fmri Image Preprocessing

Size: px
Start display at page:

Download "fmri Image Preprocessing"

Transcription

1 fmri Image Preprocessing Rick Hoge, Ph.D. Laboratoire de neuroimagerie vasculaire (LINeV) Centre de recherche de l institut universitaire de gériatrie de Montréal, Université de Montréal

2 Outline Motion correction Spatial filtering Distortion correction Physiological noise correction

3 Motion Correction serial realignment of all images to a target volume average over all volumes a single early or middle volume motion parameters can be used in subsequent temporal filtering

4 Image series with motion

5 Translations 2 1 AP Signal (au) 0 LR HF Time (s)

6 Rotations 2 1 pitch Signal (au) 0 roll yaw Time (s)

7 Realigned Series

8 MRM 31: (1994)

9 Stimulus-correlated motion

10 Artifactual activation

11 fmri Bite Bar Moana-Filho et al. BMC Neuroscience 2010

12 Software Support all major fmri software packages provide motion correction FSL SPM AFNI etc...

13 Spatial Filtering random noise in fmri data has a fairly high amplitude, comparable to functional changes we seek to detect averaging adjacent voxels can help increase the signal-to-noise ratio typically a 3D Gaussian smoothing kernel with width of around 5-6 mm is applied

14 Noise in fmri data 2 mm in-plane resolution

15 Dependence of SNR on spatial resolution 4 mm in-plane resolution

16 2 mm

17 4 mm

18 Noise drives residual error in GLM Signal (au) Time (s)

19 Signal (au) mm Signal (au) mm

20 NeuroImage 32 (2006) Effect of spatial smoothing on physiological noise in high-resolution fmri Christina Triantafyllou, Richard D. Hoge, and Lawrence L. Wald* MGH/MIT/HMS A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Dept. of Radiology, Mailcode 2301, Bldg. 149, 13th Street, Charlestown, MA 02129, USA

21 Image noise vs. temporal noise Signal (au) Time (s) Image Temporal

22 Image SNR and voxel volume 1.5 Tesla 3 Tesla 7 Tesla

23 Temporal SNR and voxel volume 1.5 Tesla 3 Tesla 7 Tesla

24 Temporal Filtering typically carried out as part of statistical modelling low frequency drift residual motion effects physiological noise

25 Temporal filtering example response terms motion terms drift terms

26 Physiological Noise motion cardiac pulsation respiratory movement

27

28 Image-Based Method for Retrospective Correction of Physiological Motion Effects in fmri: RETROICOR Gary H. Glover, 1 * Tie-Qiang Li, 1 and David Ress 2 Magnetic Resonance in Medicine 44: (2000)

29 Physiological noise in short-tr acquisition TR = 250 ms

30 Physiological noise in long-tr acquisition TR = 1 s

31 TR = 1 s

32 Reduction of residual error through physiological noise correction Raw K-Space correction Image-Space correction

33 NeuroImage 39 (2008) Physiological noise modelling for spinal functional magnetic resonance imaging studies Jonathan C.W. Brooks, a, Christian F. Beckmann, e Karla L. Miller, b Richard G. Wise, c Carlo A. Porro, d Irene Tracey, a,b and Mark Jenkinson b

34 TR = 250 ms

35 Image distortion and dropout Microscopic: deoxygenated hemoglobin Macroscopic air-filled sinuses

36

37 Field Mapping image magnetization pattern at different echo times allows calculation of field offset based on phase accrual per unit time can be used to correct for distortion, but not dropout

38 MRI Data is Complex Magnitude (used) M xy Phase (discarded) = tan 1 M y M x

39 Phase image - short TE

40 Phase image - long TE

41 Distortion vs. Dropout distortion is associated with large echospacing values in EPI readouts dropout is associated with large voxel dimensions the following slides illustrate that they are independent processes (even though both are caused by field inhomogeneities)

42 EPI over MPRAGE 2 mm

43 3 mm

44 4 mm

45 5 mm

46 EPI over MPRAGE 2 mm

47 3 mm

48 4 mm

49 5 mm

50 EPI over MPRAGE 2 mm

51 3 mm

52 4 mm

53 5 mm

54 Distortion Correction use of parallel imaging techniques to minimize EPI readout duration always acquire a field map only use 128 matrix EPI scans if you really need them

55 Avoiding Dropout simplest way to minimize dropout is by reducing voxel dimensions will require more smoothing to recover SNR other advanced techniques such as Z-shim may be used always check your EPI coverage by overlaying raw EPI scans on an MPRAGE

56 Typical Order of Operations motion-correction spatial smoothing linear modeling temporal filtering of drift and and residual motion as nuisance regressors distortion correction applied to effect-size estimates etc. prior to group GLM

57 Questions?

SPM8 for Basic and Clinical Investigators. Preprocessing. fmri Preprocessing

SPM8 for Basic and Clinical Investigators. Preprocessing. fmri Preprocessing SPM8 for Basic and Clinical Investigators Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization Spatial

More information

Functional MRI in Clinical Research and Practice Preprocessing

Functional MRI in Clinical Research and Practice Preprocessing Functional MRI in Clinical Research and Practice Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization

More information

Basic fmri Design and Analysis. Preprocessing

Basic fmri Design and Analysis. Preprocessing Basic fmri Design and Analysis Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization Spatial filtering

More information

SPM8 for Basic and Clinical Investigators. Preprocessing

SPM8 for Basic and Clinical Investigators. Preprocessing SPM8 for Basic and Clinical Investigators Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization Spatial

More information

EPI Data Are Acquired Serially. EPI Data Are Acquired Serially 10/23/2011. Functional Connectivity Preprocessing. fmri Preprocessing

EPI Data Are Acquired Serially. EPI Data Are Acquired Serially 10/23/2011. Functional Connectivity Preprocessing. fmri Preprocessing Functional Connectivity Preprocessing Geometric distortion Head motion Geometric distortion Head motion EPI Data Are Acquired Serially EPI Data Are Acquired Serially descending 1 EPI Data Are Acquired

More information

Journal of Articles in Support of The Null Hypothesis

Journal of Articles in Support of The Null Hypothesis Data Preprocessing Martin M. Monti, PhD UCLA Psychology NITP 2016 Typical (task-based) fmri analysis sequence Image Pre-processing Single Subject Analysis Group Analysis Journal of Articles in Support

More information

fmri pre-processing Juergen Dukart

fmri pre-processing Juergen Dukart fmri pre-processing Juergen Dukart Outline Why do we need pre-processing? fmri pre-processing Slice time correction Realignment Unwarping Coregistration Spatial normalisation Smoothing Overview fmri time-series

More information

Introduction to fmri. Pre-processing

Introduction to fmri. Pre-processing Introduction to fmri Pre-processing Tibor Auer Department of Psychology Research Fellow in MRI Data Types Anatomical data: T 1 -weighted, 3D, 1/subject or session - (ME)MPRAGE/FLASH sequence, undistorted

More information

White Pixel Artifact. Caused by a noise spike during acquisition Spike in K-space <--> sinusoid in image space

White Pixel Artifact. Caused by a noise spike during acquisition Spike in K-space <--> sinusoid in image space White Pixel Artifact Caused by a noise spike during acquisition Spike in K-space sinusoid in image space Susceptibility Artifacts Off-resonance artifacts caused by adjacent regions with different

More information

Functional MRI data preprocessing. Cyril Pernet, PhD

Functional MRI data preprocessing. Cyril Pernet, PhD Functional MRI data preprocessing Cyril Pernet, PhD Data have been acquired, what s s next? time No matter the design, multiple volumes (made from multiple slices) have been acquired in time. Before getting

More information

Fmri Spatial Processing

Fmri Spatial Processing Educational Course: Fmri Spatial Processing Ray Razlighi Jun. 8, 2014 Spatial Processing Spatial Re-alignment Geometric distortion correction Spatial Normalization Smoothing Why, When, How, Which Why is

More information

This Time. fmri Data analysis

This Time. fmri Data analysis This Time Reslice example Spatial Normalization Noise in fmri Methods for estimating and correcting for physiologic noise SPM Example Spatial Normalization: Remind ourselves what a typical functional image

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006 MIT OpenCourseWare http://ocw.mit.edu HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Diffusion MRI Acquisition. Karla Miller FMRIB Centre, University of Oxford

Diffusion MRI Acquisition. Karla Miller FMRIB Centre, University of Oxford Diffusion MRI Acquisition Karla Miller FMRIB Centre, University of Oxford karla@fmrib.ox.ac.uk Diffusion Imaging How is diffusion weighting achieved? How is the image acquired? What are the limitations,

More information

FSL Pre-Processing Pipeline

FSL Pre-Processing Pipeline The Art and Pitfalls of fmri Preprocessing FSL Pre-Processing Pipeline Mark Jenkinson FMRIB Centre, University of Oxford FSL Pre-Processing Pipeline Standard pre-processing: Task fmri Resting-state fmri

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 MIT OpenCourseWare http://ocw.mit.edu HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Artifact detection and repair in fmri

Artifact detection and repair in fmri Artifact detection and repair in fmri Paul K. Mazaika, Ph.D. Center for Interdisciplinary Brain Sciences Research (CIBSR) Division of Interdisciplinary Behavioral Sciences Stanford University School of

More information

Role of Parallel Imaging in High Field Functional MRI

Role of Parallel Imaging in High Field Functional MRI Role of Parallel Imaging in High Field Functional MRI Douglas C. Noll & Bradley P. Sutton Department of Biomedical Engineering, University of Michigan Supported by NIH Grant DA15410 & The Whitaker Foundation

More information

FMRI Pre-Processing and Model- Based Statistics

FMRI Pre-Processing and Model- Based Statistics FMRI Pre-Processing and Model- Based Statistics Brief intro to FMRI experiments and analysis FMRI pre-stats image processing Simple Single-Subject Statistics Multi-Level FMRI Analysis Advanced FMRI Analysis

More information

Analysis of fmri data within Brainvisa Example with the Saccades database

Analysis of fmri data within Brainvisa Example with the Saccades database Analysis of fmri data within Brainvisa Example with the Saccades database 18/11/2009 Note : All the sentences in italic correspond to informations relative to the specific dataset under study TP participants

More information

Introduction to Neuroimaging Janaina Mourao-Miranda

Introduction to Neuroimaging Janaina Mourao-Miranda Introduction to Neuroimaging Janaina Mourao-Miranda Neuroimaging techniques have changed the way neuroscientists address questions about functional anatomy, especially in relation to behavior and clinical

More information

FSL Pre-Processing Pipeline

FSL Pre-Processing Pipeline The Art and Pitfalls of fmri Preprocessing FSL Pre-Processing Pipeline Mark Jenkinson FMRIB Centre, University of Oxford FSL Pre-Processing Pipeline Standard pre-processing: Task fmri Resting-state fmri

More information

Basic Introduction to Data Analysis. Block Design Demonstration. Robert Savoy

Basic Introduction to Data Analysis. Block Design Demonstration. Robert Savoy Basic Introduction to Data Analysis Block Design Demonstration Robert Savoy Sample Block Design Experiment Demonstration Use of Visual and Motor Task Separability of Responses Combined Visual and Motor

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006 MIT OpenCourseWare http://ocw.mit.edu HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

2. Creating Field Maps Using the Field Map GUI (Version 2.0) in SPM5

2. Creating Field Maps Using the Field Map GUI (Version 2.0) in SPM5 1. Introduction This manual describes how to use the Field Map Toolbox Version 2.0 for creating unwrapped field maps that can be used to do geometric distortion correction of EPI images in SPM5. 1. 1.

More information

Cocozza S., et al. : ALTERATIONS OF FUNCTIONAL CONNECTIVITY OF THE MOTOR CORTEX IN FABRY'S DISEASE: AN RS-FMRI STUDY

Cocozza S., et al. : ALTERATIONS OF FUNCTIONAL CONNECTIVITY OF THE MOTOR CORTEX IN FABRY'S DISEASE: AN RS-FMRI STUDY ALTERATIONS OF FUNCTIONAL CONNECTIVITY OF THE MOTOR CORTEX IN FABRY'S DISEASE: AN RS-FMRI STUDY SUPPLEMENTARY MATERIALS Sirio Cocozza, MD 1*, Antonio Pisani, MD, PhD 2, Gaia Olivo, MD 1, Francesco Saccà,

More information

Statistical Analysis of Neuroimaging Data. Phebe Kemmer BIOS 516 Sept 24, 2015

Statistical Analysis of Neuroimaging Data. Phebe Kemmer BIOS 516 Sept 24, 2015 Statistical Analysis of Neuroimaging Data Phebe Kemmer BIOS 516 Sept 24, 2015 Review from last time Structural Imaging modalities MRI, CAT, DTI (diffusion tensor imaging) Functional Imaging modalities

More information

Motion Artifacts and Suppression in MRI At a Glance

Motion Artifacts and Suppression in MRI At a Glance Motion Artifacts and Suppression in MRI At a Glance Xiaodong Zhong, PhD MR R&D Collaborations Siemens Healthcare MRI Motion Artifacts and Suppression At a Glance Outline Background Physics Common Motion

More information

MRI Physics II: Gradients, Imaging

MRI Physics II: Gradients, Imaging MRI Physics II: Gradients, Imaging Douglas C., Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor Magnetic Fields in MRI B 0 The main magnetic field. Always on (0.5-7 T) Magnetizes

More information

The organization of the human cerebral cortex estimated by intrinsic functional connectivity

The organization of the human cerebral cortex estimated by intrinsic functional connectivity 1 The organization of the human cerebral cortex estimated by intrinsic functional connectivity Journal: Journal of Neurophysiology Author: B. T. Thomas Yeo, et al Link: https://www.ncbi.nlm.nih.gov/pubmed/21653723

More information

During the past decade, many papers have been published

During the past decade, many papers have been published DIGITAL STOCK BY STEPHEN C. STROTHER Evaluating fmri Preprocessing Pipelines Review of Preprocessing Steps for BOLD fmri FUNCTIONAL MAGNETIC RESONANCE IMAGING During the past decade, many papers have been

More information

Abbie M. Diak, PhD Loyola University Medical Center Dept. of Radiation Oncology

Abbie M. Diak, PhD Loyola University Medical Center Dept. of Radiation Oncology Abbie M. Diak, PhD Loyola University Medical Center Dept. of Radiation Oncology Outline High Spectral and Spatial Resolution MR Imaging (HiSS) What it is How to do it Ways to use it HiSS for Radiation

More information

fmri Preprocessing & Noise Modeling

fmri Preprocessing & Noise Modeling Translational Neuromodeling Unit fmri Preprocessing & Noise Modeling Lars Kasper September 25 th / October 17 th, 2015 MR-Technology Group & Translational Neuromodeling Unit An SPM Tutorial Institute for

More information

Tutorial BOLD Module

Tutorial BOLD Module m a k i n g f u n c t i o n a l M R I e a s y n o r d i c B r a i n E x Tutorial BOLD Module Please note that this tutorial is for the latest released nordicbrainex. If you are using an older version please

More information

Philips MRI Protocol Dump Created on Comment Software Stream

Philips MRI Protocol Dump Created on Comment Software Stream Page 1 of 5 Philips MRI Protocol Dump Created on 2/17/2011 4:11:01 PM Comment Created by ExamCard_to_XML with inputs: "J:\ADNI GO - ADNI 2 Phantom5.ExamCard" on system (BU SCHOOL OF MEDICINE :: 192.168.71.10)

More information

Correction of Partial Volume Effects in Arterial Spin Labeling MRI

Correction of Partial Volume Effects in Arterial Spin Labeling MRI Correction of Partial Volume Effects in Arterial Spin Labeling MRI By: Tracy Ssali Supervisors: Dr. Keith St. Lawrence and Udunna Anazodo Medical Biophysics 3970Z Six Week Project April 13 th 2012 Introduction

More information

Sparse sampling in MRI: From basic theory to clinical application. R. Marc Lebel, PhD Department of Electrical Engineering Department of Radiology

Sparse sampling in MRI: From basic theory to clinical application. R. Marc Lebel, PhD Department of Electrical Engineering Department of Radiology Sparse sampling in MRI: From basic theory to clinical application R. Marc Lebel, PhD Department of Electrical Engineering Department of Radiology Objective Provide an intuitive overview of compressed sensing

More information

Head motion in diffusion MRI

Head motion in diffusion MRI Head motion in diffusion MRI Anastasia Yendiki HMS/MGH/MIT Athinoula A. Martinos Center for Biomedical Imaging 11/06/13 Head motion in diffusion MRI 0/33 Diffusion contrast Basic principle of diffusion

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 BOLD and CBV functional maps showing EPI versus line-scanning FLASH fmri. A. Colored BOLD and CBV functional maps are shown in the highlighted window (green frame) of the raw EPI

More information

Function-Structure Integration in FreeSurfer

Function-Structure Integration in FreeSurfer Function-Structure Integration in FreeSurfer Outline Function-Structure Integration Function-Structure Registration in FreeSurfer fmri Analysis Preprocessing First-Level Analysis Higher-Level (Group) Analysis

More information

Quality Assurance SPM8. Susan Whitfield-Gabrieli MIT

Quality Assurance SPM8. Susan Whitfield-Gabrieli MIT Quality Assurance SPM8 Susan Whitfield-Gabrieli MIT Topics in fmri What makes for a successful fmri experiment? Basic cognitive neuroscience Experimental design Analysis Comparative cognitive neuroscience

More information

CS 229 Final Project Report Learning to Decode Cognitive States of Rat using Functional Magnetic Resonance Imaging Time Series

CS 229 Final Project Report Learning to Decode Cognitive States of Rat using Functional Magnetic Resonance Imaging Time Series CS 229 Final Project Report Learning to Decode Cognitive States of Rat using Functional Magnetic Resonance Imaging Time Series Jingyuan Chen //Department of Electrical Engineering, cjy2010@stanford.edu//

More information

I.e. Sex differences in child appetitive traits and Eating in the Absence of Hunger:

I.e. Sex differences in child appetitive traits and Eating in the Absence of Hunger: Supplementary Materials I. Evidence of sex differences on eating behavior in children I.e. Sex differences in child appetitive traits and Eating in the Absence of Hunger: Table 2. Parent Report for Child

More information

Supplementary Data. in residuals voxel time-series exhibiting high variance, for example, large sinuses.

Supplementary Data. in residuals voxel time-series exhibiting high variance, for example, large sinuses. Supplementary Data Supplementary Materials and Methods Step-by-step description of principal component-orthogonalization technique Below is a step-by-step description of the principal component (PC)-orthogonalization

More information

Noise Models and Correction for fmri

Noise Models and Correction for fmri Translational Neuromodeling Unit Noise Models and Correction for fmri Lars Kasper Nov 21 th, 2017 - an Introduction to the PhysIO Toolbox MR-Technology and Methods Group & Translational Neuromodeling Unit

More information

Functional MRI. Jerry Allison, Ph. D. Medical College of Georgia

Functional MRI. Jerry Allison, Ph. D. Medical College of Georgia Functional MRI Jerry Allison, Ph. D. Medical College of Georgia BOLD Imaging Technique Blood Oxygen Level Dependent contrast can be used to map brain function Right Hand Motor Task Outline fmri BOLD Contrast

More information

INDEPENDENT COMPONENT ANALYSIS APPLIED TO fmri DATA: A GENERATIVE MODEL FOR VALIDATING RESULTS

INDEPENDENT COMPONENT ANALYSIS APPLIED TO fmri DATA: A GENERATIVE MODEL FOR VALIDATING RESULTS INDEPENDENT COMPONENT ANALYSIS APPLIED TO fmri DATA: A GENERATIVE MODEL FOR VALIDATING RESULTS V. Calhoun 1,2, T. Adali, 2 and G. Pearlson 1 1 Johns Hopkins University Division of Psychiatric Neuro-Imaging,

More information

fmri Analysis Sackler Ins2tute 2011

fmri Analysis Sackler Ins2tute 2011 fmri Analysis Sackler Ins2tute 2011 How do we get from this to this? How do we get from this to this? And what are those colored blobs we re all trying to see, anyway? Raw fmri data straight from the scanner

More information

Human Connectom Project : The minimal processing Pipeline

Human Connectom Project : The minimal processing Pipeline Human Connectom Project : The minimal processing Pipeline Human Connectom Project : The minimal processing Pipeline Van Essen DC, The WU-Minn Human Connectome Project: an overview. Neuroimage. 2013 Marcus

More information

Slide 1. Technical Aspects of Quality Control in Magnetic Resonance Imaging. Slide 2. Annual Compliance Testing. of MRI Systems.

Slide 1. Technical Aspects of Quality Control in Magnetic Resonance Imaging. Slide 2. Annual Compliance Testing. of MRI Systems. Slide 1 Technical Aspects of Quality Control in Magnetic Resonance Imaging Slide 2 Compliance Testing of MRI Systems, Ph.D. Department of Radiology Henry Ford Hospital, Detroit, MI Slide 3 Compliance Testing

More information

Last Time. This Time. Thru-plane dephasing: worse at long TE. Local susceptibility gradients: thru-plane dephasing

Last Time. This Time. Thru-plane dephasing: worse at long TE. Local susceptibility gradients: thru-plane dephasing Motion Correction Last Time Mutual Information Optimiation Decoupling Translation & Rotation Interpolation SPM Example (Least Squares & MI) A Simple Derivation This Time Reslice example SPM Example : Remind

More information

Fast Imaging Trajectories: Non-Cartesian Sampling (1)

Fast Imaging Trajectories: Non-Cartesian Sampling (1) Fast Imaging Trajectories: Non-Cartesian Sampling (1) M229 Advanced Topics in MRI Holden H. Wu, Ph.D. 2018.05.03 Department of Radiological Sciences David Geffen School of Medicine at UCLA Class Business

More information

Preprocessing of fmri data

Preprocessing of fmri data Preprocessing of fmri data Pierre Bellec CRIUGM, DIRO, UdM Flowchart of the NIAK fmri preprocessing pipeline fmri run 1 fmri run N individual datasets CIVET NUC, segmentation, spatial normalization slice

More information

AFNI Preprocessing: Outline, Recommendations, and New(ish) Stuff. Robert W Cox SSCC / NIMH & NINDS / NIH / DHHS / USA / EARTH

AFNI Preprocessing: Outline, Recommendations, and New(ish) Stuff. Robert W Cox SSCC / NIMH & NINDS / NIH / DHHS / USA / EARTH AFNI Preprocessing: Outline, Recommendations, and New(ish) Stuff Robert W Cox SSCC / NIMH & NINDS / NIH / DHHS / USA / EARTH HBM 2016 As a work of a US Government official, this presentation is not copyrighted

More information

A Model-Independent, Multi-Image Approach to MR Inhomogeneity Correction

A Model-Independent, Multi-Image Approach to MR Inhomogeneity Correction Tina Memo No. 2007-003 Published in Proc. MIUA 2007 A Model-Independent, Multi-Image Approach to MR Inhomogeneity Correction P. A. Bromiley and N.A. Thacker Last updated 13 / 4 / 2007 Imaging Science and

More information

Noise and Artifacts in FMRI

Noise and Artifacts in FMRI Noise and Artifacts in FMRI Instructor: Luis Hernandez-Garcia, Ph.D. Associate Research Professor FMRI Laboratory, Biomedical Engineering FMRI analysis - synopsis of what you ll do next week 1. Formulate

More information

GLM for fmri data analysis Lab Exercise 1

GLM for fmri data analysis Lab Exercise 1 GLM for fmri data analysis Lab Exercise 1 March 15, 2013 Medical Image Processing Lab Medical Image Processing Lab GLM for fmri data analysis Outline 1 Getting Started 2 AUDIO 1 st level Preprocessing

More information

Module 4. K-Space Symmetry. Review. K-Space Review. K-Space Symmetry. Partial or Fractional Echo. Half or Partial Fourier HASTE

Module 4. K-Space Symmetry. Review. K-Space Review. K-Space Symmetry. Partial or Fractional Echo. Half or Partial Fourier HASTE MRES 7005 - Fast Imaging Techniques Module 4 K-Space Symmetry Review K-Space Review K-Space Symmetry Partial or Fractional Echo Half or Partial Fourier HASTE Conditions for successful reconstruction Interpolation

More information

PHYSIO TOOLBOX QUICKSTART MANUAL

PHYSIO TOOLBOX QUICKSTART MANUAL PHYSIO TOOLBOX QUICKSTART MANUAL Author: Lars Kasper, Institute for Biomedical Engineering, University of Zurich and ETH Zurich kasper@biomed.ee.ethz.ch Development: 2008-2014 Last Change: May 3 rd, 2014

More information

Multivariate pattern classification

Multivariate pattern classification Multivariate pattern classification Thomas Wolbers Space & Ageing Laboratory (www.sal.mvm.ed.ac.uk) Centre for Cognitive and Neural Systems & Centre for Cognitive Ageing and Cognitive Epidemiology Outline

More information

Sources of Distortion in Functional MRI Data

Sources of Distortion in Functional MRI Data Human Brain Mapping 8:80 85(1999) Sources of Distortion in Functional MRI Data Peter Jezzard* and Stuart Clare FMRIB Centre, Department of Clinical Neurology, University of Oxford, Oxford, UK Abstract:

More information

Multivariate Pattern Classification. Thomas Wolbers Space and Aging Laboratory Centre for Cognitive and Neural Systems

Multivariate Pattern Classification. Thomas Wolbers Space and Aging Laboratory Centre for Cognitive and Neural Systems Multivariate Pattern Classification Thomas Wolbers Space and Aging Laboratory Centre for Cognitive and Neural Systems Outline WHY PATTERN CLASSIFICATION? PROCESSING STREAM PREPROCESSING / FEATURE REDUCTION

More information

Dynamic Magnetic Resonance Inverse Imaging of Human Brain Function

Dynamic Magnetic Resonance Inverse Imaging of Human Brain Function Magnetic Resonance in Medicine 56:787 802 (2006) Dynamic Magnetic Resonance Inverse Imaging of Human Brain Function Fa-Hsuan Lin, 1,2 * Lawrence L. Wald, 1,2 Seppo P. Ahlfors, 1,2 Matti S. Hämäläinen,

More information

Acquisition Methods for fmri at 7 Tesla

Acquisition Methods for fmri at 7 Tesla Acquisition Methods for fmri at 7 Tesla Peter J. Koopmans, Nuffield department for clinical neurosciences, University of Oxford, UK fmri at 7 Tesla is mostly used in the context of high spatial resolution

More information

Data pre-processing framework in SPM. Bogdan Draganski

Data pre-processing framework in SPM. Bogdan Draganski Data pre-processing fraework in SPM Bogdan Draganski Outline Why do we need pre-processing? Overview Structural MRI pre-processing fmri pre-processing Why do we need pre-processing? What do we want? Reason

More information

MRI Hot Topics Motion Correction for MR Imaging. medical

MRI Hot Topics Motion Correction for MR Imaging. medical MRI Hot Topics Motion Correction for MR Imaging s medical Motion Correction for MR Imaging Kyle A. Salem, PhD Motion Artifacts in a Clinical Setting Patient motion is probably the most common cause of

More information

NIH Public Access Author Manuscript Neuroimage. Author manuscript; available in PMC 2010 March 5.

NIH Public Access Author Manuscript Neuroimage. Author manuscript; available in PMC 2010 March 5. NIH Public Access Author Manuscript Published in final edited form as: Neuroimage. 2008 August 15; 42(2): 582 590. doi:10.1016/j.neuroimage.2008.05.019. Integration of motion correction and physiological

More information

Serial Correlations in Single-Subject fmri with Sub-Second TR

Serial Correlations in Single-Subject fmri with Sub-Second TR Serial Correlations in Single-Subject fmri with Sub-Second TR Saskia Bollmann 1, Alexander M. Puckett 2, Ross Cunnington 2,3, Markus Barth 1 1Centre for Advanced Imaging, The University of Queensland,

More information

EMPIRICALLY INVESTIGATING THE STATISTICAL VALIDITY OF SPM, FSL AND AFNI FOR SINGLE SUBJECT FMRI ANALYSIS

EMPIRICALLY INVESTIGATING THE STATISTICAL VALIDITY OF SPM, FSL AND AFNI FOR SINGLE SUBJECT FMRI ANALYSIS EMPIRICALLY INVESTIGATING THE STATISTICAL VALIDITY OF SPM, FSL AND AFNI FOR SINGLE SUBJECT FMRI ANALYSIS Anders Eklund a,b,c, Thomas Nichols d, Mats Andersson a,c, Hans Knutsson a,c a Department of Biomedical

More information

Locating Motion Artifacts in Parametric fmri Analysis

Locating Motion Artifacts in Parametric fmri Analysis Tina Memo No. 200-002 Presented at MICCAI 999 Locating Motion Artifacts in Parametric fmri Analysis A.J.Lacey, N.A.Thacker, E. Burton, and A.Jackson Last updated 2 / 02 / 2002 Imaging Science and Biomedical

More information

Computational Neuroanatomy

Computational Neuroanatomy Computational Neuroanatomy John Ashburner john@fil.ion.ucl.ac.uk Smoothing Motion Correction Between Modality Co-registration Spatial Normalisation Segmentation Morphometry Overview fmri time-series kernel

More information

SPM Introduction. SPM : Overview. SPM: Preprocessing SPM! SPM: Preprocessing. Scott Peltier. FMRI Laboratory University of Michigan

SPM Introduction. SPM : Overview. SPM: Preprocessing SPM! SPM: Preprocessing. Scott Peltier. FMRI Laboratory University of Michigan SPM Introduction Scott Peltier FMRI Laboratory University of Michigan! Slides adapted from T. Nichols SPM! SPM : Overview Library of MATLAB and C functions Graphical user interface Four main components:

More information

The simulator can be applied in a number of diverse applications which span both

The simulator can be applied in a number of diverse applications which span both Chapter 6 Simulator applications The simulator can be applied in a number of diverse applications which span both MRI and FMRI fields These applications include the simulation and removal of various imaging

More information

SPM Introduction SPM! Scott Peltier. FMRI Laboratory University of Michigan. Software to perform computation, manipulation and display of imaging data

SPM Introduction SPM! Scott Peltier. FMRI Laboratory University of Michigan. Software to perform computation, manipulation and display of imaging data SPM Introduction Scott Peltier FMRI Laboratory University of Michigan Slides adapted from T. Nichols SPM! Software to perform computation, manipulation and display of imaging data 1 1 SPM : Overview Library

More information

SIEMENS MAGNETOM Verio syngo MR B17

SIEMENS MAGNETOM Verio syngo MR B17 \\USER\Dr. Behrmann\routine\Ilan\ep2d_bold_PMU_resting TA: 8:06 PAT: Voxel size: 3.03.03.0 mm Rel. SNR: 1.00 USER: ep2d_bold_pmu Properties Special sat. Prio Recon System Before measurement Body After

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 MIT OpenCourseWare http://ocw.mit.edu HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

8/11/2009. Common Areas of Motion Problem. Motion Compensation Techniques and Applications. Type of Motion. What s your problem

8/11/2009. Common Areas of Motion Problem. Motion Compensation Techniques and Applications. Type of Motion. What s your problem Common Areas of Motion Problem Motion Compensation Techniques and Applications Abdominal and cardiac imaging. Uncooperative patient, such as pediatric. Dynamic imaging and time series. Chen Lin, PhD Indiana

More information

Basic principles of MR image analysis. Basic principles of MR image analysis. Basic principles of MR image analysis

Basic principles of MR image analysis. Basic principles of MR image analysis. Basic principles of MR image analysis Basic principles of MR image analysis Basic principles of MR image analysis Julien Milles Leiden University Medical Center Terminology of fmri Brain extraction Registration Linear registration Non-linear

More information

Pre-processing of ASL data T CT

Pre-processing of ASL data T CT Wed October 2, 2013 Image Processing Pre-processing: motion correction, denoising, outlier detection Alessandra Bertoldo Pre-processing of ASL data T CT C T C Single TI ASL T T T T C CCC average Pre-processing

More information

Playing with data from lab

Playing with data from lab Playing with data from lab Getting data off the scanner From the Patient Browser, select the folder for the study you want (or within that study, the set of images you want), and then from the Transfer

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 MIT OpenCourseWare http://ocw.mit.edu HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

A Spatio-temporal Denoising Approach based on Total Variation Regularization for Arterial Spin Labeling

A Spatio-temporal Denoising Approach based on Total Variation Regularization for Arterial Spin Labeling A Spatio-temporal Denoising Approach based on Total Variation Regularization for Arterial Spin Labeling Cagdas Ulas 1,2, Stephan Kaczmarz 3, Christine Preibisch 3, Jonathan I Sperl 2, Marion I Menzel 2,

More information

Motion Correction in fmri by Mapping Slice-to-Volume with Concurrent Field-Inhomogeneity Correction

Motion Correction in fmri by Mapping Slice-to-Volume with Concurrent Field-Inhomogeneity Correction Motion Correction in fmri by Mapping Slice-to-Volume with Concurrent Field-Inhomogeneity Correction Desmond T.B. Yeo 1,2, Jeffery A. Fessler 2, and Boklye Kim 1 1 Department of Radiology, University of

More information

Parallel Magnetic Resonance Imaging (pmri): How Does it Work, and What is it Good For?

Parallel Magnetic Resonance Imaging (pmri): How Does it Work, and What is it Good For? Parallel Magnetic Resonance Imaging (pmri): How Does it Work, and What is it Good For? Nathan Yanasak, Ph.D. Chair, AAPM TG118 Department of Radiology Georgia Regents University Overview Phased-array coils

More information

Marquette University Iain P. Bruce Marquette University, M. Muge Karaman Marquette University

Marquette University Iain P. Bruce Marquette University, M. Muge Karaman Marquette University Marquette University e-publications@marquette Mathematics, Statistics and omputer Science Faculty Research and Publications Mathematics, Statistics and omputer Science, Department of 10-1-2012 The SENSE-Isomorphism

More information

An Evaluation of the Use of Magnetic Field Maps to Undistort Echo-Planar Images

An Evaluation of the Use of Magnetic Field Maps to Undistort Echo-Planar Images NeuroImage 18, 127 142 (2003) doi:10.1006/nimg.2002.1281 An Evaluation of the Use of Magnetic Field Maps to Undistort Echo-Planar Images Rhodri Cusack, Matthew Brett, and Katja Osswald MRC Cognition and

More information

NA-MIC National Alliance for Medical Image Computing fmri Data Analysis

NA-MIC National Alliance for Medical Image Computing   fmri Data Analysis NA-MIC fmri Data Analysis Sonia Pujol, Ph.D. Wendy Plesniak, Ph.D. Randy Gollub, M.D., Ph.D. Acknowledgments NIH U54EB005149 Neuroimage Analysis Center NIH P41RR013218 FIRST Biomedical Informatics Research

More information

Time-Frequency Method Based Activation Detection in Functional MRI Time-Series

Time-Frequency Method Based Activation Detection in Functional MRI Time-Series Time-Frequency Method Based Activation Detection in Functional MRI Time-Series Arun Kumar 1,2 and Jagath C. Rajapakse 1,3 1 School of Computing, NTU, Singapore 2 School of EEE,Singapore Polytechnic, Singapore

More information

Dynamic Autocalibrated Parallel Imaging Using Temporal GRAPPA (TGRAPPA)

Dynamic Autocalibrated Parallel Imaging Using Temporal GRAPPA (TGRAPPA) Magnetic Resonance in Medicine 53:981 985 (2005) Dynamic Autocalibrated Parallel Imaging Using Temporal GRAPPA (TGRAPPA) Felix A. Breuer, 1 * Peter Kellman, 2 Mark A. Griswold, 1 and Peter M. Jakob 1 Current

More information

MRI image formation 8/3/2016. Disclosure. Outlines. Chen Lin, PhD DABR 3. Indiana University School of Medicine and Indiana University Health

MRI image formation 8/3/2016. Disclosure. Outlines. Chen Lin, PhD DABR 3. Indiana University School of Medicine and Indiana University Health MRI image formation Indiana University School of Medicine and Indiana University Health Disclosure No conflict of interest for this presentation 2 Outlines Data acquisition Spatial (Slice/Slab) selection

More information

SURFACE RECONSTRUCTION OF EX-VIVO HUMAN V1 THROUGH IDENTIFICATION OF THE STRIA OF GENNARI USING MRI AT 7T

SURFACE RECONSTRUCTION OF EX-VIVO HUMAN V1 THROUGH IDENTIFICATION OF THE STRIA OF GENNARI USING MRI AT 7T SURFACE RECONSTRUCTION OF EX-VIVO HUMAN V1 THROUGH IDENTIFICATION OF THE STRIA OF GENNARI USING MRI AT 7T Oliver P. Hinds 1, Jonathan R. Polimeni 2, Megan L. Blackwell 3, Christopher J. Wiggins 3, Graham

More information

arxiv: v2 [q-bio.qm] 16 Oct 2017

arxiv: v2 [q-bio.qm] 16 Oct 2017 Gulban this is page 1 The relation between color spaces and compositional data analysis demonstrated with magnetic resonance image processing applications O.F. Gulban Maastricht University, Maastricht,

More information

7/15/2016 ARE YOUR ANALYSES TOO WHY IS YOUR ANALYSIS PARAMETRIC? PARAMETRIC? That s not Normal!

7/15/2016 ARE YOUR ANALYSES TOO WHY IS YOUR ANALYSIS PARAMETRIC? PARAMETRIC? That s not Normal! ARE YOUR ANALYSES TOO PARAMETRIC? That s not Normal! Martin M Monti http://montilab.psych.ucla.edu WHY IS YOUR ANALYSIS PARAMETRIC? i. Optimal power (defined as the probability to detect a real difference)

More information

First-level fmri modeling

First-level fmri modeling First-level fmri modeling Monday, Lecture 3 Jeanette Mumford University of Wisconsin - Madison What do we need to remember from the last lecture? What is the general structure of a t- statistic? How about

More information

User s Guide Neuroimage Processing ToolKit (NPTK) Version.1.7 (beta) fmri Registration Software Pipeline for Functional Localization

User s Guide Neuroimage Processing ToolKit (NPTK) Version.1.7 (beta) fmri Registration Software Pipeline for Functional Localization User s Guide Neuroimage Processing ToolKit (NPTK) Version.1.7 (beta) fmri Registration Software Pipeline for Functional Localization Software Written by Ali Gholipour SIP Lab, UTD, 2005-2007 Revision 1.7

More information

User s Guide Neuroimage Processing ToolKit (NPTK) Version 2.0 fmri Registration Software Pipeline for Functional Localization

User s Guide Neuroimage Processing ToolKit (NPTK) Version 2.0 fmri Registration Software Pipeline for Functional Localization User s Guide Neuroimage Processing ToolKit (NPTK) Version 2.0 fmri Registration Software Pipeline for Functional Localization Software Written by Ali Gholipour SIP Lab, UTD, 2005-2010 Revision 2.0 February

More information

COBRE Scan Information

COBRE Scan Information COBRE Scan Information Below is more information on the directory structure for the COBRE imaging data. Also below are the imaging parameters for each series. Directory structure: var/www/html/dropbox/1139_anonymized/human:

More information

Characterization and Correction of Interpolation Effects in the Realignment of fmri Time Series

Characterization and Correction of Interpolation Effects in the Realignment of fmri Time Series NeuroImage 11, 49 57 (2000) doi:10.1006/nimg.1999.0515, available online at http://www.idealibrary.com on Characterization and Correction of Interpolation Effects in the Realignment of fmri Time Series

More information

Motion Robust Magnetic Susceptibility and Field Inhomogeneity Estimation Using Regularized Image Restoration Techniques for fmri

Motion Robust Magnetic Susceptibility and Field Inhomogeneity Estimation Using Regularized Image Restoration Techniques for fmri Motion Robust Magnetic Susceptibility and Field Inhomogeneity Estimation Using Regularized Image Restoration Techniques for fmri Desmond Tec Beng Yeo 1,, Jeffrey A. Fessler 1,, and Bolye Kim 1 1 Department

More information

Supplementary methods

Supplementary methods Supplementary methods This section provides additional technical details on the sample, the applied imaging and analysis steps and methods. Structural imaging Trained radiographers placed all participants

More information