Section 3.4 Basic Results of Graph Theory

Size: px
Start display at page:

Download "Section 3.4 Basic Results of Graph Theory"

Transcription

1 1 Basic Results of Graph Theory Section 3.4 Basic Results of Graph Theory Purpose of Section: To formally introduce the symmetric relation of a (undirected) graph. We introduce such topics as Euler Tours, the Handshaking Theorem, and a simple illustration of Ramsey Theory. Introduction An Intel engineer designs a new revolutionary VSLI circuit. A computer scientist creates a computer network. A sociologist ponders a diagram illustrating the power structure of a large corporation. A biochemist discovers the physical structure of a complex molecule. What do all these patterns have in common? They are all examples of what is called a graph. You have already heard of the word graph in calculus in connection with the graphing of functions, but the graph we study here is a different kind of graph. Here, a graph refers to finite set of points, called vertices, along with lines or curves, called edges, connecting some or all of the nodes. Some graphs have only a few nodes and edges, others have hundreds and even thousands. Quite simply, the definition of a graph is as follows. Origins of Graph Theory The beginning of graph theory (as every mathematician knows) had its origins in the old city of Konigsberg in East Prussia (now Kaliningrad, Russia) which flourished in the 17 th and 18 th centuries, people would spend their evenings strolling throughout the city, crossing the seven bridges that spanned the Pregel river. The question asked was whether it was possible to start at one of the four land areas, cross each bridge exactly once, and return to the starting point. The Swiss mathematician Leonard Euler ( ) learned of the problem and showed in a published paper 1 that for a stroller to cross each bridge exactly once and return to the starting point, each vertex (land mass) must be the meeting point of an even number (2,4,6, ) of edges (bridges). Since this was not the case for the Konigsberg bridges, such a stroll was impossible. Figure 1 gives a diagram of the Pregel river and adjoining four land masses, where we have also drawn a graph which Euler drew to solve the puzzle. The vertices 1,2,3,4 of Euler s graph represent the land masses, and the lines connecting the vertices represent the bridges. Note that some of the vertices are connected by more than one line. 1 Euler published his findings in a paper titled Solutio problematis ad geometriam situs pertinentis (The solution of a problem relating to the geometry of position) in the Proceedings of St. Petersburg Academy in That paper marked the beginnings of the subject of topology and graph theory.

2 2 Seven Bridges of Konigsberg and its Euler Graph Figure 1 The above historical account motivates the definition of a symmetric relation called a graph. Definition A graph ( V, E) finite set of edges joining pairs of vertices. graph with five vertices and eight edges 2 : V = = is a finite set V of vertices (or nodes) and a { a, b, c, d, e} (, ),(, ),(, ),(, ),(, ),(, ),(, ),(, ) { } E = a b a c a d b c b d b e c d c e The diagram below depicts a The order of a graph is the number of vertices in the graph and denoted by. The graph below is of order five, or = 5. Two vertices are called adjacent if there is an edge connecting the vertices. In the graph below, the vertices a and b are adjacent, but a and e are not. The degree of a vertex is the number of edges adjacent to the vertex. In the graph below, the vertex c has degree 3, b has degree 4, and e has degree 2. 2 We denote an edge connecting vertices a and b as ( a, b ). One could argue that this is poor notation since ( a, b ) is normally the notation for an ordered pair, meaning ( a, b) ( b, a). A better notation might be set notation { a, b }. However ( a, b ) is the accepted notation in graph theory so we adopt it.

3 3 The set of edges E is a symmetric relation on the vertices V (i.e E V V ), where two vertices a, b are related if and only if they are adjacent. That is( a, b) E. A few other glossary terms are: i a path in a graph is a sequence of vertices, such that from each vertex there is an edge to the next vertex i a graph is complete if every vertex is connected to every other vertex. i a graph is regular if every vertex has the same degree i a graph is planar if the graph can be drawn in the plane without intersecting edges i a cycle in a graph is a closed path i the girth of a graph is the shortest cycle in a graph i the diameter of a graph is the longest shortest path between vertices i the chromatic number of a graph is the smallest number required to color the vertices where adjacent vertices different colors. Example 1 Properties of a Graph For the graph in Figure 2 determine if the graph is complete, regular, and planar. Then find the girth, diameter, and chromatic number of the graph.

4 4 Solution Typical Graph Figure 2 complete: the graph is not complete (several vertices are not adjacent). regular: the graph is not regular ( a has degree 2, b has degree 4) planar: the graph is planar (edges do not intersect) girth: the shortest cycle has length 3; the path abc is a 3-cycle diameter: the shortest paths between vertices have lengths 1,2,3,4 and so the longest shortest path is 4 (the path abdg has length 4) chromatic number: it requires 3 colors, to color the vertices so adjacent vertices have different colors. Try it. Note: The study of graphs, or what is generally called graph theory, is a study in pure mathematics, completely divorced from the real world. However, that said, we are free to interpret graphs in any manner we choose, thus allowing real-world interpretations to abstract constructions. It is these many interpretations that make graph theory so important from a practical point of view. Euler Tours One of the oldest problems in graph theory is the finding of an an Euler Tour (or Euler Path)? By a path in a graph, we mean a sequence of vertices, where succeeding vertices in the sequence are joined by an edge. Typical paths are shown for the graphs in Figure 3. Typical paths in two graphs Figure 3

5 5 So what do we mean by an Euler Tour? Definition: An Euler Path (or Euler Tour) in a graph is a path in the graph which passes through each edge exactly once, and then returns to the starting vertex. A graph that contains an Euler Tour 3 is called an Eulerian graph. (Note that the path may pass through a vertex more than once.) Before stating Euler s Theorem, we define a connected graph as a graph where any two vertices in the graph are connected by a path, otherwise the graph is disconnected. The graphs in Figures 2 and 3 are connected. Theorem 1: Euler s Theorem on Euler Tours If every vertex of a connected graph is even (i.e. degree 2,4,6, ), then the graph has an Euler Tour. What s more, the tour can start at any vertex. Proof: The verification of Euler s theorem is based on the simple observation that if every vertex is even, then a path can always leave every vertex that it approaches. Construction of an Euler Tour For a graph whose vertices are all even, the following steps indicate how an Euler tour can be found. 3 We prefer the label Euler Tour over Euler Path and Hamiltonian Tour over Hamiltonian Path..

6 6 Finding an Euler Tour When AllA Nodes are Even To find an Euler tour in the case all vertices are even, carry out the following steps: Step 1. Select any vertex at random as the starting point of the tour. This vertex will also be the end point of the tour. As an example, we find an Euler Tour for the graph in Figure (4a). Step 2. Starting at vertex 1, we travel (at random) along the unused edges until we reach a vertex, all of whose edges have been traversed. Since each vertex has an even degree, we must be back at the starting vertex. If the traversed path contains all the edges of the graph, we are done. (We have found an Euler tour 4.) However, if we arrive back at the starting vertex but have not traversed all the edges of the graph, such as in the case illustrated in Figure (4b), we then consider a new graph consisting of the vertices and edges that have not been traversed as shown in Figure (4c). We then begin anew and find an Euler tour in this new subgraph and insert it in the appropriate place in the original graph as shown in Figure (4d). Of course, it may be necessary to construct more than one subtour as we did in this example, but this can be done. Finding an Euler Tour Figure 4 4 If an Euler Tour exists it is not necessarily unique.

7 7 Note: Discrete D mathematics athematics, also called finite mathematics, is the study of mathematical structures which are finite or discrete in nature. Today s interest in discrete mathematics comes in great part from computers, which are inherently discrete, being ultimately based on on and off switches which give rise to 0 s and 1 s. A few active areas in discrete mathematics today are graph theory, abstract algebra, networks, combinatorics, coding theory, block designs, formal languages, and discrete probability theory. Handshaking Problem We learned from the Konigsburg bridge problem that the degree of the vertices of a graph plays an important role for many properties of a graph. The following theorem is another illustration of this idea. In this theorem, we call a vertex whose degree is an odd number (1,3,5, ) an odd vertex, and a vertex whose degree is an even number (0,2,4, ) an even vertex. Theorem em 2: Handshaking Theorem The number of odd vertices in any graph is an even number. Proof: We begin by drawing a graph with a given number of vertices and no edges. Note that every vertex has degree 0 and so the number of odd vertices is 0 (an even number). We will see that if we start adding edges to the graph, the number of odd vertices will either go up by 2 or down by 2, thus keeping the number of odd vertices an even number. In Figure 5a), we start with all vertices having degree 0, and so there are no vertices having odd degree. Hence the number of odd vertices is 0, an even number. Note by adding random edges to the graph, the number of odd nodes either goes up by 2 or down by 2, depending on whether the new handshakes are performed, respectively, by people have not yet shaken hands, or by people who have. This proof illustrates a common proof technique in graph theory, the idea of invariance. Starting with 0 odd nodes (an even number), for each edge added, although the number of odd nodes might change, the parity was invariant at an even number. In many cases, a graph may change but certain properties of the graph remain constant.

8 8 Handshaking Problem Figure 5 The theorem is called the Handshaking Theorem since it has an interpretation that in a social gathering, the number of people who shake hands an odd number of times (1,3,5, ) is an even number (0,2,4, ), regardless of the number of people at the gathering and regardless the number of handshakes. Ramsey Theory In 1928, English mathematician Frank Ramsey asked whether there is always some degree of order in any system, however disorderly. Ramsey sought out patterns in sets of randomly selected objects, whether they are groups of people, sequences of random numbers, or even stars in a night sky. He felt even the most disorderly systems should display some degree of order, and in the process he invented a new area of mathematics called Ramsey Theory. He read the results of his seminal paper on the subject before the London Mathematical Society at the age of 26, but died before it was published in their Proceedings. Some say Ramsey Theory has the uncanny ability to ask very simplelooking questions which turn out to defy all attempts to solve them. A simple Ramsey Theory problem related to graphs is the following. In any group of six people, there are either three (or more) who mutually know each other, or three (or more) who are strangers to one another. From a graph theory viewpoint, this statement translates into the fact that in a complete graph

9 9 (every vertex is connected to every other vertex) of order 6, where every edge is colored one of two colors, say red or black, the graph must contain either a red triangle or black triangle, where a single-color triangle means the three edges forming a triangle in the graph have the same color. Theorem 3: Six Person Problem A complete graph of order 3, 4, and 5 does not necessarily contain monochrome triangles, and that a graph of order 6 (or larger) must have at least one monochrome triangle. Proof: Figure 6 shows that for complete graphs of order N = 3,4, or 5 it is possible to color the edges so the graph does not contain monochrome triangles. No Monochrome Triangles for N = 3, 4,5 Figure 6 Now consider the complete graph of order 6 as shown in Figure 7. Starting at vertex 6, we know that at least 3 edges adjacent to vertex 6 must be colored either red or black. Without loss of generality we color the edges 1, 2 and 2,3 black or ( 6,1 ),( 6, 2 ),( 6,3 ) as red. Now we must color edges ( ) ( ) else we get monochrome triangles. But then we are forced to color edge 1,3 either red or black, which in either case leads to a monochrome triangle. ( )

10 10 Complete Graphs of order 6 must contain a monochrome triangle Figure 7

11 11 Problems For Problems 1-9, determine whether the given graph has an Euler tour and if so find one. 1. 2,

12

13

14 14 9. Hamiltonian Tour Another type of path or tour through a graph is the Hamiltonian Tour, which is a path that starts at a given note, traverses each node (not edge) exactly once, and then returns to the starting node. A graph that contains a Hamiltonian Tour is called a Hamiltonian Graph. Unfortunately, unlike Euler Tours, there is no known simple test for determining if a graph has a Hamiltonian Tour For Problems 10-19, find, if there is one, a Hamiltonian Tour in the given graph

15

16

17 Graph Properties Determine whether the graphs in Problem 1-5 are complete, planar and regular. Then find the diameter, girth, and chromatic number of the graph. 21. Draw all possible graphs with three nodes. Hint: There are four of them. 22. Draw all possible graphs with four nodes. Hint: There are 11 of them, 1 with no edges, 1 with one edge, 2 with two edges, 3 with 3 edges, 2 with 4 edges, 1 with 5 edges, and 1 with 6 edges. 23. Hamilton s Famous Puzzle In 1859, Irish mathematician William Rowan Hamilton ( ) marketed a puzzle shaped as a regular dodecahedron, a solid with 12 sides, each side having the shape of a regular pentagon, as illustrated in Figure 8a). A name of a city was assigned to each corner of the dodecahedron. The object of the puzzle was to start at any city, find a route along the edges of the dodecahedron that visits each city, and end back at the starting city. Such a path is a Hamiltonian tour. The planar representation of

18 18 a dodecahedron is shown in Figure 8b). Can you find a Hamiltonian tour of this puzzle? Planar representation of a dodecahedron Figure 8 Historical Note: William Rowan Hamiltonian ( ) is Ireland s greatest mathematician. In 1859 Hamilton marketed a puzzle that had the shape of a regular dodecahedron (a solid figure with 12 sides, each side having the shape of a regular pentagon). The object of the puzzle was to find a route along the edges of the dodecahedron (which were labeled as cities of Europe) and end at the same point (city). 24. Delivery Problem The map shown in Figure 9 shows a grid of streets for which the mail must be delivered on both sides of each stree. Find a delivery route in which each side of a street is traversed exactly once: Draw a graph that represents the grid of streets and find an Euler tour of the graph.

19 19 City streets in a mail delivery route Figure Open Problems in Graph Theory If you Google the following phrase, you will find websites 5 that list unsolved problems in graph theory. Look at one that interests you and rewrite the problem in your own language. If you have any bright ideas on how such a problem might be approached, write them down too. Some terms may be unfamiliar to you, but you can google them as well and learn of their meaning. 26. Tours of Platonic Solids The graphs in Figure 10 are planar representations of the five platonic solids; the tetrahedron, cube, octahedron, dodecahedron, and icosahedron. Tell if each has Euler and Hamiltonian tours. If so, find one. Five Platonic Solids Figure 10 5 Rutgers University has a nice site.

CHAPTER 10 GRAPHS AND TREES. Alessandro Artale UniBZ - artale/z

CHAPTER 10 GRAPHS AND TREES. Alessandro Artale UniBZ -  artale/z CHAPTER 10 GRAPHS AND TREES Alessandro Artale UniBZ - http://www.inf.unibz.it/ artale/z SECTION 10.1 Graphs: Definitions and Basic Properties Copyright Cengage Learning. All rights reserved. Graphs: Definitions

More information

Worksheet 28: Wednesday November 18 Euler and Topology

Worksheet 28: Wednesday November 18 Euler and Topology Worksheet 28: Wednesday November 18 Euler and Topology The Konigsberg Problem: The Foundation of Topology The Konigsberg Bridge Problem is a very famous problem solved by Euler in 1735. The process he

More information

INTRODUCTION TO GRAPH THEORY. 1. Definitions

INTRODUCTION TO GRAPH THEORY. 1. Definitions INTRODUCTION TO GRAPH THEORY D. JAKOBSON 1. Definitions A graph G consists of vertices {v 1, v 2,..., v n } and edges {e 1, e 2,..., e m } connecting pairs of vertices. An edge e = (uv) is incident with

More information

Graph Theory. 1 Introduction to Graphs. Martin Stynes Department of Mathematics, UCC January 26, 2011

Graph Theory. 1 Introduction to Graphs. Martin Stynes Department of Mathematics, UCC   January 26, 2011 Graph Theory Martin Stynes Department of Mathematics, UCC email: m.stynes@ucc.ie January 26, 2011 1 Introduction to Graphs 1 A graph G = (V, E) is a non-empty set of nodes or vertices V and a (possibly

More information

Graph theory was invented by a mathematician named Euler in the 18th century. We will see some of the problems which motivated its study.

Graph theory was invented by a mathematician named Euler in the 18th century. We will see some of the problems which motivated its study. Graph Theory Graph theory was invented by a mathematician named Euler in the 18th century. We will see some of the problems which motivated its study. However, it wasn t studied too systematically until

More information

Graph Theory. 26 March Graph Theory 26 March /29

Graph Theory. 26 March Graph Theory 26 March /29 Graph Theory 26 March 2012 Graph Theory 26 March 2012 1/29 Graph theory was invented by a mathematician named Euler in the 18th century. We will see some of the problems which motivated its study. However,

More information

6.2. Paths and Cycles

6.2. Paths and Cycles 6.2. PATHS AND CYCLES 85 6.2. Paths and Cycles 6.2.1. Paths. A path from v 0 to v n of length n is a sequence of n+1 vertices (v k ) and n edges (e k ) of the form v 0, e 1, v 1, e 2, v 2,..., e n, v n,

More information

How can we lay cable at minimum cost to make every telephone reachable from every other? What is the fastest route between two given cities?

How can we lay cable at minimum cost to make every telephone reachable from every other? What is the fastest route between two given cities? 1 Introduction Graph theory is one of the most in-demand (i.e. profitable) and heavily-studied areas of applied mathematics and theoretical computer science. May graph theory questions are applied in this

More information

Algorithms. Graphs. Algorithms

Algorithms. Graphs. Algorithms Algorithms Graphs Algorithms Graphs Definition: A graph is a collection of edges and vertices. Each edge connects two vertices. Algorithms 1 Graphs Vertices: Nodes, points, computers, users, items,...

More information

Intermediate Math Circles Wednesday, February 22, 2017 Graph Theory III

Intermediate Math Circles Wednesday, February 22, 2017 Graph Theory III 1 Eulerian Graphs Intermediate Math Circles Wednesday, February 22, 2017 Graph Theory III Let s begin this section with a problem that you may remember from lecture 1. Consider the layout of land and water

More information

TWO CONTRIBUTIONS OF EULER

TWO CONTRIBUTIONS OF EULER TWO CONTRIBUTIONS OF EULER SIEMION FAJTLOWICZ. MATH 4315 Eulerian Tours. Although some mathematical problems which now can be thought of as graph-theoretical, go back to the times of Euclid, the invention

More information

Algorithms: Graphs. Amotz Bar-Noy. Spring 2012 CUNY. Amotz Bar-Noy (CUNY) Graphs Spring / 95

Algorithms: Graphs. Amotz Bar-Noy. Spring 2012 CUNY. Amotz Bar-Noy (CUNY) Graphs Spring / 95 Algorithms: Graphs Amotz Bar-Noy CUNY Spring 2012 Amotz Bar-Noy (CUNY) Graphs Spring 2012 1 / 95 Graphs Definition: A graph is a collection of edges and vertices. Each edge connects two vertices. Amotz

More information

CHAPTER 10 GRAPHS AND TREES. Copyright Cengage Learning. All rights reserved.

CHAPTER 10 GRAPHS AND TREES. Copyright Cengage Learning. All rights reserved. CHAPTER 10 GRAPHS AND TREES Copyright Cengage Learning. All rights reserved. SECTION 10.1 Graphs: Definitions and Basic Properties Copyright Cengage Learning. All rights reserved. Graphs: Definitions and

More information

Fundamental Properties of Graphs

Fundamental Properties of Graphs Chapter three In many real-life situations we need to know how robust a graph that represents a certain network is, how edges or vertices can be removed without completely destroying the overall connectivity,

More information

The premature state of Topology and Graph Theory nourished by Seven Bridges of Königsberg Problem

The premature state of Topology and Graph Theory nourished by Seven Bridges of Königsberg Problem The premature state of Topology and Graph Theory nourished by Seven Bridges of Königsberg Problem Damodar Rajbhandari Many many years ago, There was a problem which created a mind-boggling puzzle to the

More information

11-5 Networks. Königsberg Bridge Problem

11-5 Networks. Königsberg Bridge Problem Section 11-5 Networks 1 11-5 Networks In the 1700s, the people of Königsberg, Germany (now Kaliningrad in Russia), used to enjoy walking over the bridges of the Pregel River. There were three landmasses

More information

Grades 7 & 8, Math Circles 31 October/1/2 November, Graph Theory

Grades 7 & 8, Math Circles 31 October/1/2 November, Graph Theory Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grades 7 & 8, Math Circles 31 October/1/2 November, 2017 Graph Theory Introduction Graph Theory is the

More information

GRAPH THEORY AND COMBINATORICS ( Common to CSE and ISE ) UNIT 1

GRAPH THEORY AND COMBINATORICS ( Common to CSE and ISE ) UNIT 1 GRAPH THEORY AND COMBINATORICS ( Common to CSE and ISE ) Sub code : 06CS42 UNIT 1 Introduction to Graph Theory : Definition and Examples Subgraphs Complements, and Graph Isomorphism Vertex Degree, Euler

More information

3 Euler Tours, Hamilton Cycles, and Their Applications

3 Euler Tours, Hamilton Cycles, and Their Applications 3 Euler Tours, Hamilton Cycles, and Their Applications 3.1 Euler Tours and Applications 3.1.1 Euler tours Carefully review the definition of (closed) walks, trails, and paths from Section 1... Definition

More information

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. An Introduction to Graph Theory

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. An Introduction to Graph Theory SCHOOL OF ENGINEERING & BUILT ENVIRONMENT Mathematics An Introduction to Graph Theory. Introduction. Definitions.. Vertices and Edges... The Handshaking Lemma.. Connected Graphs... Cut-Points and Bridges.

More information

An Interactive Introduction to Graph Theory

An Interactive Introduction to Graph Theory An Interactive Introduction to Graph Theory An Interactive Introduction to Graph Theory Chris K. Caldwell 1995 This the first of a series of interactive tutorials introducing the basic concepts of graph

More information

GRAPH THEORY AND LOGISTICS

GRAPH THEORY AND LOGISTICS GRAPH THEORY AND LOGISTICS Maja Fošner and Tomaž Kramberger University of Maribor Faculty of Logistics Mariborska cesta 2 3000 Celje Slovenia maja.fosner@uni-mb.si tomaz.kramberger@uni-mb.si Abstract This

More information

Instant Insanity Instructor s Guide Make-it and Take-it Kit for AMTNYS 2006

Instant Insanity Instructor s Guide Make-it and Take-it Kit for AMTNYS 2006 Instant Insanity Instructor s Guide Make-it and Take-it Kit for AMTNYS 2006 THE KIT: This kit contains materials for two Instant Insanity games, a student activity sheet with answer key and this instructor

More information

Euler Characteristic

Euler Characteristic Euler Characteristic Rebecca Robinson May 15, 2007 Euler Characteristic Rebecca Robinson 1 PLANAR GRAPHS 1 Planar graphs v = 5, e = 4, f = 1 v e + f = 2 v = 6, e = 7, f = 3 v = 4, e = 6, f = 4 v e + f

More information

Introduction III. Graphs. Motivations I. Introduction IV

Introduction III. Graphs. Motivations I. Introduction IV Introduction I Graphs Computer Science & Engineering 235: Discrete Mathematics Christopher M. Bourke cbourke@cse.unl.edu Graph theory was introduced in the 18th century by Leonhard Euler via the Königsberg

More information

#30: Graph theory May 25, 2009

#30: Graph theory May 25, 2009 #30: Graph theory May 25, 2009 Graph theory is the study of graphs. But not the kind of graphs you are used to, like a graph of y = x 2 graph theory graphs are completely different from graphs of functions.

More information

Graph (1A) Young Won Lim 4/19/18

Graph (1A) Young Won Lim 4/19/18 Graph (1A) Copyright (c) 2015 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

Circuits and Paths. April 13, 2014

Circuits and Paths. April 13, 2014 Circuits and Paths April 13, 2014 Warm Up Problem Quandroland is an insect country that has four cities. Draw all possible ways tunnels can join the cities in Quadroland. (Remember that some cities might

More information

An Introduction to Graph Theory

An Introduction to Graph Theory An Introduction to Graph Theory Evelyne Smith-Roberge University of Waterloo March 22, 2017 What is a graph? Definition A graph G is: a set V (G) of objects called vertices together with: a set E(G), of

More information

IE 102 Spring Routing Through Networks - 1

IE 102 Spring Routing Through Networks - 1 IE 102 Spring 2017 Routing Through Networks - 1 The Bridges of Koenigsberg: Euler 1735 Graph Theory began in 1735 Leonard Eüler Visited Koenigsberg People wondered whether it is possible to take a walk,

More information

1. a graph G = (V (G), E(G)) consists of a set V (G) of vertices, and a set E(G) of edges (edges are pairs of elements of V (G))

1. a graph G = (V (G), E(G)) consists of a set V (G) of vertices, and a set E(G) of edges (edges are pairs of elements of V (G)) 10 Graphs 10.1 Graphs and Graph Models 1. a graph G = (V (G), E(G)) consists of a set V (G) of vertices, and a set E(G) of edges (edges are pairs of elements of V (G)) 2. an edge is present, say e = {u,

More information

Assignments are handed in on Tuesdays in even weeks. Deadlines are:

Assignments are handed in on Tuesdays in even weeks. Deadlines are: Tutorials at 2 3, 3 4 and 4 5 in M413b, on Tuesdays, in odd weeks. i.e. on the following dates. Tuesday the 28th January, 11th February, 25th February, 11th March, 25th March, 6th May. Assignments are

More information

Math 110 Graph Theory II: Circuits and Paths

Math 110 Graph Theory II: Circuits and Paths Math 110 Graph Theory II: Circuits and Paths For Next Time. Read Section 6.1 Circuit Training (p. 386ff) for more background on this material. Review the definition of a graph. Make sure you understand

More information

Week 10: Colouring graphs, and Euler s paths. 14 and 16 November, 2018

Week 10: Colouring graphs, and Euler s paths. 14 and 16 November, 2018 MA284 : Discrete Mathematics Week 10: Colouring graphs, and Euler s paths http://www.maths.nuigalway.ie/ niall/ma284/ 14 and 16 November, 2018 1 Colouring The Four Colour Theorem 2 Graph colouring Chromatic

More information

Sarah Will Math 490 December 2, 2009

Sarah Will Math 490 December 2, 2009 Sarah Will Math 490 December 2, 2009 Euler Circuits INTRODUCTION Euler wrote the first paper on graph theory. It was a study and proof that it was impossible to cross the seven bridges of Königsberg once

More information

Graph Theory Problems Instructor: Natalya St. Clair. 1 The Seven Bridges of Königsberg Problem

Graph Theory Problems Instructor: Natalya St. Clair. 1 The Seven Bridges of Königsberg Problem Graph Theory Problems erkeley Math ircles 2015 Lecture Notes Graph Theory Problems Instructor: Natalya St. lair 1 The Seven ridges of Königsberg Problem Königsberg is an ancient city of Prussia, now Kalingrad,

More information

Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 7

Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 7 CS 70 Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 7 An Introduction to Graphs A few centuries ago, residents of the city of Königsberg, Prussia were interested in a certain problem.

More information

Week 11: Eulerian and Hamiltonian graphs; Trees. 15 and 17 November, 2017

Week 11: Eulerian and Hamiltonian graphs; Trees. 15 and 17 November, 2017 (1/22) MA284 : Discrete Mathematics Week 11: Eulerian and Hamiltonian graphs; Trees http://www.maths.nuigalway.ie/~niall/ma284/ 15 and 17 November, 2017 Hamilton s Icosian Game (Library or the Royal Irish

More information

MATH 113 Section 9.2: Topology

MATH 113 Section 9.2: Topology MATH 113 Section 9.2: Topology Prof. Jonathan Duncan Walla Walla College Winter Quarter, 2007 Outline 1 Introduction to Topology 2 Topology and Childrens Drawings 3 Networks 4 Conclusion Geometric Topology

More information

EECS 203 Lecture 20. More Graphs

EECS 203 Lecture 20. More Graphs EECS 203 Lecture 20 More Graphs Admin stuffs Last homework due today Office hour changes starting Friday (also in Piazza) Friday 6/17: 2-5 Mark in his office. Sunday 6/19: 2-5 Jasmine in the UGLI. Monday

More information

Discrete Mathematics for CS Spring 2008 David Wagner Note 13. An Introduction to Graphs

Discrete Mathematics for CS Spring 2008 David Wagner Note 13. An Introduction to Graphs CS 70 Discrete Mathematics for CS Spring 2008 David Wagner Note 13 An Introduction to Graphs Formulating a simple, precise specification of a computational problem is often a prerequisite to writing a

More information

Assignment 4 Solutions of graph problems

Assignment 4 Solutions of graph problems Assignment 4 Solutions of graph problems 1. Let us assume that G is not a cycle. Consider the maximal path in the graph. Let the end points of the path be denoted as v 1, v k respectively. If either of

More information

Chapter 11: Graphs and Trees. March 23, 2008

Chapter 11: Graphs and Trees. March 23, 2008 Chapter 11: Graphs and Trees March 23, 2008 Outline 1 11.1 Graphs: An Introduction 2 11.2 Paths and Circuits 3 11.3 Matrix Representations of Graphs 4 11.5 Trees Graphs: Basic Definitions Informally, a

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 8

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 8 CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 8 An Introduction to Graphs Formulating a simple, precise specification of a computational problem is often a prerequisite

More information

Elements of Graph Theory

Elements of Graph Theory Elements of Graph Theory Quick review of Chapters 9.1 9.5, 9.7 (studied in Mt1348/2008) = all basic concepts must be known New topics we will mostly skip shortest paths (Chapter 9.6), as that was covered

More information

Graph Theory CS/Math231 Discrete Mathematics Spring2015

Graph Theory CS/Math231 Discrete Mathematics Spring2015 1 Graphs Definition 1 A directed graph (or digraph) G is a pair (V, E), where V is a finite set and E is a binary relation on V. The set V is called the vertex set of G, and its elements are called vertices

More information

Chapter 3: Paths and Cycles

Chapter 3: Paths and Cycles Chapter 3: Paths and Cycles 5 Connectivity 1. Definitions: Walk: finite sequence of edges in which any two consecutive edges are adjacent or identical. (Initial vertex, Final vertex, length) Trail: walk

More information

Basics of Graph Theory

Basics of Graph Theory Basics of Graph Theory 1 Basic notions A simple graph G = (V, E) consists of V, a nonempty set of vertices, and E, a set of unordered pairs of distinct elements of V called edges. Simple graphs have their

More information

Introduction to Graphs

Introduction to Graphs Introduction to Graphs Historical Motivation Seven Bridges of Königsberg Königsberg (now Kaliningrad, Russia) around 1735 Problem: Find a walk through the city that would cross each bridge once and only

More information

Crossing bridges. Crossing bridges Great Ideas in Theoretical Computer Science. Lecture 12: Graphs I: The Basics. Königsberg (Prussia)

Crossing bridges. Crossing bridges Great Ideas in Theoretical Computer Science. Lecture 12: Graphs I: The Basics. Königsberg (Prussia) 15-251 Great Ideas in Theoretical Computer Science Lecture 12: Graphs I: The Basics February 22nd, 2018 Crossing bridges Königsberg (Prussia) Now Kaliningrad (Russia) Is there a way to walk through the

More information

Salvador Sanabria History of Mathematics. Königsberg Bridge Problem

Salvador Sanabria History of Mathematics. Königsberg Bridge Problem Salvador Sanabria History of Mathematics Königsberg Bridge Problem The Problem of the Königsberg Bridge There is a famous story from Konigsberg. The city of Konigsberg, Northern Germany has a significant

More information

Brief History. Graph Theory. What is a graph? Types of graphs Directed graph: a graph that has edges with specific directions

Brief History. Graph Theory. What is a graph? Types of graphs Directed graph: a graph that has edges with specific directions Brief History Graph Theory What is a graph? It all began in 1736 when Leonhard Euler gave a proof that not all seven bridges over the Pregolya River could all be walked over once and end up where you started.

More information

Discrete mathematics

Discrete mathematics Discrete mathematics Petr Kovář petr.kovar@vsb.cz VŠB Technical University of Ostrava DiM 470-2301/02, Winter term 2018/2019 About this file This file is meant to be a guideline for the lecturer. Many

More information

08. First and second degree equations

08. First and second degree equations 08. First and second degree equations GRAPH THEORY Based on Chris K. Caldwell work: http://primes.utm.edu/cgi-bin/caldwell/tutor/graph/index.html INTRODUCTION Consider the next problem: Old Königsberg

More information

Mohammad A. Yazdani, Ph.D. Abstract

Mohammad A. Yazdani, Ph.D. Abstract Utilizing Euler s Approach in Solving Konigsberg Bridge Problem to Identify Similar Traversable Networks in a Dynamic Geometry Teacher Education Environment: An Instructional Activity Mohammad A. Yazdani,

More information

Dieter Jungnickel (2008), Graphs, Networks and Algorithms, 3rd edition, which is available online via SpringerLink.

Dieter Jungnickel (2008), Graphs, Networks and Algorithms, 3rd edition, which is available online via SpringerLink. Lecture 1 First Steps in Graph Theory This lecture introduces Graph Theory, the main subject of the course, and includes some basic definitions as well as a number of standard examples. Reading: Some of

More information

CS 2336 Discrete Mathematics

CS 2336 Discrete Mathematics CS 2336 Discrete Mathematics Lecture 15 Graphs: Planar Graphs 1 Outline What is a Planar Graph? Euler Planar Formula Platonic Solids Five Color Theorem Kuratowski s Theorem 2 What is a Planar Graph? Definition

More information

Instructor: Paul Zeitz, University of San Francisco

Instructor: Paul Zeitz, University of San Francisco Berkeley Math Circle Graph Theory and Ramsey Theory Instructor: Paul Zeitz, University of San Francisco (zeitz@usfca.edu) Definitions 1 A graph is a pair (V,E), where V is a finite set and E is a set of

More information

Chapter 12 and 11.1 Planar graphs, regular polyhedra, and graph colorings

Chapter 12 and 11.1 Planar graphs, regular polyhedra, and graph colorings Chapter 12 and 11.1 Planar graphs, regular polyhedra, and graph colorings Prof. Tesler Math 184A Fall 2017 Prof. Tesler Ch. 12: Planar Graphs Math 184A / Fall 2017 1 / 45 12.1 12.2. Planar graphs Definition

More information

Graph Theory Mini-course

Graph Theory Mini-course Graph Theory Mini-course Anthony Varilly PROMYS, Boston University, Boston, MA 02215 Abstract Intuitively speaking, a graph is a collection of dots and lines joining some of these dots. Many problems in

More information

Graphs: Definitions Trails, Paths, and Circuits Matrix Representations Isomorphisms. 11. Graphs and Trees 1. Aaron Tan. 30 October 3 November 2017

Graphs: Definitions Trails, Paths, and Circuits Matrix Representations Isomorphisms. 11. Graphs and Trees 1. Aaron Tan. 30 October 3 November 2017 11. Graphs and Trees 1 Aaron Tan 30 October 3 November 2017 1 The origins of graph theory are humble, even frivolous. Whereas many branches of mathematics were motivated by fundamental problems of calculation,

More information

Lecture 21 May Remove an edge. 2. Remove a vertex and any edge incident to the vertex.

Lecture 21 May Remove an edge. 2. Remove a vertex and any edge incident to the vertex. Lecture 21 May 20 In the last lecture we saw that K 5 and K 3,3 are not planar. Clearly any graph which contains K 5 or K 3,3 as a subgraph cannot be planar (since any subgraph of a planar graph must be

More information

Unit I: Euler's Formula (and applications).

Unit I: Euler's Formula (and applications). Unit I: Euler's Formula (and applications). We define a roadmap to be a nonempty finite collection of possibly curvedlil1e segments in a piane, each with exactly two endpoints, such that if any pair of

More information

Graph Theory for Middle School Students

Graph Theory for Middle School Students Graph Theory for Middle School Students Los ngeles Math Circle Olga Radko radko@math.ucla.edu Oleg Gleizer ogleizer@geffenacademy.ucla.edu May 29, 2017 Contents 1 Introduction 2 2 Copyright and acknowledgements

More information

Graph theory. Po-Shen Loh. June We begin by collecting some basic facts which can be proved via bare-hands techniques.

Graph theory. Po-Shen Loh. June We begin by collecting some basic facts which can be proved via bare-hands techniques. Graph theory Po-Shen Loh June 013 1 Basic results We begin by collecting some basic facts which can be proved via bare-hands techniques. 1. The sum of all of the degrees is equal to twice the number of

More information

Graph Theory. Part of Texas Counties.

Graph Theory. Part of Texas Counties. Graph Theory Part of Texas Counties. We would like to visit each of the above counties, crossing each county only once, starting from Harris county. Is this possible? This problem can be modeled as a graph.

More information

Varying Applications (examples)

Varying Applications (examples) Graph Theory Varying Applications (examples) Computer networks Distinguish between two chemical compounds with the same molecular formula but different structures Solve shortest path problems between cities

More information

Chapter 5: Euler Paths and Circuits The Mathematics of Getting Around

Chapter 5: Euler Paths and Circuits The Mathematics of Getting Around 1 Finite Math A Chapter 5: Euler Paths and Circuits The Mathematics of Getting Around Academic Standards Covered in this Chapter: *************************************************************************************

More information

Lecture 5: Graphs. Rajat Mittal. IIT Kanpur

Lecture 5: Graphs. Rajat Mittal. IIT Kanpur Lecture : Graphs Rajat Mittal IIT Kanpur Combinatorial graphs provide a natural way to model connections between different objects. They are very useful in depicting communication networks, social networks

More information

Majority and Friendship Paradoxes

Majority and Friendship Paradoxes Majority and Friendship Paradoxes Majority Paradox Example: Small town is considering a bond initiative in an upcoming election. Some residents are in favor, some are against. Consider a poll asking the

More information

Contents. Bibliography 19. List of Symbols and Abbreviations 21. Index 22

Contents. Bibliography 19. List of Symbols and Abbreviations 21. Index 22 Contents Contents v 1 Basics of Graph Theory 1 1.1 Introduction.................................... 1 1.2 Basic Definitions................................. 2 1.3 Paths and Cycles.................................

More information

Grade 7/8 Math Circles Graph Theory - Solutions October 13/14, 2015

Grade 7/8 Math Circles Graph Theory - Solutions October 13/14, 2015 Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 7/8 Math Circles Graph Theory - Solutions October 13/14, 2015 The Seven Bridges of Königsberg In

More information

Euler and Hamilton circuits. Euler paths and circuits

Euler and Hamilton circuits. Euler paths and circuits 1 7 16 2013. uler and Hamilton circuits uler paths and circuits o The Seven ridges of Konigsberg In the early 1700 s, Konigsberg was the capital of ast Prussia. Konigsberg was later renamed Kaliningrad

More information

Computer Science 280 Fall 2002 Homework 10 Solutions

Computer Science 280 Fall 2002 Homework 10 Solutions Computer Science 280 Fall 2002 Homework 10 Solutions Part A 1. How many nonisomorphic subgraphs does W 4 have? W 4 is the wheel graph obtained by adding a central vertex and 4 additional "spoke" edges

More information

Chapter 5: Euler Paths and Circuits The Mathematics of Getting Around

Chapter 5: Euler Paths and Circuits The Mathematics of Getting Around 1 Finite Math A Chapter 5: Euler Paths and Circuits The Mathematics of Getting Around Academic Standards Covered in this Chapter: *************************************************************************************

More information

Chapter 8 Topics in Graph Theory

Chapter 8 Topics in Graph Theory Chapter 8 Topics in Graph Theory Chapter 8: Topics in Graph Theory Section 8.1: Examples {1,2,3} Section 8.2: Examples {1,2,4} Section 8.3: Examples {1} 8.1 Graphs Graph A graph G consists of a finite

More information

Math 443/543 Graph Theory Notes 2: Transportation problems

Math 443/543 Graph Theory Notes 2: Transportation problems Math 443/543 Graph Theory Notes 2: Transportation problems David Glickenstein September 15, 2014 1 Readings This is based on Chartrand Chapter 3 and Bondy-Murty 18.1, 18.3 (part on Closure of a Graph).

More information

ECS 20 Lecture 17b = Discussion D8 Fall Nov 2013 Phil Rogaway

ECS 20 Lecture 17b = Discussion D8 Fall Nov 2013 Phil Rogaway 1 ECS 20 Lecture 17b = Discussion D8 Fall 2013 25 Nov 2013 Phil Rogaway Today: Using discussion section to finish up graph theory. Much of these notes the same as those prepared for last lecture and the

More information

1 Appendix to notes 2, on Hyperbolic geometry:

1 Appendix to notes 2, on Hyperbolic geometry: 1230, notes 3 1 Appendix to notes 2, on Hyperbolic geometry: The axioms of hyperbolic geometry are axioms 1-4 of Euclid, plus an alternative to axiom 5: Axiom 5-h: Given a line l and a point p not on l,

More information

1. The Highway Inspector s Problem

1. The Highway Inspector s Problem MATH 100 Survey of Mathematics Fall 2009 1. The Highway Inspector s Problem The Königsberg Bridges over the river Pregel C c d e A g D a B b Figure 1. Bridges f Is there a path that crosses every bridge

More information

Eulerian tours. Russell Impagliazzo and Miles Jones Thanks to Janine Tiefenbruck. April 20, 2016

Eulerian tours. Russell Impagliazzo and Miles Jones Thanks to Janine Tiefenbruck.  April 20, 2016 Eulerian tours Russell Impagliazzo and Miles Jones Thanks to Janine Tiefenbruck http://cseweb.ucsd.edu/classes/sp16/cse21-bd/ April 20, 2016 Seven Bridges of Konigsberg Is there a path that crosses each

More information

Graphs. Reading Assignment. Mandatory: Chapter 3 Sections 3.1 & 3.2. Peeking into Computer Science. Jalal Kawash 2010

Graphs. Reading Assignment. Mandatory: Chapter 3 Sections 3.1 & 3.2. Peeking into Computer Science. Jalal Kawash 2010 Graphs Mandatory: hapter 3 Sections 3.1 & 3.2 Reading ssignment 2 Graphs bstraction of ata 3 t the end of this section, you will be able to: 1.efine directed and undirected graphs 2.Use graphs to model

More information

Worksheet for the Final Exam - Part I. Graphs

Worksheet for the Final Exam - Part I. Graphs Worksheet for the Final Exam - Part I. Graphs Date and Time: May 10 2012 Thursday 11:50AM~1:50PM Location: Eng 120 Start with the Self-Test Exercises (pp.816) in Prichard. 1. Give the adjacency matrix

More information

GRAPHS, GRAPH MODELS, GRAPH TERMINOLOGY, AND SPECIAL TYPES OF GRAPHS

GRAPHS, GRAPH MODELS, GRAPH TERMINOLOGY, AND SPECIAL TYPES OF GRAPHS GRAPHS, GRAPH MODELS, GRAPH TERMINOLOGY, AND SPECIAL TYPES OF GRAPHS DR. ANDREW SCHWARTZ, PH.D. 10.1 Graphs and Graph Models (1) A graph G = (V, E) consists of V, a nonempty set of vertices (or nodes)

More information

Discrete Mathematics and Probability Theory Spring 2015 Vazirani Note 5

Discrete Mathematics and Probability Theory Spring 2015 Vazirani Note 5 CS 70 Discrete Mathematics and Probability Theory Spring 2015 Vazirani Note 5 1 Graph Theory: An Introduction One of the fundamental ideas in computer science is the notion of abstraction: capturing the

More information

SIM Camp Instructor Application Summer 2017 Submission 4 12/31/ :19:35 A.M.

SIM Camp Instructor Application Summer 2017 Submission 4 12/31/ :19:35 A.M. SIM Camp Instructor Application Summer 2017 Submission 4 ddmenon2@illinois.edu 12/31/2016 11:19:35 A.M. 3. The following proposal is being submitted for: SIM Camp Delta (campers entering grades 9-12, all

More information

Notebook Assignments

Notebook Assignments Notebook Assignments These six assignments are a notebook using techniques from class in the single concrete context of graph theory. This is supplemental to your usual assignments, and is designed for

More information

Early Writings on Graph Theory: Euler Circuits and The Königsberg Bridge Problem

Early Writings on Graph Theory: Euler Circuits and The Königsberg Bridge Problem Early Writings on Graph Theory: Euler Circuits and The Königsberg Bridge Problem Janet Heine Barnett In a 1670 letter to Christian Huygens (1629-1695), the celebrated philosopher and mathematician Gottfried

More information

Lecture 3: Recap. Administrivia. Graph theory: Historical Motivation. COMP9020 Lecture 4 Session 2, 2017 Graphs and Trees

Lecture 3: Recap. Administrivia. Graph theory: Historical Motivation. COMP9020 Lecture 4 Session 2, 2017 Graphs and Trees Administrivia Lecture 3: Recap Assignment 1 due 23:59 tomorrow. Quiz 4 up tonight, due 15:00 Thursday 31 August. Equivalence relations: (S), (R), (T) Total orders: (AS), (R), (T), (L) Partial orders: (AS),

More information

V1.0: Seth Gilbert, V1.1: Steven Halim August 30, Abstract. d(e), and we assume that the distance function is non-negative (i.e., d(x, y) 0).

V1.0: Seth Gilbert, V1.1: Steven Halim August 30, Abstract. d(e), and we assume that the distance function is non-negative (i.e., d(x, y) 0). CS4234: Optimisation Algorithms Lecture 4 TRAVELLING-SALESMAN-PROBLEM (4 variants) V1.0: Seth Gilbert, V1.1: Steven Halim August 30, 2016 Abstract The goal of the TRAVELLING-SALESMAN-PROBLEM is to find

More information

Walking with Euler through Ostpreußen and RNA

Walking with Euler through Ostpreußen and RNA Walking with Euler through Ostpreußen and RNA Mark Muldoon February 4, 2010 Königsberg (1652) Kaliningrad (2007)? The Königsberg Bridge problem asks whether it is possible to walk around the old city in

More information

Math 776 Graph Theory Lecture Note 1 Basic concepts

Math 776 Graph Theory Lecture Note 1 Basic concepts Math 776 Graph Theory Lecture Note 1 Basic concepts Lectured by Lincoln Lu Transcribed by Lincoln Lu Graph theory was founded by the great Swiss mathematician Leonhard Euler (1707-178) after he solved

More information

The Human Brain & Graph Theory

The Human Brain & Graph Theory The Human Brain & Graph Theory Graph Theory A graph is a collection of vertices (or points) that are connected by edges (or lines) Edges may overlap Graphs do not need edges Graphs can be directed with

More information

Zhibin Huang 07. Juni Zufällige Graphen

Zhibin Huang 07. Juni Zufällige Graphen Zhibin Huang 07. Juni 2010 Seite 2 Contents The Basic Method The Probabilistic Method The Ramsey Number R( k, l) Linearity of Expectation Basics Splitting Graphs The Probabilistic Lens: High Girth and

More information

Week 7: Introduction to Graph Theory. 24 and 26 October, 2018

Week 7: Introduction to Graph Theory. 24 and 26 October, 2018 (1/32) MA284 : Discrete Mathematics Week 7: Introduction to Graph Theory. http://www.maths.nuigalway.ie/ niall/ma284/ 24 and 26 October, 2018 1 Graph theory A network of mathematicians Water-Electricity-Broadband

More information

1. CONVEX POLYGONS. Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D.

1. CONVEX POLYGONS. Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D. 1. CONVEX POLYGONS Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D. Convex 6 gon Another convex 6 gon Not convex Question. Why is the third

More information

Pre-Calculus. Slide 1 / 192. Slide 2 / 192. Slide 3 / 192. Matrices

Pre-Calculus. Slide 1 / 192. Slide 2 / 192. Slide 3 / 192. Matrices Slide 1 / 192 Pre-Calculus Slide 2 / 192 Matrices 2015-03-23 www.njctl.org Table of Content Introduction to Matrices Matrix Arithmetic Scalar Multiplication Addition Subtraction Multiplication Solving

More information

Pre-Calculus Matrices

Pre-Calculus Matrices Slide 1 / 192 Slide 2 / 192 Pre-Calculus Matrices 2015-03-23 www.njctl.org Slide 3 / 192 Table of Content Introduction to Matrices Matrix Arithmetic Scalar Multiplication Addition Subtraction Multiplication

More information

WUCT121. Discrete Mathematics. Graphs

WUCT121. Discrete Mathematics. Graphs WUCT121 Discrete Mathematics Graphs WUCT121 Graphs 1 Section 1. Graphs 1.1. Introduction Graphs are used in many fields that require analysis of routes between locations. These areas include communications,

More information

Network Topology and Graph

Network Topology and Graph Network Topology Network Topology and Graph EEE442 Computer Method in Power System Analysis Any lumped network obeys 3 basic laws KVL KCL linear algebraic constraints Ohm s law Anawach Sangswang Dept.

More information