Outline. Optimales Recycling - Tourenplanung in der Altglasentsorgung

Size: px
Start display at page:

Download "Outline. Optimales Recycling - Tourenplanung in der Altglasentsorgung"

Transcription

1 1 Optimales Recycling - Ruhr-Universität Bochum, Introduction and Motivation 2. Problem Definition 3. Literature Review 4. Mathematical Model 5. Variable Neighborhood Search 6. Numerical Experiments 7. Outlook 1

2 Introduction and Motivation 3 Capacitated Vehicle Routing Problem Depot Customer location Requested product type Q = Q Demand (non-negative) Vehicle capacity Each demand must be satisfied by a single delivery (no split deliveries) All distances are known Minimize the total length of all tours Introduction and Motivation 4 Capacitated Vehicle Routing Problem Depot Customer location Requested product type Q = Q Demand (non-negative) Vehicle capacity Each demand must be satisfied by a single delivery (no split deliveries) All distances are known Minimize the total length of all tours

3 Introduction and Motivation 5 A Glass Waste Collection Problem Introduction and Motivation 6 A Glass Waste Collection Problem North 3

4 Introduction and Motivation 7 A Glass Waste Collection Problem Extension of the Capacitated Vehicle Routing Problem w.r.t. the following aspects: Several product types have to be collected from (distributed to) the customer locations The capacity of each vehicle can be divided individually into different compartments such that several product types can be collected (distributed) on each tour. Multi-Compartment Vehicle Routing Problem (MCVRP) 8 1. Introduction and Motivation 2. Problem Definition 3. Literature Review 4. Mathematical Model 5. Variable Neighborhood Search 6. Numerical Experiments 7. Summary and Outlook 4

5 Problem Definition 9 The Multi-Compartment Vehicle Routing Problem Depot Customer locations Product types Demands (non-negative) Each demand must be satisfied by a single delivery (no split deliveries) All distances are known and symmetric Minimize the total length of all tours Problem Definition 10 The Multi-Compartment Vehicle Routing Problem Vehicles and Compartments A sufficiently large number of homogeneous vehicles is available, each of which providing an identical total capacity Q. Each vehicle serves a single tour if being used. The total capacity Q of each vehicle can be divided individually into a limited number of compartments The size of each compartment has to be selected from a discrete set of potential compartment sizes, e.g. it may make up for 10%, 20%,, 100% of the total capacity Q To each compartment only a single product type can be assigned The capacity of each compartment must not be exceeded 5

6 Problem Definition 11 The Multi-Compartment Vehicle Routing Problem Decisions Location-Vehicle-Assignment: Which locations should be visited by each vehicle? Location-Sequencing: In which sequence should the locations be visited by each vehicle? Compartment-Vehicle-Assignment: How should the total capacity of each vehicle be divided into compartments? Product-Compartment-Assignment: Which products should be assigned to each compartment of each vehicle? Objective Function Minimize the total tour length, i.e. the sum of all distances traveled by all vehicles Problem Definition 12 A Solution to the MCVRP Vehicle 1 Vehicle Assigned products: Assigned products: 6

7 Introduction and Motivation 13 The Multi-Compartment Vehicle Routing Problem (MCVRP) Research Questions How can the MCVRP be formally represented (modeled)? How can the MCVRP be solved? Does it make sense to introduce vehicles with multiple (variable) compartments instead of serving the different product types separately? Introduction and Motivation 2. Problem Definition 3. Literature Review 4. Mathematical Model 5. Variable Neighborhood Search 6. Numerical Experiments 7. Summary and Outlook 7

8 Literarure Review 15 Literature Review: General Papers Derigs et al. (2011), OR Spectrum: Mathematical model, several solution approaches Mendoza et al. (2011), Transportation Science: Stochastic demands Muyldermans, Pang (2010), EJOR: Comparison of vehicle routing with and without compartments Literarure Review 16 Literature Review: Applications Fuel Delivery Avella et al. (2004), EJOR Brown, Graves (1981), Management Science Cornillier et al. (2002), EJOR Applications in Agriculture Caramia, Guerriero (2010), Interfaces Collection of milk at farms El Fallahi et al. (2008), C&OR: Distribution of animal food to farms 8

9 Literarure Review 17 Literature Review: Applications (cont.) Distribution Chajakis, Guignard (2003), J Global Optimization Delivery of food and grocery products to convenience stores Maritime Transportation Fagerholt, Christiansen (2000), JORS Literarure Review 18 Special Features of this particular MCVRP in Glass Waste Collection For each vehicle, the partition of the total capacity into compartments is not given in advance, but has to be fixed. For each vehicle, the partition of the total capacity into compartments can be different. For each vehicle, the number of compartments can be smaller than the number of product types (i.e. on each tour, only a limited number of product types may be collected / distributed). The total capacity of each vehicle can only be partitioned discretely (not: continuously) into different compartments. 9

10 19 1. Introduction and Motivation 2. Problem Definition 3. Literature Review 4. Mathematical Model 5. Variable Neighborhood Search 6. Numerical Experiments 7. Outlook Mathematical Model 20 Symbols Index Sets Set of locations (i.e. set of nodes exclusive of the depot) Set of nodes (i.e. including the depot) Set of product types Set of vehicles Set of compartment size types 10

11 Mathematical Model 21 Symbols Constants c d Distance between nodes i and j i,j,i j Demand for product type p at location i i,p Q Total capacity of each vehicle q Relative size of a compartment of type s s in relation to the total capacity, e.g. 0.1, 0.2, s Maximum number of compartments per vehicle Mathematical Model 22 Symbols Variables w Binary variable i,k with 1, if location i is visited by vehicle k w 0, else. w Binary variable k with 1, if vehicle k is being used w 0, else. 11

12 Mathematical Model 23 Symbols Variables x Binary variable i, j, i j, k with 1, if the edge between locations i and j is travelled by vehicle k x 0, else. x Integer variable j,k with 2, if the edge from the depot to location j is travelled twice by vehicle k x 1, if the edge from the depot to location j is travelled once by vehicle k 0, else. Mathematical Model 24 Symbols Variables y Binary variable p,k,s with 1, if product p is assigned to a compartment of type s of vehicle k y 0, else. z Binary variable i,p,k with 1, if demand for product type p at location i is satisfied by vehicle k z 0, else. 12

13 Mathematical Model 25 Objective function Minimization of the total tour length: min c x : (1) Mathematical Model 26 Constraints Each demand must be satisfied: z 1 i,p,d 0 (2) A maximum number of vehicles may be used: x 2 (3) 13

14 Mathematical Model 27 Constraints The depot must be included in each tour: w w k (4) In order to satisfy its demand the corresponding location must be visited: z w i,p,k (5) Vehicle flow constraints: x x : : 2 w i, k (6) Mathematical Model 28 Constraints For each vehicle the number of compartments is limited: y s k (7) The capacity of each compartment must not be exceeded: d z Q q y p,k (8) The total capacity must not be exceeded: q y 1 k (9) 14

15 Mathematical Model 29 Constraints Subtour-elimination constraints: x 1 k,, 2 (10) Binary and integer constraints: w 0,1 x 0,1 i,k i,j,i j,k (11) (12) x 0,1,2 j,k (13) y 0,1 z 0,1 p,k,s S i,p,k (14) (15) Introduction and Motivation 2. Problem Definition 3. Literature Review 4. Mathematical Model 5. Variable Neighborhood Search 6. Numerical Experiments 7. Outlook 15

16 Variable Neighborhood Search 31 Variable Neighborhood Search with Multiple Starts (MS-VNS) Main Idea The algorithm consists of several large iterations (loops) In each loop an initial feasible solution is determined randomly Each initial solution is improved within several iterations by a VNS approach The best solution found in each loop is recorded Variable Neighborhood Search 32 MS-VNS for the MCVRP input: number of loops L, number of iterations in each loop N, problem data x 0 (x best ) = M; for l = 1 to L generate an initial solution x with objective function value x 0 (x) randomly; k := 1; for i = 1 to N select a neighbor x from neighborhood k of x (shaking); apply local search to x and determine a local minimum x ; if x 0 (x ) <= x 0 (x) then x := x ; k := 1; else k := k + 1; if k = k max + 1 then k := 1; endif endif endfor if x 0 (x) < x 0 (x best ) then x best := x; endif endfor output: x best 16

17 Variable Neighborhood Search 33 Generation of an Initial Solution All demands are randomly sequenced According to this sequence the demands are assigned one after another to a vehicle if: (1) The corresponding product type has already been assigned or can still be assigned to this vehicle (2) The vehicle capacity will not be exceeded Otherwise another vehicle is checked Variable Neighborhood Search 34 Neighborhood Structures k = 1: Demand Move A single demand is shifted from one tour to another. k = 2: Swap Move Two positions of two locations which are visited on the same tour are exchanged. k = 3: Shift Move A single location is moved from one position to another position of the same tour. 17

18 Variable Neighborhood Search 35 Local Search 2-opt Neighborhood Two non-adjacent edges are deleted from one tour and two new edges are inserted in the same (2-opt move). Strict Descent A 2-opt move is accepted, if the corresponding objective function value has been improved First Find The first 2-opt move which improves the current solution is accepted. Stopping Criterion The search stops if no improved solution exists in the neighborhood of the current solution Introduction and Motivation 2. Problem Definition 3. Literature Review 4. Mathematical Model 5. Variable Neighborhood Search 6. Numerical Experiments 6.1 Randomly Generated Problem Instances 6.2 Real-World Problem Instances 7. Outlook 18

19 Numerical Experiments 37 Problem Classes Input Parameters Number of locations: 10 Number of product types: 3, 6, 9 Maximum number of compartments: 3 product types: 2, 3 6 product types: 2, 4, 6 9 product types: 2, 4, 6 Numerical Experiments 38 Problem Classes Input Parameters Total demand per product type: ABC-distribution Number of product types demanded at each location: Small (up to 1 3 of the number of product types) Medium (between 1 3 and 2 3 of the number of product types) Large (between 2 3 and 3 3 of the number of product types) 50 instances per problem class 19

20 Numerical Experiments 39 Implementation Exact Approach Mathematical model implemented in Visual C++ Express 2010 with the ILOG CPLEX 12.4 interface on a 2,7GHz PC with 4GB memory Time limit for each instance: 12 hours Subtour-elimination constraints are added dynamically Numerical Experiments 40 Implementation Subtour-Elimination Constraints: x 1 k,, 2 (10) Number of Subtour-Elimination Constraints: #subtourelimination constraints # vehicles ,795 9,590 # locations 15 32, , , ,048,346 5,241,730 10,483, >10 12 >10 12 >

21 Problem Definition 41 Implementation A Solution of the MCVRP Relaxation Addition of the respective subtour-elimination constraint: x x x Numerical Experiments 42 Implementation Heuristic Approach Implemented in Visual C++ Express 2010 on a 2,7GHz PC with 4GB memory Algorithm parameters: 1,000 loops 10,000 iterations per loop 21

22 Numerical Experiments 43 Results: Computing Times Average computing time (seconds) per instance, exact approach #products #compartments s #demands m l instances in each class 1 7 optimally solved instances only 2 16 optimally solved instances only 3 no optimally solved instances Numerical Experiments 44 Results: Computing Times Average computing time (seconds) per instance, VNS algorithm #products #compartments s #demands m l instances in each class 1 based on 7 optimally solved instances 2 based on 16 optimally solved instances 22

23 Numerical Experiments 45 Results: Solution Quality of the VNS Algorithm Average deviation (%) per instance of the total tour length obtained by the VNS algorithm in comparison to the optimal total tour length #products #compartments s 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 2 0.1% 0.6% #demands m 0.0% 0.2% 0.1% 0.1% 2.3% - 0.7% 1.3% l 0.0% 0.0% 0.0% 1 0.0% 1.1% instances in each class 1 based on 7 optimally solved instances 2 based on 16 optimally solved instances Numerical Experiments 46 Results Main Findings Exact Solution Approach (Randomly Generated Problem Instances) Problem instances become harder with an increasing number of locations an increasing number of product types an decreasing maximum number of compartments per vehicle an increasing average number of demands per customer location Approach is only applicable to problem instances of limited size 23

24 Numerical Experiments 47 Results Main Findings VNS Approach (Randomly Generated Problem Instances) All instances could be solved in reasonable computing time (< 20 seconds) Computing times only vary slightly for different problem characteristics VNS achieves good results with a maximum average deviation from the optimal solution of 2.3% The solution quality deteriorates with an increasing number of product types Introduction and Motivation 2. Problem Definition 3. Literature Review 4. Mathematical Model 5. Variable Neighborhood Search 6. Numerical Experiments 6.1 Randomly Generated Problem Instances 6.2 Real-World Problem Instances 7. Outlook 24

25 Numerical Experiments 49 Problem Classes Input Parameters Number of product types: 3 Number of locations: Number of demands: Maximum number of compartments: 2 (MCVRP) 1 (VRP) Numerical Experiments 50 Implementation Heuristic (VNS) Approach Algorithm parameters: Number of loops: 1,000 Number of iterations per loop: 10,000 Computing times: seconds per instance 25

26 Numerical Experiments 51 Results: Solution Quality parameters total tour length (in km) #tours instance #locations #demands MCVRP VRP deviation MCVRP VRP % % % % % % % % % % 2 3 average % Numerical Experiments 52 Results Main Findings (Real-World Problem Instances) All practical instances could be solved in acceptable computing time (< 3 minutes) The introduction of compartments will reduce the total distance to be travelled (total tour length) significantly, i.e. between 9 % and 45 % by almost 1/3 on average The reduction of the total tour length can be attributed to a significant reduction of the number of tours (one tour less on average) A reduction of the total tour length could also be obtained when the number of tours remained constant 26

27 53 1. Introduction and Motivation 2. Problem Definition 3. Literature Review 4. Mathematical Model 5. Variable Neighborhood Search 6. Numerical Experiments 7. Outlook Outlook 54 Outlook Further research on the described problem Experiments with VNS on larger problem instances, in particular w.r.t. different neighborhood structures Development of alternative heuristic solution approaches, e.g. large neighborhood search, tabu search, genetic algorithms etc. Further research on variants and extensions Consideration of stochastic demands Extension to multiple periods (individual tours with a rolling planning horizon; standard tours) 27

28 55 Thank your for your attention! Any questions? 28

Impressum ( 5 TMG) Herausgeber: Fakultät für Wirtschaftswissenschaft Der Dekan. Verantwortlich für diese Ausgabe:

Impressum ( 5 TMG) Herausgeber: Fakultät für Wirtschaftswissenschaft Der Dekan. Verantwortlich für diese Ausgabe: WORKING PAPER SERIES Impressum ( 5 TMG) Herausgeber: Otto-von-Guericke-Universität Magdeburg Fakultät für Wirtschaftswissenschaft Der Dekan Verantwortlich für diese Ausgabe: Otto-von-Guericke-Universität

More information

Impressum ( 5 TMG) Herausgeber: Fakultät für Wirtschaftswissenschaft Der Dekan. Verantwortlich für diese Ausgabe:

Impressum ( 5 TMG) Herausgeber: Fakultät für Wirtschaftswissenschaft Der Dekan. Verantwortlich für diese Ausgabe: WORKING PAPER SERIES Impressum ( 5 TMG) Herausgeber: Otto-von-Guericke-Universität Magdeburg Fakultät für Wirtschaftswissenschaft Der Dekan Verantwortlich für diese Ausgabe: Otto-von-Guericke-Universität

More information

Variable Neighborhood Search for Solving the Balanced Location Problem

Variable Neighborhood Search for Solving the Balanced Location Problem TECHNISCHE UNIVERSITÄT WIEN Institut für Computergraphik und Algorithmen Variable Neighborhood Search for Solving the Balanced Location Problem Jozef Kratica, Markus Leitner, Ivana Ljubić Forschungsbericht

More information

Vehicle routing with compartments: applications, modelling and heuristics

Vehicle routing with compartments: applications, modelling and heuristics OR Spectrum DOI 10.1007/s00291-010-0194-3 REGULAR ARTICLE Vehicle routing with compartments: applications, modelling and heuristics Ulrich Derigs Jens Gottlieb Jochen Kalkoff Michael Piesche Franz Rothlauf

More information

Computational Complexity CSC Professor: Tom Altman. Capacitated Problem

Computational Complexity CSC Professor: Tom Altman. Capacitated Problem Computational Complexity CSC 5802 Professor: Tom Altman Capacitated Problem Agenda: Definition Example Solution Techniques Implementation Capacitated VRP (CPRV) CVRP is a Vehicle Routing Problem (VRP)

More information

Variable neighborhood search algorithm for the green vehicle routing problem

Variable neighborhood search algorithm for the green vehicle routing problem International Journal of Industrial Engineering Computations 9 (2018) 195 204 Contents lists available at GrowingScience International Journal of Industrial Engineering Computations homepage: www.growingscience.com/ijiec

More information

Multiple Depot Vehicle Routing Problems on Clustering Algorithms

Multiple Depot Vehicle Routing Problems on Clustering Algorithms Thai Journal of Mathematics : 205 216 Special Issue: Annual Meeting in Mathematics 2017 http://thaijmath.in.cmu.ac.th ISSN 1686-0209 Multiple Depot Vehicle Routing Problems on Clustering Algorithms Kanokon

More information

A Course on Meta-Heuristic Search Methods for Combinatorial Optimization Problems

A Course on Meta-Heuristic Search Methods for Combinatorial Optimization Problems A Course on Meta-Heuristic Search Methods for Combinatorial Optimization Problems AutOrI LAB, DIA, Roma Tre Email: mandal@dia.uniroma3.it January 16, 2014 Outline 1 An example Assignment-I Tips Variants

More information

Vehicle Routing for Food Rescue Programs: A comparison of different approaches

Vehicle Routing for Food Rescue Programs: A comparison of different approaches Vehicle Routing for Food Rescue Programs: A comparison of different approaches Canan Gunes, Willem-Jan van Hoeve, and Sridhar Tayur Tepper School of Business, Carnegie Mellon University 1 Introduction

More information

Vehicle Routing Heuristic Methods

Vehicle Routing Heuristic Methods DM87 SCHEDULING, TIMETABLING AND ROUTING Outline 1. Construction Heuristics for VRPTW Lecture 19 Vehicle Routing Heuristic Methods 2. Local Search 3. Metaheuristics Marco Chiarandini 4. Other Variants

More information

6 ROUTING PROBLEMS VEHICLE ROUTING PROBLEMS. Vehicle Routing Problem, VRP:

6 ROUTING PROBLEMS VEHICLE ROUTING PROBLEMS. Vehicle Routing Problem, VRP: 6 ROUTING PROBLEMS VEHICLE ROUTING PROBLEMS Vehicle Routing Problem, VRP: Customers i=1,...,n with demands of a product must be served using a fleet of vehicles for the deliveries. The vehicles, with given

More information

Open Vehicle Routing Problem Optimization under Realistic Assumptions

Open Vehicle Routing Problem Optimization under Realistic Assumptions Int. J. Research in Industrial Engineering, pp. 46-55 Volume 3, Number 2, 204 International Journal of Research in Industrial Engineering www.nvlscience.com Open Vehicle Routing Problem Optimization under

More information

Rich Vehicle Routing Problems Challenges and Prospects in Exploring the Power of Parallelism. Andreas Reinholz. 1 st COLLAB Workshop

Rich Vehicle Routing Problems Challenges and Prospects in Exploring the Power of Parallelism. Andreas Reinholz. 1 st COLLAB Workshop Collaborative Research Center SFB559 Modeling of Large Logistic Networks Project M8 - Optimization Rich Vehicle Routing Problems Challenges and Prospects in Exploring the Power of Parallelism Andreas Reinholz

More information

Regensburger DISKUSSIONSBEITRÄGE zur Wirtschaftswissenschaft

Regensburger DISKUSSIONSBEITRÄGE zur Wirtschaftswissenschaft Regensburger DISKUSSIONSBEITRÄGE zur Wirtschaftswissenschaft A Cluster Based Scatter Search Heuristic for the Vehicle Routing Problem University of Regensburg Discussion Papers in Economics No. 415, November

More information

arxiv: v3 [math.oc] 24 Oct 2018

arxiv: v3 [math.oc] 24 Oct 2018 Article A Two-Stage Approach for Routing Multiple Unmanned Aerial Vehicles with Stochastic Fuel Consumption Saravanan Venkatachalam 1 * ID, Kaarthik Sundar ID, and Sivakumar Rathinam 1 Department of Industrial

More information

A Tabu Search solution algorithm

A Tabu Search solution algorithm Chapter 5 A Tabu Search solution algorithm The TS examines a trajectory sequence of solutions and moves to the best neighbor of the current solution. To avoid cycling, solutions that were recently examined

More information

arxiv: v1 [math.oc] 9 Jan 2019

arxiv: v1 [math.oc] 9 Jan 2019 Sweep Algorithms for the Capacitated Vehicle Routing Problem with Structured Time Windows arxiv:1901.02771v1 [math.oc] 9 Jan 2019 C. Hertrich, P. Hungerländer, and C. Truden 10th January 2019 Abstract

More information

Two models of the capacitated vehicle routing problem

Two models of the capacitated vehicle routing problem Croatian Operational Research Review 463 CRORR 8(2017), 463 469 Two models of the capacitated vehicle routing problem Zuzana Borčinová 1, 1 Faculty of Management Science and Informatics, University of

More information

A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery

A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery Monika Sharma 1, Deepak Sharma 2 1 Research Scholar Department of Computer Science and Engineering, NNSS SGI Samalkha,

More information

Outline. Construction Heuristics for CVRP. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING

Outline. Construction Heuristics for CVRP. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING Lecture 27 Vehicle Routing Heuristics Marco Chiarandini 1. for CVRP for VRPTW 2. 3. 4. Constraint Programming for VRP 2 Outline for CVRP TSP based heuristics

More information

ALGORITHM CHEAPEST INSERTION

ALGORITHM CHEAPEST INSERTION Version for STSP ALGORITHM CHEAPEST INSERTION. Choose the two furthest vertices i and k as initial subtour (c ik = max {c hj : (h, j) A}); set V := V \ {i} \ {k} (set of the unvisited vertices).. For each

More information

Branch-price-and-cut for vehicle routing. Guy Desaulniers

Branch-price-and-cut for vehicle routing. Guy Desaulniers Guy Desaulniers Professor, Polytechnique Montréal, Canada Director, GERAD, Canada VeRoLog PhD School 2018 Cagliari, Italy, June 2, 2018 Outline 1 VRPTW definition 2 Mathematical formulations Arc-flow formulation

More information

Fundamentals of Integer Programming

Fundamentals of Integer Programming Fundamentals of Integer Programming Di Yuan Department of Information Technology, Uppsala University January 2018 Outline Definition of integer programming Formulating some classical problems with integer

More information

Improving on the initial solution heuristic for the Vehicle Routing Problem with multiple constraints

Improving on the initial solution heuristic for the Vehicle Routing Problem with multiple constraints Improving on the initial solution heuristic for the Vehicle Routing Problem with multiple constraints J. W. Joubert Department of Industrial and Systems Engineering, University of Pretoria Abstract The

More information

Optimal tour along pubs in the UK

Optimal tour along pubs in the UK 1 From Facebook Optimal tour along 24727 pubs in the UK Road distance (by google maps) see also http://www.math.uwaterloo.ca/tsp/pubs/index.html (part of TSP homepage http://www.math.uwaterloo.ca/tsp/

More information

SOLVING THE TASK ASSIGNMENT PROBLEM WITH A VARIABLE NEIGHBORHOOD SEARCH. Jozef Kratica, Aleksandar Savić, Vladimir Filipović, Marija Milanović

SOLVING THE TASK ASSIGNMENT PROBLEM WITH A VARIABLE NEIGHBORHOOD SEARCH. Jozef Kratica, Aleksandar Savić, Vladimir Filipović, Marija Milanović Serdica J. Computing 4 (2010), 435 446 SOLVING THE TASK ASSIGNMENT PROBLEM WITH A VARIABLE NEIGHBORHOOD SEARCH Jozef Kratica, Aleksandar Savić, Vladimir Filipović, Marija Milanović Abstract. In this paper

More information

Optimal Crane Scheduling

Optimal Crane Scheduling Optimal Crane Scheduling Ionu Aron IBM Watson Lab Latife Genç Kaya, John Hooker Carnegie Mellon University Iiro Harjunkoski, Marco Fahl ABB Group November 2006 1 Thanks to PITA Pennsylvania Infrastructure

More information

Algorithms and Experimental Study for the Traveling Salesman Problem of Second Order. Gerold Jäger

Algorithms and Experimental Study for the Traveling Salesman Problem of Second Order. Gerold Jäger Algorithms and Experimental Study for the Traveling Salesman Problem of Second Order Gerold Jäger joint work with Paul Molitor University Halle-Wittenberg, Germany August 22, 2008 Overview 1 Introduction

More information

The Vehicle Routing Problem with Time Windows

The Vehicle Routing Problem with Time Windows The Vehicle Routing Problem with Time Windows Dr Philip Kilby Team Leader, Optimisation Applications and Platforms June 2017 www.data61.csiro.au Outline Problem Description Solving the VRP Construction

More information

Efficient Synthesis of Production Schedules by Optimization of Timed Automata

Efficient Synthesis of Production Schedules by Optimization of Timed Automata Efficient Synthesis of Production Schedules by Optimization of Timed Automata Inga Krause Institute of Automatic Control Engineering Technische Universität München inga.krause@mytum.de Joint Advanced Student

More information

TSP! Find a tour (hamiltonian circuit) that visits! every city exactly once and is of minimal cost.!

TSP! Find a tour (hamiltonian circuit) that visits! every city exactly once and is of minimal cost.! TSP! Find a tour (hamiltonian circuit) that visits! every city exactly once and is of minimal cost.! Local Search! TSP! 1 3 5 6 4 What should be the neighborhood?! 2-opt: Find two edges in the current

More information

Artificial Intelligence Methods (G52AIM)

Artificial Intelligence Methods (G52AIM) Artificial Intelligence Methods (G52AIM) Dr Rong Qu rxq@cs.nott.ac.uk Variable Neighborhood Search Idea of VNS So far on our local search based approaches, only one neighbourhood is employed To escape

More information

A Study of Neighborhood Structures for the Multiple Depot Vehicle Scheduling Problem

A Study of Neighborhood Structures for the Multiple Depot Vehicle Scheduling Problem A Study of Neighborhood Structures for the Multiple Depot Vehicle Scheduling Problem Benoît Laurent 1,2 and Jin-Kao Hao 2 1 Perinfo SA, Strasbourg, France 2 LERIA, Université d Angers, Angers, France blaurent@perinfo.com,

More information

Tour splitting algorithms for vehicle routing problems

Tour splitting algorithms for vehicle routing problems Tour splitting algorithms for vehicle routing problems Prof. Christian PRINS christian.prins@utt.fr Institute Charles Delaunay (ICD) UTT 12 rue Marie Curie, CS 42060, 10004 Troyes Cedex, France C. Prins

More information

A HEURISTIC COLUMN GENERATION METHOD FOR THE HETEROGENEOUS FLEET VRP. Éric D. Taillard

A HEURISTIC COLUMN GENERATION METHOD FOR THE HETEROGENEOUS FLEET VRP. Éric D. Taillard CRT 96 03, may 1996 A HEURISTIC COLUMN GENERATION METHOD FOR THE HETEROGENEOUS FLEET VRP Éric D. Taillard Istituto Dalle Molle di Studi sull Intelligenza Artificiale, Corso Elvezia 36, 6900 Lugano, Switzerland

More information

Construction Heuristics and Local Search Methods for VRP/VRPTW

Construction Heuristics and Local Search Methods for VRP/VRPTW DM204, 2010 SCHEDULING, TIMETABLING AND ROUTING Lecture 31 Construction Heuristics and Local Search Methods for VRP/VRPTW Marco Chiarandini Department of Mathematics & Computer Science University of Southern

More information

A Tabu Search Heuristic for the Generalized Traveling Salesman Problem

A Tabu Search Heuristic for the Generalized Traveling Salesman Problem A Tabu Search Heuristic for the Generalized Traveling Salesman Problem Jacques Renaud 1,2 Frédéric Semet 3,4 1. Université Laval 2. Centre de Recherche sur les Technologies de l Organisation Réseau 3.

More information

Hybrid ant colony optimization algorithm for two echelon vehicle routing problem

Hybrid ant colony optimization algorithm for two echelon vehicle routing problem Available online at www.sciencedirect.com Procedia Engineering 15 (2011) 3361 3365 Advanced in Control Engineering and Information Science Hybrid ant colony optimization algorithm for two echelon vehicle

More information

VNS-based heuristic with an exponential neighborhood for the server load balancing problem

VNS-based heuristic with an exponential neighborhood for the server load balancing problem Available online at www.sciencedirect.com Electronic Notes in Discrete Mathematics 47 (2015) 53 60 www.elsevier.com/locate/endm VNS-based heuristic with an exponential neighborhood for the server load

More information

A Clustering Approach to the Bounded Diameter Minimum Spanning Tree Problem Using Ants. Outline. Tyler Derr. Thesis Adviser: Dr. Thang N.

A Clustering Approach to the Bounded Diameter Minimum Spanning Tree Problem Using Ants. Outline. Tyler Derr. Thesis Adviser: Dr. Thang N. A Clustering Approach to the Bounded Diameter Minimum Spanning Tree Problem Using Ants Tyler Derr Thesis Adviser: Dr. Thang N. Bui Department of Math & Computer Science Penn State Harrisburg Spring 2015

More information

Improved K-Means Algorithm for Capacitated Clustering Problem

Improved K-Means Algorithm for Capacitated Clustering Problem Improved K-Means Algorithm for Capacitated Clustering Problem S. GEETHA 1 G. POONTHALIR 2 P. T. VANATHI 3 PSG College of Technology Tamil Nadu India 1 geet_shan@yahoo.com 2 thalirkathir@rediffmail.com

More information

Last topic: Summary; Heuristics and Approximation Algorithms Topics we studied so far:

Last topic: Summary; Heuristics and Approximation Algorithms Topics we studied so far: Last topic: Summary; Heuristics and Approximation Algorithms Topics we studied so far: I Strength of formulations; improving formulations by adding valid inequalities I Relaxations and dual problems; obtaining

More information

Variable Neighborhood Search for the Dial-a-Ride Problem

Variable Neighborhood Search for the Dial-a-Ride Problem Variable Neighborhood Search for the Dial-a-Ride Problem Sophie N. Parragh, Karl F. Doerner, Richard F. Hartl Department of Business Administration, University of Vienna, Bruenner Strasse 72, 1210 Vienna,

More information

LEAST COST ROUTING ALGORITHM WITH THE STATE SPACE RELAXATION IN A CENTRALIZED NETWORK

LEAST COST ROUTING ALGORITHM WITH THE STATE SPACE RELAXATION IN A CENTRALIZED NETWORK VOL., NO., JUNE 08 ISSN 896608 00608 Asian Research Publishing Network (ARPN). All rights reserved. LEAST COST ROUTING ALGORITHM WITH THE STATE SPACE RELAXATION IN A CENTRALIZED NETWORK Y. J. Lee Department

More information

TWO-PHASE ALGORITHM FOR SOLVING HETEROGENEOUS TRAVELLING REPAIRMEN PROBLEM WITH TIME WINDOWS

TWO-PHASE ALGORITHM FOR SOLVING HETEROGENEOUS TRAVELLING REPAIRMEN PROBLEM WITH TIME WINDOWS UDC: 658.818.3:519.87 Bjelić N. et al. Two-Phase Algorithm for Solving Heterogeneous Travelling Repairmen Problem with Time Windows DOI: http://dx.doi.org/10.7708/ijtte.2015.5(1).08 TWO-PHASE ALGORITHM

More information

Massively Parallel Approximation Algorithms for the Traveling Salesman Problem

Massively Parallel Approximation Algorithms for the Traveling Salesman Problem Massively Parallel Approximation Algorithms for the Traveling Salesman Problem Vaibhav Gandhi May 14, 2015 Abstract This paper introduces the reader to massively parallel approximation algorithms which

More information

Variable Neighborhood Search

Variable Neighborhood Search Variable Neighborhood Search Hansen and Mladenovic, Variable neighborhood search: Principles and applications, EJOR 43 (2001) 1 Basic notions of VNS Systematic change of the neighborhood in search Does

More information

Online Dial-A-Ride Problem with Time Windows: an exact algorithm using status vectors

Online Dial-A-Ride Problem with Time Windows: an exact algorithm using status vectors Online Dial-A-Ride Problem with Time Windows: an exact algorithm using status vectors A. Fabri 1 and P. Recht 2 1 Universität Dortmund a.fabri@wiso.uni-dortmund.de 2 Universität Dortmund p.recht@wiso.uni-dortmund.de

More information

GAUSSIAN VARIABLE NEIGHBORHOOD SEARCH FOR THE FILE TRANSFER SCHEDULING PROBLEM

GAUSSIAN VARIABLE NEIGHBORHOOD SEARCH FOR THE FILE TRANSFER SCHEDULING PROBLEM Yugoslav Journal of Operations Research 26 (2016), Number 2, 173 188 DOI: 10.2298/YJOR150124006D GAUSSIAN VARIABLE NEIGHBORHOOD SEARCH FOR THE FILE TRANSFER SCHEDULING PROBLEM Zorica DRAŽIĆ Faculty of

More information

Efficient Local Search for Large Scale Combinatorial Problems

Efficient Local Search for Large Scale Combinatorial Problems Efficient Local Search for Large Scale Combinatorial Problems Mirsad Buljubašić, Michel Vasquez Ecole des Mines d Ales LGI2P Research Center June 27 2013 Overview Thesis Info Introduction Local Search

More information

Solving Capacitated P-Median Problem by Hybrid K-Means Clustering and Fixed Neighborhood Search algorithm

Solving Capacitated P-Median Problem by Hybrid K-Means Clustering and Fixed Neighborhood Search algorithm Proceedings of the 2010 International Conference on Industrial Engineering and Operations Management Dhaka, Bangladesh, January 9 10, 2010 Solving Capacitated P-Median Problem by Hybrid K-Means Clustering

More information

Adaptive Large Neighborhood Search

Adaptive Large Neighborhood Search Adaptive Large Neighborhood Search Heuristic algorithms Giovanni Righini University of Milan Department of Computer Science (Crema) VLSN and LNS By Very Large Scale Neighborhood (VLSN) local search, we

More information

Using SAS/OR to Optimize Scheduling and Routing of Service Vehicles

Using SAS/OR to Optimize Scheduling and Routing of Service Vehicles Paper SAS1758-2018 Using SAS/OR to Optimize Scheduling and Routing of Service Vehicles Rob Pratt, SAS Institute Inc. ABSTRACT An oil company has a set of wells and a set of well operators. Each well has

More information

Assignment 3b: The traveling salesman problem

Assignment 3b: The traveling salesman problem Chalmers University of Technology MVE165 University of Gothenburg MMG631 Mathematical Sciences Linear and integer optimization Optimization with applications Emil Gustavsson Assignment information Ann-Brith

More information

A simulated annealing algorithm for the vehicle routing problem with time windows and synchronization constraints

A simulated annealing algorithm for the vehicle routing problem with time windows and synchronization constraints A simulated annealing algorithm for the vehicle routing problem with time windows and synchronization constraints Sohaib Afifi 1, Duc-Cuong Dang 1,2, and Aziz Moukrim 1 1 Université de Technologie de Compiègne

More information

Building Ride-sharing and Routing Engine for Autonomous Vehicles: A State-space-time Network Modeling Approach

Building Ride-sharing and Routing Engine for Autonomous Vehicles: A State-space-time Network Modeling Approach Building Ride-sharing and Routing Engine for Autonomous Vehicles: A State-space-time Network Modeling Approach Xuesong Zhou (xzhou7@asu.edu) Associate professor, School of Sustainable Engineering and the

More information

Crew Scheduling Problem: A Column Generation Approach Improved by a Genetic Algorithm. Santos and Mateus (2007)

Crew Scheduling Problem: A Column Generation Approach Improved by a Genetic Algorithm. Santos and Mateus (2007) In the name of God Crew Scheduling Problem: A Column Generation Approach Improved by a Genetic Algorithm Spring 2009 Instructor: Dr. Masoud Yaghini Outlines Problem Definition Modeling As A Set Partitioning

More information

Effective Local Search Algorithms for the Vehicle Routing Problem with General Time Window Constraints

Effective Local Search Algorithms for the Vehicle Routing Problem with General Time Window Constraints MIC 2001-4th Metaheuristics International Conference 293 Effective Local Search Algorithms for the Vehicle Routing Problem with General Time Window Constraints Toshihide Ibaraki Mikio Kubo Tomoyasu Masuda

More information

Solving a Challenging Quadratic 3D Assignment Problem

Solving a Challenging Quadratic 3D Assignment Problem Solving a Challenging Quadratic 3D Assignment Problem Hans Mittelmann Arizona State University Domenico Salvagnin DEI - University of Padova Quadratic 3D Assignment Problem Quadratic 3D Assignment Problem

More information

6. Tabu Search 6.1 Basic Concepts. Fall 2010 Instructor: Dr. Masoud Yaghini

6. Tabu Search 6.1 Basic Concepts. Fall 2010 Instructor: Dr. Masoud Yaghini 6. Tabu Search 6.1 Basic Concepts Fall 2010 Instructor: Dr. Masoud Yaghini Outline Tabu Search: Part 1 Introduction Illustrative Problems Search Space Neighborhood Structure Tabus Aspiration Criteria Termination

More information

7KH9HKLFOH5RXWLQJSUREOHP

7KH9HKLFOH5RXWLQJSUREOHP 7K9KO5RXWJSUREOP Given a set of vehicles with a certain capacity located at a depot and a set of customers with different demands at various locations, the vehicle routing problem (VRP) is how to satisfy

More information

Variable Neighbourhood Search for Uncapacitated Warehouse Location Problems

Variable Neighbourhood Search for Uncapacitated Warehouse Location Problems International Journal of Engineering and Applied Sciences (IJEAS) ISSN: 2394-3661, Volume-3, Issue-1, January 2016 Variable Neighbourhood Search for Uncapacitated Warehouse Location Problems Kemal Alaykiran,

More information

The districting problem: applications and solving methods

The districting problem: applications and solving methods The districting problem: applications and solving methods Viviane Gascon Département des sciences de la gestion Université du Québec à Trois-Rivi Rivières 1 Introduction The districting problem consists

More information

Computational problems. Lecture 2: Combinatorial search and optimisation problems. Computational problems. Examples. Example

Computational problems. Lecture 2: Combinatorial search and optimisation problems. Computational problems. Examples. Example Lecture 2: Combinatorial search and optimisation problems Different types of computational problems Examples of computational problems Relationships between problems Computational properties of different

More information

Dynamic Vehicle Routing Using Hybrid Genetic Algorithms

Dynamic Vehicle Routing Using Hybrid Genetic Algorithms Proceedings of the 1999 EEE nternational Conference on Robotics & Automation Detroit, Michigan May 1999 Dynamic Vehicle Routing Using Hybrid Genetic Algorithms Wan-rong Jih jih@robot.csie.ntu.edu.tw Jane

More information

Complete Local Search with Memory

Complete Local Search with Memory Complete Local Search with Memory Diptesh Ghosh Gerard Sierksma SOM-theme A Primary Processes within Firms Abstract Neighborhood search heuristics like local search and its variants are some of the most

More information

Discrete Particle Swarm Optimization for Solving a Single to Multiple Destinations in Evacuation Planning

Discrete Particle Swarm Optimization for Solving a Single to Multiple Destinations in Evacuation Planning Discrete Particle Swarm Optimization for Solving a Single to Multiple Destinations in Evacuation Planning 1 MARINA YUSOFF, 2 JUNAIDAH ARIFFIN, 1 AZLINAH MOHAMED 1 Faculty of Computer and Mathematical Sciences

More information

Metaheuristics for Clustered Vehicle Routing Problems

Metaheuristics for Clustered Vehicle Routing Problems Metaheuristics for Vehicle Routing s T. Barthélémy A. Rossi M. Sevaux K. Sörensen Université de Bretagne-Sud Lab-STICC, CNRS Lorient, France University of Antwerp Faculty of Economics Antwerp, Belgium

More information

A two-level metaheuristic for the All Colors Shortest Path Problem

A two-level metaheuristic for the All Colors Shortest Path Problem Noname manuscript No (will be inserted by the editor) A two-level metaheuristic for the All Colors Shortest Path Problem F Carrabs R Cerulli R Pentangelo A Raiconi Received: date / Accepted: date Abstract

More information

A Hybrid Searching Method for the Unrelated Parallel Machine Scheduling Problem

A Hybrid Searching Method for the Unrelated Parallel Machine Scheduling Problem A Hybrid Searching Method for the Unrelated Parallel Machine Scheduling Problem Christoforos Charalambous 1, Krzysztof Fleszar 2, and Khalil S Hindi 2 1 Department of Computer Science and Engineering,

More information

A Firework Algorithm for Solving Capacitated Vehicle Routing Problem

A Firework Algorithm for Solving Capacitated Vehicle Routing Problem A Firework Algorithm for Solving Capacitated Vehicle Routing Problem 1 Noora Hani Abdulmajeed and 2* Masri Ayob 1,2 Data Mining and Optimization Research Group, Center for Artificial Intelligence, Faculty

More information

6.231 DYNAMIC PROGRAMMING LECTURE 15 LECTURE OUTLINE

6.231 DYNAMIC PROGRAMMING LECTURE 15 LECTURE OUTLINE 6.231 DYNAMIC PROGRAMMING LECTURE 15 LECTURE OUTLINE Rollout algorithms Cost improvement property Discrete deterministic problems Sequential consistency and greedy algorithms Sequential improvement ROLLOUT

More information

A sequential insertion heuristic for the initial solution to a constrained vehicle routing problem

A sequential insertion heuristic for the initial solution to a constrained vehicle routing problem Volume 22 (1), pp. 105 116 http://www.orssa.org.za ORiON ISSN 0529-191-X c 2006 A sequentiansertion heuristic for thnitial solution to a constrained vehicle routing problem JW Joubert SJ Claasen Received:

More information

Very Large Scale Neighborhood Search. Collaborators include: Ravi Ahuja, Ozlem Ergun, Abraham Punnen, Dushyant Sharma

Very Large Scale Neighborhood Search. Collaborators include: Ravi Ahuja, Ozlem Ergun, Abraham Punnen, Dushyant Sharma Very Large Scale Neighborhood Search Collaborators include: Ravi Ahuja, Ozlem Ergun, Abraham Punnen, Dushyant Sharma Neighborhood Search Combinatorial Optimization: minimize (f(s) : S F) f is typically

More information

TABU search and Iterated Local Search classical OR methods

TABU search and Iterated Local Search classical OR methods TABU search and Iterated Local Search classical OR methods tks@imm.dtu.dk Informatics and Mathematical Modeling Technical University of Denmark 1 Outline TSP optimization problem Tabu Search (TS) (most

More information

Heuristic Search Methodologies

Heuristic Search Methodologies Linköping University January 11, 2016 Department of Science and Technology Heuristic Search Methodologies Report on the implementation of a heuristic algorithm Name E-mail Joen Dahlberg joen.dahlberg@liu.se

More information

Preliminary Background Tabu Search Genetic Algorithm

Preliminary Background Tabu Search Genetic Algorithm Preliminary Background Tabu Search Genetic Algorithm Faculty of Information Technology University of Science Vietnam National University of Ho Chi Minh City March 2010 Problem used to illustrate General

More information

Outline. TABU search and Iterated Local Search classical OR methods. Traveling Salesman Problem (TSP) 2-opt

Outline. TABU search and Iterated Local Search classical OR methods. Traveling Salesman Problem (TSP) 2-opt TABU search and Iterated Local Search classical OR methods Outline TSP optimization problem Tabu Search (TS) (most important) Iterated Local Search (ILS) tks@imm.dtu.dk Informatics and Mathematical Modeling

More information

AN EXACT ALGORITHM FOR A LOCATION-ROUTING PROBLEM. Martine Labbé 1, Inmaculada Rodríguez Martín 2, Juan José Salazar González 2

AN EXACT ALGORITHM FOR A LOCATION-ROUTING PROBLEM. Martine Labbé 1, Inmaculada Rodríguez Martín 2, Juan José Salazar González 2 27 Congreso Nacional de Estadística e Investigación Operativa Lleida, 8 11 de abril de 2003 AN EXACT ALGORITHM FOR A LOCATION-ROUTING PROBLEM Martine Labbé 1, Inmaculada Rodríguez Martín 2, Juan José Salazar

More information

LOCAL SEARCH FOR THE MINIMUM FUNDAMENTAL CYCLE BASIS PROBLEM

LOCAL SEARCH FOR THE MINIMUM FUNDAMENTAL CYCLE BASIS PROBLEM LOCAL SEARCH FOR THE MINIMUM FUNDAMENTAL CYCLE BASIS PROBLEM Abstract E.Amaldi, L.Liberti, N.Maculan, F.Maffioli DEI, Politecnico di Milano, I-20133 Milano amaldi,liberti,maculan,maffioli @elet.polimi.it

More information

Hardware-Software Codesign

Hardware-Software Codesign Hardware-Software Codesign 4. System Partitioning Lothar Thiele 4-1 System Design specification system synthesis estimation SW-compilation intellectual prop. code instruction set HW-synthesis intellectual

More information

Impressum ( 5 TMG) Herausgeber: Fakultät für Wirtschaftswissenschaft Der Dekan. Verantwortlich für diese Ausgabe:

Impressum ( 5 TMG) Herausgeber: Fakultät für Wirtschaftswissenschaft Der Dekan. Verantwortlich für diese Ausgabe: WORKING PAPER SERIES Impressum ( 5 TMG) Herausgeber: Otto-von-Guericke-Universität Magdeburg Fakultät für Wirtschaftswissenschaft Der Dekan Verantwortlich für diese Ausgabe: Otto-von-Guericke-Universität

More information

Lagrangian Relaxation in CP

Lagrangian Relaxation in CP Lagrangian Relaxation in CP Willem-Jan van Hoeve CPAIOR 016 Master Class Overview 1. Motivation for using Lagrangian Relaxations in CP. Lagrangian-based domain filtering Example: Traveling Salesman Problem.

More information

Resource Constrained Project Scheduling. Reservations and Timetabling

Resource Constrained Project Scheduling. Reservations and Timetabling DM87 SCHEDULING, TIMETABLING AND ROUTING Lecture 13 Resource Constrained Project Scheduling. Reservations and Timetabling Marco Chiarandini DM87 Scheduling, Timetabling and Routing 2 Preprocessing: Temporal

More information

A HEURISTIC COLUMN GENERATION METHOD FOR THE HETEROGENEOUS FLEET VRP (*) by É.D. TAILLARD ( 1 )

A HEURISTIC COLUMN GENERATION METHOD FOR THE HETEROGENEOUS FLEET VRP (*) by É.D. TAILLARD ( 1 ) RAIRO Rech. Opér. (vol. 33, n 1, 1999, pp. 1-14) A HEURISTIC COLUMN GENERATION METHOD FOR THE HETEROGENEOUS FLEET VRP (*) by É.D. TAILLARD ( 1 ) Communicated by Brian BOFFEY Abstract. This paper presents

More information

A Tabu Search with Slope Scaling for the Multicommodity Capacitated Location Problem with Balancing Requirements

A Tabu Search with Slope Scaling for the Multicommodity Capacitated Location Problem with Balancing Requirements Annals of Operations Research 122, 193 217, 2003 2003 Kluwer Academic Publishers. Manufactured in The Netherlands. A Tabu Search with Slope Scaling for the Multicommodity Capacitated Location Problem with

More information

An ILS Algorithm for the Team Orienteering Problem with Variable Profit

An ILS Algorithm for the Team Orienteering Problem with Variable Profit An ILS Algorithm for the Team Orienteering Problem with Variable Profit Aldy Gunawan School of Information Systems Singapore Management University, Singapore Tel: (+65) 6808-5227, Email: aldygunawan@smu.edu.sg

More information

Adjusted Clustering Clarke-Wright Saving Algorithm for Two Depots-N Vehicles

Adjusted Clustering Clarke-Wright Saving Algorithm for Two Depots-N Vehicles Adjusted Clustering Clarke-Wright Saving Algorithm for Two Depots-N Vehicles S. Halim, L. Yoanita Department of Industrial Engineering, Petra Christian University, Surabaya, Indonesia (halim@petra.ac.id)

More information

Construction of Minimum-Weight Spanners Mikkel Sigurd Martin Zachariasen

Construction of Minimum-Weight Spanners Mikkel Sigurd Martin Zachariasen Construction of Minimum-Weight Spanners Mikkel Sigurd Martin Zachariasen University of Copenhagen Outline Motivation and Background Minimum-Weight Spanner Problem Greedy Spanner Algorithm Exact Algorithm:

More information

DISSERTATION. Titel der Dissertation. Decomposition Strategies for Large Scale Multi Depot Vehicle Routing Problems. Verfasser

DISSERTATION. Titel der Dissertation. Decomposition Strategies for Large Scale Multi Depot Vehicle Routing Problems. Verfasser DISSERTATION Titel der Dissertation Decomposition Strategies for Large Scale Multi Depot Vehicle Routing Problems Verfasser Mag. Alexander Ostertag angestrebter akademischer Grad Doktor der Sozial- und

More information

The Heuristic (Dark) Side of MIP Solvers. Asja Derviskadic, EPFL Vit Prochazka, NHH Christoph Schaefer, EPFL

The Heuristic (Dark) Side of MIP Solvers. Asja Derviskadic, EPFL Vit Prochazka, NHH Christoph Schaefer, EPFL The Heuristic (Dark) Side of MIP Solvers Asja Derviskadic, EPFL Vit Prochazka, NHH Christoph Schaefer, EPFL 1 Table of content [Lodi], The Heuristic (Dark) Side of MIP Solvers, Hybrid Metaheuristics, 273-284,

More information

An Efficient Heuristic for the Multi-Vehicle One-to-One Pickup and Delivery Problem with Split Loads

An Efficient Heuristic for the Multi-Vehicle One-to-One Pickup and Delivery Problem with Split Loads An Efficient Heuristic for the Multi-Vehicle One-to-One Pickup and Delivery Problem with Split Loads Mustafa Şahin a, Dilek Tüzün Aksu b, Gizem Çavuşlar a, Temel Öncan c and Güvenç Şahin a,1 a Manufacturing

More information

Plowing with Precedence

Plowing with Precedence A Variant of the Windy Postman Problem Benjamin Dussault, Bruce Golden, Edward Wasil, and Chris Groer Overview The Chinese Postman Problem (CPP) The Windy Postman Problem (WPP) Plowing with Precedence

More information

A SWEEP BASED ALGORITHM FOR THE FLEET SIZE AND MIX VEHICLE ROUTING PROBLEM

A SWEEP BASED ALGORITHM FOR THE FLEET SIZE AND MIX VEHICLE ROUTING PROBLEM A SWEEP BASED ALGORITHM FOR THE FLEET SIZE AND MIX VEHICLE ROUTING PROBLEM Jacques Renaud and Fayez F. Boctor Centre de recherche sur les technologies de l organisation réseau (CENTOR) & Faculté des sciences

More information

epub WU Institutional Repository

epub WU Institutional Repository epub WU Institutional Repository Vera Hemmelmayr and Karl Doerner and Richard F. Hartl and Stefan Rath A heuristic solution method for node routing based solid waste collection problems Article (Published)

More information

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture 28 Chinese Postman Problem In this lecture we study the Chinese postman

More information

Solving Large Aircraft Landing Problems on Multiple Runways by Applying a Constraint Programming Approach

Solving Large Aircraft Landing Problems on Multiple Runways by Applying a Constraint Programming Approach Solving Large Aircraft Landing Problems on Multiple Runways by Applying a Constraint Programming Approach Amir Salehipour School of Mathematical and Physical Sciences, The University of Newcastle, Australia

More information

COORDINATED teams of autonomous robots are often

COORDINATED teams of autonomous robots are often 1 Multi-robot Rendezvous Planning for Recharging in Persistent Tasks Neil Mathew Stephen L. Smith Steven L. Waslander Abstract This paper presents multi-robot path-planning strategies for recharging autonomous

More information

Heuristic and exact solution strategies for the Team Orienteering Problem

Heuristic and exact solution strategies for the Team Orienteering Problem Research Practice 2 Final report Heuristic and exact solution strategies for the Team Orienteering Problem Camila Mejía Quintero Miguel Tamayo Jaramillo Juan Carlos Rivera Agudelo May 27, 2016 Abstract

More information

Using Column Generation for the Pickup and Delivery Problem with Disturbances

Using Column Generation for the Pickup and Delivery Problem with Disturbances Master Thesis Using Column Generation for the Pickup and Delivery Problem with Disturbances Author: Dirk Koning Supervisors: dr. ir. J.M. van den Akker dr. J.A. Hoogeveen Thesis number: ICA-0319791 June

More information