Performance and Value Esaote s new ultra-performance MyLab 9 exp ultrasound system is designed to support a full range of shared service diagnostic imaging environments.

More information

10/16/14. Ultrasound Physics & Instrumentation 5 th Edition. License Agreement. Chapter Outline. All Copyright Laws Apply.

10/16/14. Ultrasound Physics & Instrumentation 5 th Edition. License Agreement. Chapter Outline. All Copyright Laws Apply. Ultrasound Physics & Instrumentation 5 th Edition Companion Presentation Frank R. Miele Pegasus Lectures, Inc. License Agreement This presentation is the sole property of Pegasus Lectures, Inc. No part

More information

Mindray. Hand-carried Diagnostic Ultrasound System. Expanding the Envelope of Performance and Flexibility

Mindray. Hand-carried Diagnostic Ultrasound System. Expanding the Envelope of Performance and Flexibility M7 Mindray M7 Hand-carried Diagnostic Ultrasound System Expanding the Envelope of Performance and Flexibility M7 Diagnostic Ultrasound System Equipped for Quality Radiology Cardiology Outpatient Emergency

More information

Lecture 6: Medical imaging and image-guided interventions

Lecture 6: Medical imaging and image-guided interventions ME 328: Medical Robotics Winter 2019 Lecture 6: Medical imaging and image-guided interventions Allison Okamura Stanford University Updates Assignment 3 Due this Thursday, Jan. 31 Note that this assignment

More information

NDT OF SPECIMEN OF COMPLEX GEOMETRY USING ULTRASONIC ADAPTIVE

NDT OF SPECIMEN OF COMPLEX GEOMETRY USING ULTRASONIC ADAPTIVE NDT OF SPECIMEN OF COMPLEX GEOMETRY USING ULTRASONIC ADAPTIVE TECHNIQUES - THE F.A.U.S.T. SYSTEM INTRODUCTION O. Roy, S. Mahaut, M. Serre Commissariat a I'Energie Atomique CEAlCEREM, CE Saclay France Phased

More information

Robot-Based Solutions for NDT Inspections: Integration of Laser Ultrasonics and Air Coupled Ultrasounds for Aeronautical Components

Robot-Based Solutions for NDT Inspections: Integration of Laser Ultrasonics and Air Coupled Ultrasounds for Aeronautical Components 19 th World Conference on Non-Destructive Testing 2016 Robot-Based Solutions for NDT Inspections: Integration of Laser Ultrasonics and Air Coupled Ultrasounds for Aeronautical Components Esmeralda CUEVAS

More information

High Resolution Phased Array Imaging using the Total Focusing Method

High Resolution Phased Array Imaging using the Total Focusing Method 19 th World Conference on Non-Destructive Testing 2016 High Resolution Phased Array Imaging using the Total Focusing Method Wolfram A. Karl DEUTSCH 1, Werner ROYE 1, Helge RAST 1, Philippe BENOIST 2 1

More information

Large-scale Ultrasound Simulations Using the Hybrid OpenMP/MPI Decomposition

Large-scale Ultrasound Simulations Using the Hybrid OpenMP/MPI Decomposition Large-scale Ultrasound Simulations Using the Hybrid OpenMP/MPI Decomposition Jiri Jaros*, Vojtech Nikl*, Bradley E. Treeby *Department of Compute Systems, Brno University of Technology Department of Medical

More information

Ch. 4 Physical Principles of CT

Ch. 4 Physical Principles of CT Ch. 4 Physical Principles of CT CLRS 408: Intro to CT Department of Radiation Sciences Review: Why CT? Solution for radiography/tomography limitations Superimposition of structures Distinguishing between

More information

Modeling of MR-guided HIFU for Breast and Brain Therapy

Modeling of MR-guided HIFU for Breast and Brain Therapy Modeling of MR-guided HIFU for Breast and Brain Therapy Douglas A. Christensen, Allison Payne, Nick Todd, Scott Almquist, Alexis Farrer and Dennis L. Parker University of Utah Salt Lake City, Utah Overview

More information

Your versatile performer to depend on. Ultrasound. Philips ClearVue ultrasound family

Your versatile performer to depend on. Ultrasound. Philips ClearVue ultrasound family Ultrasound ClearVue Your versatile performer to depend on Philips ClearVue ultrasound family Over 70 countries More than 5,000 systems Touching 25 million lives every year For one versatile family Dependability

More information

ADVANCED PHASED ARRAY TECHNOLOGIES

ADVANCED PHASED ARRAY TECHNOLOGIES 3CNEND- 3ª Conferência Nacional em Ensaios Não Destrutivos ADVANCED PHASED ARRAY TECHNOLOGIES Dr.-Ing. Werner Roye Karl Deutsch Pruef- und Messgeraetebau GmbH + Co KG, Wuppertal, Germany Email: roye@karldeutsch.de

More information

Digital Image Processing

Digital Image Processing Digital Image Processing SPECIAL TOPICS CT IMAGES Hamid R. Rabiee Fall 2015 What is an image? 2 Are images only about visual concepts? We ve already seen that there are other kinds of image. In this lecture

More information

Shaft inspection using Phased-Array compared to other techniques

Shaft inspection using Phased-Array compared to other techniques Shaft inspection using Phased-Array compared to other techniques François LACHANCE 1, Philippe RIOUX 1 Jonathan TURCOTTE 2 and Dominic Giguère 2 Sonatest AP, Quebec City, Canada Contact e-mail : lachancef@sontest.com;

More information

Look Ahead to Get Ahead

Look Ahead to Get Ahead Microscopy from Carl Zeiss Archive 3D Deconvolution Z-stack 3D Deconvolution Look Ahead to Get Ahead Mark & Find Multichannel Timelapse Greater brilliance and resolution More convenient and precise than

More information

Ultrasound To Go. MySono U5

Ultrasound To Go. MySono U5 Ultrasound To Go MySono U5 Ultrasound To Go With the introduction of the MySono U5, Samsung Medison brings you a fully featured ultrasound imaging system to go. Delivering exceptional image quality and

More information

Phased-array applications for aircraft maintenance: fastener-hole inspection

Phased-array applications for aircraft maintenance: fastener-hole inspection Phased-array applications for aircraft maintenance: fastener-hole inspection Guillaume Neau 1, Emmanuel Guillorit 2, Luc Boyer 2 and Herve Tretout 2 1 BERCLI Phased Array Solutions, Berkeley, CA94703,

More information

802.11n in the Outdoor Environment

802.11n in the Outdoor Environment POSITION PAPER 802.11n in the Outdoor Environment How Motorola is transforming outdoor mesh networks to leverage full n advantages Municipalities and large enterprise customers are deploying mesh networks

More information

Towards an Estimation of Acoustic Impedance from Multiple Ultrasound Images

Towards an Estimation of Acoustic Impedance from Multiple Ultrasound Images Towards an Estimation of Acoustic Impedance from Multiple Ultrasound Images Christian Wachinger 1, Ramtin Shams 2, Nassir Navab 1 1 Computer Aided Medical Procedures (CAMP), Technische Universität München

More information

Object Identification in Ultrasound Scans

Object Identification in Ultrasound Scans Object Identification in Ultrasound Scans Wits University Dec 05, 2012 Roadmap Introduction to the problem Motivation Related Work Our approach Expected Results Introduction Nowadays, imaging devices like

More information

A THREE-DIMENSIONAL PHASED ARRAY ULTRASONIC TESTING TECHNIQUE

A THREE-DIMENSIONAL PHASED ARRAY ULTRASONIC TESTING TECHNIQUE A THREE-DIMENSIONAL PHASED ARRAY ULTRASONIC TESTING TECHNIQUE So KITAZAWA, Naoyuki KONO, Atsushi BABA and Yuji ADACHI HITACHI, Ltd., Japan Mitsuru ODAKURA HITACHI-GE Nuclear Energy, Ltd., Japan Introduction

More information

Recent advances in aerospace inspection with ultrasonic phased arrays

Recent advances in aerospace inspection with ultrasonic phased arrays Recent advances in aerospace inspection with ultrasonic phased arrays David Lines Chief Engineer, Diagnostic Sonar Ltd., UK AeroNDT SEMINAR, Aerospace Testing Expo2007 27 th -29 th March 2007, Munich Content

More information

Physics 210 Medical Physics Midterm Exam Fall 2012 October 12, 2012

Physics 210 Medical Physics Midterm Exam Fall 2012 October 12, 2012 Physics 210 Medical Physics Midterm Exam Fall 2012 October 12, 2012 Name Problem 1 /32 Problem 2 /32 Problem 3 /24 Total /88 I affirm that I have carried out my academic endeavors with full academic honesty.

More information

12X Zoom. Incredible 12X (0.58-7X) magnification for inspection of a wider range of parts.

12X Zoom. Incredible 12X (0.58-7X) magnification for inspection of a wider range of parts. Incredible 12X (0.58-7X) magnification for inspection of a wider range of parts. Telecentric attachment gives you the world s first parfocal telecentric zoom lens with field coverage up to 50 mm. Increased

More information

ultrasonic sensors new:

ultrasonic sensors new: ultrasonic sensors Highlights: ü Detection independent of target material, color, shape or surface ü Ready-to-use cylindrical sensors with integral connector ü Easy adjustment by either potentiometer or

More information

step into the future Ultrasound Diagnostic Imaging System

step into the future Ultrasound Diagnostic Imaging System step into the future Ultrasound Diagnostic Imaging System Moving into a new era for ultrasound diagnostics. With a proven track record in medical imaging, FUJIFILM has partnered with SonoSite, an innovator

More information

Refraction Corrected Transmission Ultrasound Computed Tomography for Application in Breast Imaging

Refraction Corrected Transmission Ultrasound Computed Tomography for Application in Breast Imaging Refraction Corrected Transmission Ultrasound Computed Tomography for Application in Breast Imaging Joint Research With Trond Varslot Marcel Jackowski Shengying Li and Klaus Mueller Ultrasound Detection

More information

The Concept of Sample Rate. Digitized amplitude and time

The Concept of Sample Rate. Digitized amplitude and time Data Acquisition Basics Data acquisition is the sampling of continuous real world information to generate data that can be manipulated by a computer. Acquired data can be displayed, analyzed, and stored

More information

Tomographic Reconstruction

Tomographic Reconstruction Tomographic Reconstruction 3D Image Processing Torsten Möller Reading Gonzales + Woods, Chapter 5.11 2 Overview Physics History Reconstruction basic idea Radon transform Fourier-Slice theorem (Parallel-beam)

More information

Magnetoresistive (MR) Head Technology

Magnetoresistive (MR) Head Technology Magnetoresistive (MR) Head Technology A Quantum White Paper Across the spectrum from network servers to personal computers and desktop workstations to notebook systems, the capacity demands placed on hard

More information

Beyond Performance and Value

Beyond Performance and Value Putting the back in ultrasound Beyond Performance and Value Esaote s new ultra-performance MyLab 9 exp ultrasound system is designed to support a full range of shared service diagnostic imaging environments.

More information

Automating the Rework Process: Technology Advancement Replaces Manual Method

Automating the Rework Process: Technology Advancement Replaces Manual Method Automating the Rework Process: Technology Advancement Replaces Manual Method Bert Kelley, Technical Specialist Orbotech, Inc. Billerica, MA Abstract Automated Optical Rework (AOR) is a new method of reworking

More information

AUTOMATED 4 AXIS ADAYfIVE SCANNING WITH THE DIGIBOTICS LASER DIGITIZER

AUTOMATED 4 AXIS ADAYfIVE SCANNING WITH THE DIGIBOTICS LASER DIGITIZER AUTOMATED 4 AXIS ADAYfIVE SCANNING WITH THE DIGIBOTICS LASER DIGITIZER INTRODUCTION The DIGIBOT 3D Laser Digitizer is a high performance 3D input device which combines laser ranging technology, personal

More information

Ultrasound To Go. The MySono U5 -

Ultrasound To Go. The MySono U5 - Ultrasound To Go The MySono U5 - Ultrasound To Go With the introduction of the MySono U5, MEDISON brings you a fully featured ultrasound imaging system to go. Delivering exceptional image quality and featuring

More information

KNOBOLOGY. Jamie Ternes, RVT William Beaumont Hospital Royal Oak, Michigan. From the Beginning

KNOBOLOGY. Jamie Ternes, RVT William Beaumont Hospital Royal Oak, Michigan. From the Beginning KNOBOLOGY Jamie Ternes, RVT William Beaumont Hospital Royal Oak, Michigan From the Beginning Power On/Off Patient information Presets Probe selection Scan 1 Modalities /Gray scale/2d Pulse Wave Doppler

More information

Fast Phase Aberration Correction In Ultrasound Imaging Using Fat Layer Model

Fast Phase Aberration Correction In Ultrasound Imaging Using Fat Layer Model Fast Phase Aberration Correction In Ultrasound Imaging Using Fat Layer Model Banazier A. Abrahim, Zeinab A. Mustafa and Yasser M. Kadah Biomedical Engineering Department, Cairo University, Giza, Egypt.

More information

How can the body make sound bend?

How can the body make sound bend? HPP Activity 54v2 How can the body make sound bend? Exploration To this point, you ve seen or heard waves bounce off of and pass through interfaces. But what happens if a sound wave strikes an interface

More information

Next Generation Gigabit WiFi ac

Next Generation Gigabit WiFi ac Next Generation Gigabit WiFi 802.11ac WHITE PAPER NEXT GENERATION GIGABIT WIFI - 802.11AC The first WiFi-enabled devices were introduced in 1997. For the first time, we were liberated from a physical Internet

More information

US 1.

US 1. US 1 Sample image: Normal pancreas seen on sonogram. Looking up from abdomen toward the head of the patient. The liver is in front of the pancreas. A vein draining the spleen is behind the pancreas http://www.radiologyinfo.org/photocat/photos.cfm?image=abdo-us-pancr.jpg&&subcategory=abdomen&&stop=9

More information

Outline. Introduction to photoacoustic computed tomography (PACT) Imaging models and iterative image reconstruction. Success with small animal imaging

Outline. Introduction to photoacoustic computed tomography (PACT) Imaging models and iterative image reconstruction. Success with small animal imaging Outline Advantages of PACT Photoacoustic Computed Tomography with Applications to Breast Imaging Mark A. Anastasio Department of Biomedical Engineering Washington University in St. Louis St. Louis, MO

More information

"The real world is nonlinear"... 7 main Advantages using Abaqus

The real world is nonlinear... 7 main Advantages using Abaqus "The real world is nonlinear"... 7 main Advantages using Abaqus FEA SERVICES LLC 6000 FAIRVIEW ROAD, SUITE 1200 CHARLOTTE, NC 28210 704.552.3841 WWW.FEASERVICES.NET AN OFFICIAL DASSAULT SYSTÈMES VALUE

More information

Computational Medical Imaging Analysis

Computational Medical Imaging Analysis Computational Medical Imaging Analysis Chapter 1: Introduction to Imaging Science Jun Zhang Laboratory for Computational Medical Imaging & Data Analysis Department of Computer Science University of Kentucky

More information

Recent Advances in Non-Invasive Thermometry Using Changes in Backscattered Ultrasound

Recent Advances in Non-Invasive Thermometry Using Changes in Backscattered Ultrasound Recent Advances in Non-Invasive Thermometry Using Changes in Backscattered Ultrasound R. Martin Arthur 1, Jason W. Trobaugh 1, William L. Straube 2 and Eduardo G. Moros 2 1 Electrical & Systems Engineering

More information

Efficient Signal Processing Algorithms for Optical Doppler Tomography Literature Survey

Efficient Signal Processing Algorithms for Optical Doppler Tomography Literature Survey Efficient Signal Processing Algorithms for Optical Doppler Tomography Literature Survey University of Texas at Austin Department of Electrical and Computer Engineering Milos Milosevic Wade Schwartzkopf

More information

Medical Images Analysis and Processing

Medical Images Analysis and Processing Medical Images Analysis and Processing - 25642 Emad Course Introduction Course Information: Type: Graduated Credits: 3 Prerequisites: Digital Image Processing Course Introduction Reference(s): Insight

More information

Simplicity, quality, and flexibility

Simplicity, quality, and flexibility Ultrasound Lumify Simplicity, quality, and flexibility Philips Lumify ultrasound system specifications Contents 1 Introduction 3 1.1 Applications 3 2 System overview 4 2.1 System architecture 4 2.2 Imaging

More information

Table of Contents. Chapter 1 Overview Chapter 2 Interface & Controls Interface MaxxAudio Views Preset System...

Table of Contents. Chapter 1 Overview Chapter 2 Interface & Controls Interface MaxxAudio Views Preset System... Table of Contents Chapter 1 Overview... 3 Chapter 2 Interface & Controls... 4 Interface... 4 MaxxAudio Views... 5 Preset System... 6 Headphones/External Speakers... 7 Controls... 8-2 - Chapter 1 Overview

More information

UNCOMPROMISING QUALITY

UNCOMPROMISING QUALITY ION CHAMBERS UNCOMPROMISING QUALITY Designed with over 30 years of scientific integrity for a broad range of dosimetry measurements in diverse radiation beams Farmer-type Chambers For absolute dosimetry

More information

Array Shape Tracking Using Active Sonar Reverberation

Array Shape Tracking Using Active Sonar Reverberation Lincoln Laboratory ASAP-2003 Worshop Array Shape Tracing Using Active Sonar Reverberation Vijay Varadarajan and Jeffrey Kroli Due University Department of Electrical and Computer Engineering Durham, NC

More information

Real-World LTE Performance for Public Safety

Real-World LTE Performance for Public Safety WHITE PAPER Real-World LTE Performance for Public Safety Relating Technical Capabilities to User Experience Executive Summary Government and public safety organizations are watching the fast pace of technological

More information

Front-line research in Ultrasound CFU research Part 2: Fast Vector Flow Imaging, Pressure Gradients, Super Resolution and Portable Scanners

Front-line research in Ultrasound CFU research Part 2: Fast Vector Flow Imaging, Pressure Gradients, Super Resolution and Portable Scanners Front-line research in Ultrasound CFU research Part 2: Fast Vector Flow Imaging, Pressure Gradients, Super Resolution and Portable Scanners Can measure 3-D flow fast with only 124 transducer elements?

More information

Adaptive Focusing Technology for the Inspection of Variable Geometry. Composite Material

Adaptive Focusing Technology for the Inspection of Variable Geometry. Composite Material More info about this article: http://www.ndt.net/?id=22711 Adaptive Focusing Technology for the Inspection of Variable Geometry Composite Material Etienne GRONDIN 1 1 Olympus Scientific Solutions Americas,

More information

FINDING THE TRUE EDGE IN CTA

FINDING THE TRUE EDGE IN CTA FINDING THE TRUE EDGE IN CTA by: John A. Rumberger, PhD, MD, FACC Your patient has chest pain. The Cardiac CT Angiography shows plaque in the LAD. You adjust the viewing window trying to evaluate the stenosis

More information

Fundamentals of CT imaging

Fundamentals of CT imaging SECTION 1 Fundamentals of CT imaging I History In the early 1970s Sir Godfrey Hounsfield s research produced the first clinically useful CT scans. Original scanners took approximately 6 minutes to perform

More information

3-D Compounding of B-Scan Ultrasound Images

3-D Compounding of B-Scan Ultrasound Images 3-D Compounding of B-Scan Ultrasound Images Jochen F. Krücker, Charles R. Meyer, Theresa A. Tuthill, Gerald L. LeCarpentier, J. Brian Fowlkes, Paul L. Carson University of Michigan, Dept. of Radiology,

More information

The promise of higher spectrum bands for 5G. Rasmus Hellberg PhD Senior Director, Technical Marketing Qualcomm Technologies, Inc.

The promise of higher spectrum bands for 5G. Rasmus Hellberg PhD Senior Director, Technical Marketing Qualcomm Technologies, Inc. The promise of higher spectrum bands for 5G Rasmus Hellberg PhD Senior Director, Technical Marketing Qualcomm Technologies, Inc. June 30, 2016 Our 5G vision: a unifying connectivity fabric Enhanced mobile

More information

Powerful sound to enhance your TV

Powerful sound to enhance your TV Home cinema sound Powerful sound to enhance your TV with integrated subwoofer Philips SoundStage speaker HTL5130B with WaveFlector technology Technology backgrounder Wave reflection for spatial effect

More information

3D Printed skull bone phantoms for experimental validation of simulated transcranial ultrasound propagation

3D Printed skull bone phantoms for experimental validation of simulated transcranial ultrasound propagation 1 3D Printed skull bone phantoms for experimental validation of simulated transcranial ultrasound propagation James Robertson, Elly Martin, Daniil Nikitichev, Bradley Treeby Biomedical Ultrasound Group

More information

Spiral CT. Protocol Optimization & Quality Assurance. Ge Wang, Ph.D. Department of Radiology University of Iowa Iowa City, Iowa 52242, USA

Spiral CT. Protocol Optimization & Quality Assurance. Ge Wang, Ph.D. Department of Radiology University of Iowa Iowa City, Iowa 52242, USA Spiral CT Protocol Optimization & Quality Assurance Ge Wang, Ph.D. Department of Radiology University of Iowa Iowa City, Iowa 52242, USA Spiral CT Protocol Optimization & Quality Assurance Protocol optimization

More information

Transform your bottom line: 5G Fixed Wireless Access

Transform your bottom line: 5G Fixed Wireless Access Transform your bottom line: 5G Fixed Wireless Access Transform Your Bottom Line: 5G Fixed Wireless Access 1 Seizing the opportunity of 5G with Fixed Wireless Access To get a sense of the future of broadband,

More information

Development and validation of a short-lag spatial coherence theory for photoacoustic imaging

Development and validation of a short-lag spatial coherence theory for photoacoustic imaging Development and validation of a short-lag spatial coherence theory for photoacoustic imaging Michelle T. Graham 1 and Muyinatu A. Lediju Bell 1,2 1 Department of Electrical and Computer Engineering, Johns

More information

TABLE OF CONTENTS PRODUCT DESCRIPTION CINCAM CCD TECHNICAL DATA SENSOR RESPONSE DIMENSIONS CINCAM CCD LARGE FORMAT TECHNICAL DATA SENSOR RESPONSE

TABLE OF CONTENTS PRODUCT DESCRIPTION CINCAM CCD TECHNICAL DATA SENSOR RESPONSE DIMENSIONS CINCAM CCD LARGE FORMAT TECHNICAL DATA SENSOR RESPONSE TABLE OF CONTENTS PRODUCT DESCRIPTION CINCAM CCD TECHNICAL DATA SENSOR RESPONSE DIMENSIONS CINCAM CCD LARGE FORMAT TECHNICAL DATA SENSOR RESPONSE DIMENSIONS CINCAM CMOS TECHNICAL DATA SENSOR RESPONSE DIMENSIONS

More information

High Resolution Phased Array Imaging using the Total Focusing Method

High Resolution Phased Array Imaging using the Total Focusing Method High Resolution Phased Array Imaging using the Total Focusing Method S. Kierspel, Wolfram A. Karl Deutsch, Helge Rast, Philippe Benoist 1, Venkat A 2 KARL DEUTSCH Pruef- und Messgeraetebau GmbH + Co KG

More information

83951c01.qxd:Layout 1 1/24/07 10:14 PM Page 1 PART. Technology Evolution COPYRIGHTED MATERIAL

83951c01.qxd:Layout 1 1/24/07 10:14 PM Page 1 PART. Technology Evolution COPYRIGHTED MATERIAL 83951c01.qxd:Layout 1 1/24/07 10:14 PM Page 1 PART Technology Evolution COPYRIGHTED MATERIAL I 83951c01.qxd:Layout 1 1/24/07 10:14 PM Page 2 83951c01.qxd:Layout 1 1/24/07 10:14 PM Page 3 CHAPTER 1 Blades

More information

Using Simulation to Understand Bottlenecks, Delay Accumulation, and Rail Network Flow

Using Simulation to Understand Bottlenecks, Delay Accumulation, and Rail Network Flow Using Simulation to Understand Bottlenecks, Delay Accumulation, and Rail Network Flow Michael K. Williams, PE, MBA Manager Industrial Engineering Norfolk Southern Corporation, 1200 Peachtree St., NE, Atlanta,

More information

Electromagnetic & Acoustic Simulation Technologies. ave Computation Technologies, Inc.

Electromagnetic & Acoustic Simulation Technologies. ave Computation Technologies, Inc. Electromagnetic & Acoustic Simulation Technologies ave Computation Technologies, Inc. Mission Wave Computation Technologies, Inc. (WCT) was founded in 2005 at the Research Triangle Area, North Carolina,

More information

Volumetric Deformable Models for Simulation of Laparoscopic Surgery

Volumetric Deformable Models for Simulation of Laparoscopic Surgery Volumetric Deformable Models for Simulation of Laparoscopic Surgery S. Cotin y, H. Delingette y, J.M. Clément z V. Tassetti z, J. Marescaux z, N. Ayache y y INRIA, Epidaure Project 2004, route des Lucioles,

More information

PHYSIOTHERAPY BTL-4000 SMART & PREMIUM

PHYSIOTHERAPY BTL-4000 SMART & PREMIUM PHYSIOTHERAPY BTL-4000 SMART & PREMIUM sales@btlnet.com www.btlnet.com All rights reserved. Although every care has been taken to provide accurate and up to date information, no responsibility can be accepted

More information

Nuclear Associates and

Nuclear Associates and Nuclear Associates 84-317 and 84-317-7000 Multipurpose Tissue/Cyst Ultrasound Phantoms Users Manual February 2005 Manual No. 84-317-1 Rev. 2 2004, 2005 Fluke Corporation, All rights reserved. Printed in

More information

A FLEXIBLE PHASED ARRAY TRANSDUCER FOR CONTACT EXAMINATION OF COMPONENTS WITH COMPLEX GEOMETRY

A FLEXIBLE PHASED ARRAY TRANSDUCER FOR CONTACT EXAMINATION OF COMPONENTS WITH COMPLEX GEOMETRY A FLEXIBLE PHASED ARRAY TRANSDUCER FOR CONTACT EXAMINATION OF COMPONENTS WITH COMPLEX GEOMETRY O. Casula 1, C. Poidevin 1, G. Cattiaux 2 and G. Fleury 3 1 CEA/LIST, Saclay, France; 2 IRSN/DES, Fontenay-aux-Roses,

More information

PREMIER DIAGNOSTIC ULTRASOUND. Diagnostic ultrasound. that delivers unparalleled. image resolution.

PREMIER DIAGNOSTIC ULTRASOUND. Diagnostic ultrasound. that delivers unparalleled. image resolution. PREMIER DIAGNOSTIC ULTRASOUND Diagnostic ultrasound that delivers unparalleled image resolution. High Resolution Goes Ultra THE NEW GENERATION EYE CUBED TM M A K E S I T P O S S I B L E T O EVALUATE OCULAR

More information

DEVELOPMENT AND VALIDATION OF A FULL MATRIX CAPTURE SOLUTION. Patrick Tremblay, Daniel Richard ZETEC, Canada

DEVELOPMENT AND VALIDATION OF A FULL MATRIX CAPTURE SOLUTION. Patrick Tremblay, Daniel Richard ZETEC, Canada DEVELOPMENT AND VALIDATION OF A FULL MATRIX CAPTURE SOLUTION Patrick Tremblay, Daniel Richard ZETEC, Canada ABSTRACT For the last 15 years, phased array has completely changed the face of ultrasonic non-destructive

More information

Innovative DSPLL and MultiSynth Clock Architecture Enables High-Density 10/40/100G Line Card Designs

Innovative DSPLL and MultiSynth Clock Architecture Enables High-Density 10/40/100G Line Card Designs Innovative and MultiSynth Clock Architecture Enables High-Density 10/40/100G Line Card Designs Introduction The insatiable demand for bandwidth to support applications such as video streaming and cloud

More information

GE Healthcare CLINICAL GALLERY. Discovery * MR750w 3.0T. This brochure is intended for European healthcare professionals.

GE Healthcare CLINICAL GALLERY. Discovery * MR750w 3.0T. This brochure is intended for European healthcare professionals. GE Healthcare CLINICAL GALLERY Discovery * MR750w 3.0T This brochure is intended for European healthcare professionals. NEURO PROPELLER delivers high resolution, motion insensitive imaging in all planes.

More information

The USD15 Family. The high-performance ultrasonic dialog flaw detectors with a difference - in use world-wide

The USD15 Family. The high-performance ultrasonic dialog flaw detectors with a difference - in use world-wide The USD15 Family The high-performance ultrasonic dialog flaw detectors with a difference - in use world-wide Our USD 15 ultrasonic flaw detectors for the quality and safety of your products. It s no secret

More information

Scanning Acoustic Microscopy For Metrology of 3D Interconnect Bonded Wafers

Scanning Acoustic Microscopy For Metrology of 3D Interconnect Bonded Wafers Scanning Acoustic Microscopy For Metrology of 3D Interconnect Bonded Wafers Jim McKeon, Ph.D. - Sonix, Director of Technology Sriram Gopalan, Ph.D. - Sonix, Technology Engineer 8700 Morrissette Drive 8700

More information

Hardware Displacement Mapping

Hardware Displacement Mapping Matrox's revolutionary new surface generation technology, (HDM), equates a giant leap in the pursuit of 3D realism. Matrox is the first to develop a hardware implementation of displacement mapping and

More information

COMPUTED RADIOGRAPHY. Mixed to. DX-M* - Computed Radiography from Agfa HealthCare. For Digital Mammography and General Radiography

COMPUTED RADIOGRAPHY. Mixed to. DX-M* - Computed Radiography from Agfa HealthCare. For Digital Mammography and General Radiography COMPUTED RADIOGRAPHY per Mixed to fection DX-M* - Computed Radiography from Agfa HealthCare For Digital Mammography and General Radiography Mammog Needle-based technology delivers quality images A CR solution

More information

UMASIS, an analysis and visualization tool for developing and optimizing ultrasonic inspection techniques

UMASIS, an analysis and visualization tool for developing and optimizing ultrasonic inspection techniques 17th World Conference on Nondestructive Testing, 25-28 Oct 2008, Shanghai, China UMASIS, an analysis and visualization tool for developing and optimizing ultrasonic inspection techniques Abstract Joost

More information

The Supreme 3D/4D Ultrasound. The Supreme 3D/4D Ultrasound. CT-V20-ICM

The Supreme 3D/4D Ultrasound. The Supreme 3D/4D Ultrasound.   CT-V20-ICM The Supreme 3D/4D Ultrasound The Supreme 3D/4D Ultrasound www.medison.com info@medison.com CT-V20-ICM-06.20.2008 The Supreme 3D/4D Ultrasound Since launching the first commercially available 3D ultrasound

More information

Deviceless respiratory motion correction in PET imaging exploring the potential of novel data driven strategies

Deviceless respiratory motion correction in PET imaging exploring the potential of novel data driven strategies g Deviceless respiratory motion correction in PET imaging exploring the potential of novel data driven strategies Presented by Adam Kesner, Ph.D., DABR Assistant Professor, Division of Radiological Sciences,

More information

Machine Learning for Medical Image Analysis. A. Criminisi

Machine Learning for Medical Image Analysis. A. Criminisi Machine Learning for Medical Image Analysis A. Criminisi Overview Introduction to machine learning Decision forests Applications in medical image analysis Anatomy localization in CT Scans Spine Detection

More information

Revolutionizing 2D measurement. Maximizing longevity. Challenging expectations. R2100 Multi-Ray LED Scanner

Revolutionizing 2D measurement. Maximizing longevity. Challenging expectations. R2100 Multi-Ray LED Scanner Revolutionizing 2D measurement. Maximizing longevity. Challenging expectations. R2100 Multi-Ray LED Scanner A Distance Ahead A Distance Ahead: Your Crucial Edge in the Market The new generation of distancebased

More information