Section a) f(x-3)+4 = (x 3) the (-3) in the parenthesis moves right 3, the +4 moves up 4

Size: px
Start display at page:

Download "Section a) f(x-3)+4 = (x 3) the (-3) in the parenthesis moves right 3, the +4 moves up 4"

Transcription

1 Section 4.3 1a) f(x-3)+4 = (x 3) the (-3) in the parenthesis moves right 3, the +4 moves up 4 Answer 1a: f(x-3)+4 = (x 3) The graph has the same shape as f(x) = x 2, except it is shifted right 3 units and up 4 units. 1b) I will change the sign of the number in the parenthesis and put that number in the middle of my x- column when I find points. In this case I will put 3 in the middle of my x-column. x f(x) or y Computation, use calculator to get y - column 5 8 (5-3) (4-3) (3-3) (2-3) (1-3) c) Domain (, ) Range [4, ) (see me for help if you need some finding the domain and range) 1d) The graph is increasing (3, ) and decreasing from (, 3) This is the part of the graph that is increasing This is the part of the graph that is decreasing

2 1e) The graph does not have a high point so it has no local maximum 1f) The low point is the local minimum. We say there is a local minimum at x = 3 and the local minimum value is y = 4 3a) 2f(x+3) 4 = 2(x+3) 2-4 The (+3) in the parenthesis moves left 3, the -4 moves down 4, the 2 in front of the parenthesis stretches the graph vertically (makes skinnier). Answer #3a: 2f(x+3) 4 = 2(x+3) 2 4 The graph has the same shape as f(x) = x 2, except it is shifted left 3 units and down 4 units and it is narrower (stretched). 3b) I will change the sign of the number in the parenthesis and put that number in the middle of my x- column when I find points. In this case I will put (-3) in the middle of my x-column. x h(x) or y Computation, use calculator to get y - column (-1+3) (-2+3) (-3+3) (-4+3) (-5+3) 2-4 3c) Domain (, ) Range [ 4, ) (see me for help if you need some finding the domain and range)

3 3d) The graph is increasing ( 3, ) and decreasing from (, 3) This is the part of the graph that is increasing This is the part of the graph that is decreasing 3e) The graph does not have a high point so it has no local maximum 3f) The low point is the local minimum. We say there is a local minimum at x = -3 and the local minimum value is y =- 4 5a) 1 2 f(x + 4) 6 = 1 2 (x + 4)2 6 the (+4) in the parenthesis moves left 4, the -6 moves down 6, the 1/2 in front of the parenthesis compresses the graph vertically (makes wider). Answer #5a: 1 2 f(x + 4) 6 = 1 2 (x + 4)2 6 The graph has the same shape as f(x) = x 2, except it is shifted left 4 units and down 6 units and the graph is wider (compressed) than f(x) = x 2.

4 5b) I will change the sign of the number in the parenthesis and put that number in the middle of my x- column when I find points. In this case I will put (-4) in the middle of my x-column. x h(x) or y Computation, use calculator to get y - column ( 2 + 4) ( 3 + 4) ( 4 + 4) ( 5 + 4) ( 6 + 4)2 6 5c) Domain (, ) Range [ 6, ) (see me for help if you need some finding the domain and range) 5d) The graph is increasing ( 4, ) and decreasing from (, 4) This is the part of the graph that is increasing This is the part of the graph that is decreasing 5e) The graph does not have a high point so it has no local maximum

5 5f) The low point is the local minimum. We say there is a local minimum at x = -4 and the local minimum value is y =- 6 7a) -2f(x) + 3 = -2x you may think of this as -2(x-0) if it helps the +3 moves the graph up 3 units, the (-) in front of the 2 reflects the graph over the x-axis and the 2 stretches the graph vertically. The 2 part of the -2 makes the graph narrow. Answer #7a: -2f(x) + 3 = -2x The graph has the same shape as f(x) = x 2 except it is moved up 3 and reflected over the x-axis, and it is narrower (or stretched) 7b) x m(x) or y computation (2) (1) (0) (-1) (-2) c) Domain (, ) Range (, 3] (see me for help if you need some finding the domain and range) 7d) The graph is increasing from (, 0) and decreasing from (0, ) This is where the graph is increasing This is where the graph is decreasing

6 7e) The local maximum occurs at the vertex. We say there is a local maximum at x = 0 and the local maximum value is y = 3. 7f) There is no local minimum or local minimum value. 9) 1 4 f(x + 5) 2 = 1 4 (x + 5)2 2 9a) the (-) in front of the ¼ reflects the graph over the x-axis. The +5 in the parenthesis shifts the graph 5 units to the left. The (-2) moves the graph down 2. The ¼ compresses the graph or you may say it makes it wider. Answer #9a: 1 4 f(x + 5) 2 = 1 4 (x + 5)2 2 The graph is the same as g(x) = x 2, except moved left 5, down 2 and reflected over the x-axis. The graph is wider, or compressed

7 9b) x f(x) computation ( 7 + 5) ( 6 + 5) ( 5 + 5) ( 4 + 5) ( 3 + 5)2 2 9c) Domain (, ) Range (, 2] (see me for help if you need some finding the domain and range) 9d) The graph is increasing from (, 5) and decreasing from ( 5, ) Region where graph is increasing Region where graph is decreasing

8 9e) The local maximum occurs at the vertex. We say there is a local maximum at x = -5 and the local maximum value is y = -2. 9f) There is no local minimum or local minimum value. 11a) 2f(x+3)+2 = 2(x +3) a) the (+3) in the parenthesis moves left 3, the +4 moves up 4, the 2 in front of the parenthesis stretches the graph vertically (makes skinnier Answer #11a: 2f(x+3)+2 = 2(x +3) 2 +4 The graph has the same shape as g(x) = x 2, except it is shifted left 3 units and up 4 units and is narrower (stretched). 11b) I will change the sign of the number in the parenthesis and put that number in the middle of my x- column when I find points. In this case I will put (-3) in the middle of my x-column. x h(x) or y Computation, use calculator to get y - column (-1+3) (-2+3) (-3+3) (-4+3) (-5+3) c) Domain (, ) Range [4, ) (see me for help if you need some finding the domain and range)

9 11d) The graph is increasing ( 3, ) and decreasing from (, 3) Region where graph is increasing Region where graph is decreasing 11e) The graph does not have a high point so it has no local maximum 11f) The low point is the local minimum. We say there is a local minimum at x = -3 and the local minimum value is y = 4 13a) f(x) = x 2 + 6x + 5 Rewrite group the x s f(x) = (x 2 + 6x ) + 5 find C = ( 1 2 6)2 =9 Add and subtract C f(x) = (x 2 + 6x + 9) Factor and simplify f(x) = (x+3) 2 4 Answer to part a f(x) = (x+3) b)

10 15a) k(x) = x 2 4x + 2 Rewrite group the x s k(x) = (x 2-4x ) + 2 find C = ( 1 2 4)2 =4 Add and subtract C k(x) = (x 2-4x +4) Factor and simplify k(x) = (x-2) 2 2 Answer to part a k(x) = (x-2) b) 17a) f(x) = 2x 2 +8x 3 Rewrite group the x s f(x) = (2x 2 +8x ) - 3 Factor out GCF of 2 f(x) = 2(x 2 + 4x ) - 3 find C = ( 1 2 4)2 = 4 Add and subtract C inside parenthesis and 2C outside f(x) = 2(x 2 + 4x +4) Factor and simplify f(x) = 2(x+2) 2 11 Answer to part a f(x) = 2(x+2) b)

11 19a) f(x) = -x 2 + 6x + 4 Rewrite group the x s f(x) = (-x 2 + 6x ) + 4 Factor out GCF of -1 f(x) = -(x 2 6x ) + 4 find C = ( 1 2 6)2 = 9 Add and subtract C inside parenthesis and -C outside f(x) = -(x 2 6x + 9) (-9) Factor and simplify f(x) = -(x-3) Answer to part a f(x) = -(x-3) b) 21) k(x) = -2x x - 7 Rewrite group the x s k(x) = (-2x x ) - 7 Factor out GCF of -2 k(x) = -2(x 2 6x ) - 7 find C = ( 1 2 6)2 = 9 Add C inside parenthesis and subtract -2C outside k(x) = -2(x 2 6x + 9) 7 (-18) Factor and simplify k(x) = -2(x-3) Answer to part a k(x) = -2(x-3) 2 +11

12 21b) 23) f(x) = -3x 2 12x + 1 Rewrite group the x s f(x) = (-3x 2 12x ) + 1 factor out 3 f(x) = -3(x 2 + 4x ) + 1 Find C = ( 1 2 4)2 =4 Add 4 inside and subtract -3(4) or -12 outside the parenthesis f(x) = -3(x 2 + 4x + 4) +1 (-12) factor and simplify answer to part a: f(x) = -3(x+2) b)

13 25) use the formula f(x) = a(x-h) 2 + k Use the vertex (1, -4) as the values for h, k that is make h = 1 and k = -4 f(x) = a(x- 1) 2 4 f(x) = a(x-1) 2-4 now use the other point (-2,14) plug in -2 for x and replace the f(x) with 14 and solve for a. 14 = a(-2-1) = a(-3) = 9a =9 a 2 = a Write answer: f(x) = 2(x-1) ) use the formula f(x) = a(x-h) 2 + k Use the vertex (-1, 5) as the values for h, k that is make h = -1 and k = 5 f(x) = a(x- -1) f(x) = a(x+1) now use the other point (0,2) plug in 0 for x and replace the f(x) with 2 and solve for a. 2 = a(0+1) = a(1) = a = a Write answer: f(x) = -3(x+1) 2 +5

14 29) use the formula f(x) = a(x-h) 2 + k Use the vertex (-2, 6) as the values for h, k that is make h = -2 and k = 6 f(x) = a(x- -2) f(x) = a(x+2) now use the other point (2,14) plug in 2 for x and replace the f(x) with 14 and solve for a. 14 = a(2+2) = 16a = 16a 8/16 = a ½ = a Write answer: f(x) = 1 (x + 2 2) ) use the formula f(x) = a(x-h) 2 + k Use the vertex (-2, 3) as the values for h, k that is make h = -2 and k = 3 f(x) = a(x- -2) f(x) = a(x+2) now use the other point (2,-1) plug in 2 for x and replace the f(x) with -1 and solve for a. -1 = a(2+2) = 16a = 16a -4/16 = a -1/4 = a Write answer: f(x) = 1 (x + 4 2)2 + 3

15

Name: Chapter 7 Review: Graphing Quadratic Functions

Name: Chapter 7 Review: Graphing Quadratic Functions Name: Chapter Review: Graphing Quadratic Functions A. Intro to Graphs of Quadratic Equations: = ax + bx+ c A is a function that can be written in the form = ax + bx+ c where a, b, and c are real numbers

More information

Graphing Absolute Value Functions

Graphing Absolute Value Functions Graphing Absolute Value Functions To graph an absolute value equation, make an x/y table and plot the points. Graph y = x (Parent graph) x y -2 2-1 1 0 0 1 1 2 2 Do we see a pattern? Desmos activity: 1.

More information

Graphing Techniques and Transformations. Learning Objectives. Remarks

Graphing Techniques and Transformations. Learning Objectives. Remarks Graphing Techniques and Transformations Learning Objectives 1. Graph functions using vertical and horizontal shifts 2. Graph functions using compressions and stretches. Graph functions using reflections

More information

Notes Packet on Quadratic Functions and Factoring Graphing quadratic equations in standard form, vertex form, and intercept form.

Notes Packet on Quadratic Functions and Factoring Graphing quadratic equations in standard form, vertex form, and intercept form. Notes Packet on Quadratic Functions and Factoring Graphing quadratic equations in standard form, vertex form, and intercept form. A. Intro to Graphs of Quadratic Equations:! = ax + bx + c A is a function

More information

Replacing f(x) with k f(x) and. Adapted from Walch Education

Replacing f(x) with k f(x) and. Adapted from Walch Education Replacing f(x) with k f(x) and f(k x) Adapted from Walch Education Graphing and Points of Interest In the graph of a function, there are key points of interest that define the graph and represent the characteristics

More information

MAC Rev.S Learning Objectives. Learning Objectives (Cont.) Module 4 Quadratic Functions and Equations

MAC Rev.S Learning Objectives. Learning Objectives (Cont.) Module 4 Quadratic Functions and Equations MAC 1140 Module 4 Quadratic Functions and Equations Learning Objectives Upon completing this module, you should be able to 1. understand basic concepts about quadratic functions and their graphs.. complete

More information

The x-intercept can be found by setting y = 0 and solving for x: 16 3, 0

The x-intercept can be found by setting y = 0 and solving for x: 16 3, 0 y=-3/4x+4 and y=2 x I need to graph the functions so I can clearly describe the graphs Specifically mention any key points on the graphs, including intercepts, vertex, or start/end points. What is the

More information

Algebra II Chapter 3 Test Review Standards/Goals: F.IF.1:

Algebra II Chapter 3 Test Review Standards/Goals: F.IF.1: 1 Algebra II Chapter 3 Test Review Standards/Goals: F.IF.1: o o I can understand what a relation and a function is. I can understand that a function assigns to each element of a domain, EXACTLY one element

More information

Standard Form v. Vertex Form

Standard Form v. Vertex Form Standard Form v. Vertex Form The Standard Form of a quadratic equation is:. The Vertex Form of a quadratic equation is where represents the vertex of an equation and is the same a value used in the Standard

More information

GSE Algebra 1 Name Date Block. Unit 3b Remediation Ticket

GSE Algebra 1 Name Date Block. Unit 3b Remediation Ticket Unit 3b Remediation Ticket Question: Which function increases faster, f(x) or g(x)? f(x) = 5x + 8; two points from g(x): (-2, 4) and (3, 10) Answer: In order to compare the rate of change (roc), you must

More information

1 Vertical and Horizontal

1 Vertical and Horizontal www.ck12.org Chapter 1. Vertical and Horizontal Transformations CHAPTER 1 Vertical and Horizontal Transformations Here you will learn about graphing more complex types of functions easily by applying horizontal

More information

transformation: alters the equation and any combination of the location, shape, and orientation of the graph

transformation: alters the equation and any combination of the location, shape, and orientation of the graph Chapter 1: Function Transformations Section 1.1: Horizontal and Vertical Translations transformation: alters the equation and any combination of the location, shape, and orientation of the graph mapping:

More information

Warm-Up Exercises. Find the x-intercept and y-intercept 1. 3x 5y = 15 ANSWER 5; y = 2x + 7 ANSWER ; 7

Warm-Up Exercises. Find the x-intercept and y-intercept 1. 3x 5y = 15 ANSWER 5; y = 2x + 7 ANSWER ; 7 Warm-Up Exercises Find the x-intercept and y-intercept 1. 3x 5y = 15 ANSWER 5; 3 2. y = 2x + 7 7 2 ANSWER ; 7 Chapter 1.1 Graph Quadratic Functions in Standard Form A quadratic function is a function that

More information

Sections Transformations

Sections Transformations MCR3U Sections 1.6 1.8 Transformations Transformations: A change made to a figure or a relation such that it is shifted or changed in shape. Translations, reflections and stretches/compressions are types

More information

a translation by c units a translation by c units

a translation by c units a translation by c units 1.6 Graphical Transformations Introducing... Translations 1.) Set your viewing window to [-5,5] by [-5,15]. 2.) Graph the following functions: y 1 = x 2 y 2 = x 2 + 3 y 3 = x 2 + 1 y 4 = x 2-2 y 5 = x

More information

F.BF.B.3: Graphing Polynomial Functions

F.BF.B.3: Graphing Polynomial Functions F.BF.B.3: Graphing Polynomial Functions 1 Given the graph of the line represented by the equation f(x) = 2x + b, if b is increased by 4 units, the graph of the new line would be shifted 4 units 1) right

More information

UNIT 3 EXPRESSIONS AND EQUATIONS Lesson 3: Creating Quadratic Equations in Two or More Variables

UNIT 3 EXPRESSIONS AND EQUATIONS Lesson 3: Creating Quadratic Equations in Two or More Variables Guided Practice Example 1 Find the y-intercept and vertex of the function f(x) = 2x 2 + x + 3. Determine whether the vertex is a minimum or maximum point on the graph. 1. Determine the y-intercept. The

More information

6B Quiz Review Learning Targets ,

6B Quiz Review Learning Targets , 6B Quiz Review Learning Targets 5.10 6.3, 6.5-6.6 Key Facts Double transformations when more than one transformation is applied to a graph o You can still use our transformation rules to identify which

More information

Vertical Line Test a relationship is a function, if NO vertical line intersects the graph more than once

Vertical Line Test a relationship is a function, if NO vertical line intersects the graph more than once Algebra 2 Chapter 2 Domain input values, X (x, y) Range output values, Y (x, y) Function For each input, there is exactly one output Example: Vertical Line Test a relationship is a function, if NO vertical

More information

GUIDED NOTES 3.5 TRANSFORMATIONS OF FUNCTIONS

GUIDED NOTES 3.5 TRANSFORMATIONS OF FUNCTIONS GUIDED NOTES 3.5 TRANSFORMATIONS OF FUNCTIONS LEARNING OBJECTIVES In this section, you will: Graph functions using vertical and horizontal shifts. Graph functions using reflections about the x-axis and

More information

MAT 106: Trigonometry Brief Summary of Function Transformations

MAT 106: Trigonometry Brief Summary of Function Transformations MAT 106: Trigonometry Brief Summary of Function Transformations The sections below are intended to provide a brief overview and summary of the various types of basic function transformations covered in

More information

Unit 2: Function Transformation Chapter 1. Basic Transformations Reflections Inverses

Unit 2: Function Transformation Chapter 1. Basic Transformations Reflections Inverses Unit 2: Function Transformation Chapter 1 Basic Transformations Reflections Inverses Section 1.1: Horizontal and Vertical Transformations A transformation of a function alters the equation and any combination

More information

0.4 Family of Functions/Equations

0.4 Family of Functions/Equations 0.4 Family of Functions/Equations By a family of functions, we are referring to a function definition such as f(x) = mx + 2 for m = 2, 1, 1, 0, 1, 1, 2. 2 2 This says, work with all the functions obtained

More information

Graph each function. State the domain, the vertex (min/max point), the range, the x intercepts, and the axis of symmetry.

Graph each function. State the domain, the vertex (min/max point), the range, the x intercepts, and the axis of symmetry. HW Worksheet Name: Graph each function. State the domain, the vertex (min/max point), the range, the x intercepts, and the axis of smmetr..) f(x)= x + - - - - x - - - - Vertex: Max or min? Axis of smmetr:.)

More information

MAC Learning Objectives. Module 4. Quadratic Functions and Equations. - Quadratic Functions - Solving Quadratic Equations

MAC Learning Objectives. Module 4. Quadratic Functions and Equations. - Quadratic Functions - Solving Quadratic Equations MAC 1105 Module 4 Quadratic Functions and Equations Learning Objectives Upon completing this module, you should be able to: 1. Understand basic concepts about quadratic functions and their graphs. 2. Complete

More information

Sect Graphing Techniques: Transformations

Sect Graphing Techniques: Transformations Sect. - Graphing Techniques: Transformations Recall the general shapes of each of the following basic functions and their properties: Identity Function Square Function f(x) = x f(x) = x - - - - - - - -

More information

Transformations. What are the roles of a, k, d, and c in polynomial functions of the form y a[k(x d)] n c, where n?

Transformations. What are the roles of a, k, d, and c in polynomial functions of the form y a[k(x d)] n c, where n? 1. Transformations In the architectural design of a new hotel, a pattern is to be carved in the exterior crown moulding. What power function forms the basis of the pattern? What transformations are applied

More information

Algebra II Notes Transformations Unit 1.1. Math Background

Algebra II Notes Transformations Unit 1.1. Math Background Lesson. - Parent Functions and Transformations Math Background Previously, you Studied linear, absolute value, exponential and quadratic equations Graphed linear, absolute value, exponential and quadratic

More information

Algebra 2 Honors Lesson 10 Translating Functions

Algebra 2 Honors Lesson 10 Translating Functions Algebra 2 Honors Lesson 10 Translating Functions Objectives: The students will be able to translate a base function horizontally and vertically. Students will be able to describe the translation of f(x)

More information

Transformation a shifting or change in shape of a graph

Transformation a shifting or change in shape of a graph 1.1 Horizontal and Vertical Translations Frieze Patterns Transformation a shifting or change in shape of a graph Mapping the relating of one set of points to another set of points (ie. points on the original

More information

Relating Quadratic Functions to Graphs

Relating Quadratic Functions to Graphs Relating Quadratic Functions to Graphs Student Probe Explain the change from: a. b. c. The change from g x x h x x j x x 3 g x 4 x is the parabola becomes narrower, containing the point 1, rather than

More information

CHAPTER 2: More on Functions

CHAPTER 2: More on Functions MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 2: More on Functions 2.1 Increasing, Decreasing, and Piecewise Functions; Applications 2.2 The Algebra of Functions 2.3

More information

Exploring Quadratic Graphs

Exploring Quadratic Graphs Exploring Quadratic Graphs The general quadratic function is y=ax 2 +bx+c It has one of two basic graphs shapes, as shown below: It is a symmetrical "U"-shape or "hump"-shape, depending on the sign of

More information

4.3 Quadratic functions and their properties

4.3 Quadratic functions and their properties 4.3 Quadratic functions and their properties A quadratic function is a function defined as f(x) = ax + x + c, a 0 Domain: the set of all real numers x-intercepts: Solutions of ax + x + c = 0 y-intercept:

More information

College Algebra Extra Credit Worksheet

College Algebra Extra Credit Worksheet College Algebra Extra Credit Worksheet Fall 011 Math W1003 (3) Corrin Clarkson Due: Thursday, October 0 th, 011 1 Instructions Each section of this extra credit work sheet is broken into three parts. The

More information

Sect 3.1 Quadratic Functions and Models

Sect 3.1 Quadratic Functions and Models Objective 1: Sect.1 Quadratic Functions and Models Polynomial Function In modeling, the most common function used is a polynomial function. A polynomial function has the property that the powers of the

More information

Honors Algebra 2 Function Transformations Discovery

Honors Algebra 2 Function Transformations Discovery Honors Algebra Function Transformations Discovery Name: Date: Parent Polynomial Graphs Using an input-output table, make a rough sketch and compare the graphs of the following functions. f x x. f x x.

More information

Algebra I Notes Absolute Value Functions Unit 04c

Algebra I Notes Absolute Value Functions Unit 04c OBJECTIVES: F.IF.B.4 Interpret functions that arise in applications in terms of the context. For a function that models a relationship between two quantities, interpret key features of graphs and tables

More information

Section 4.4: Parabolas

Section 4.4: Parabolas Objective: Graph parabolas using the vertex, x-intercepts, and y-intercept. Just as the graph of a linear equation y mx b can be drawn, the graph of a quadratic equation y ax bx c can be drawn. The graph

More information

Notes Rules for Transformations of Functions If f x is the original functions, a > 0 and c > 0.

Notes Rules for Transformations of Functions If f x is the original functions, a > 0 and c > 0. 9.1.2 Parabola Investigation Do Now 1. Vertical means and horizontal is. 2. Another word for compress is. 3. Given the statement 0 < a < 1, a represents numbers like 4. Given the statement a > 1, a represents

More information

x 2 + 8x - 12 = 0 Aim: To review for Quadratic Function Exam #1 Homework: Study Review Materials

x 2 + 8x - 12 = 0 Aim: To review for Quadratic Function Exam #1 Homework: Study Review Materials Aim: To review for Quadratic Function Exam #1 Homework: Study Review Materials Do Now - Solve using any strategy. If irrational, express in simplest radical form x 2 + 8x - 12 = 0 Review Topic Index 1.

More information

3.1 INTRODUCTION TO THE FAMILY OF QUADRATIC FUNCTIONS

3.1 INTRODUCTION TO THE FAMILY OF QUADRATIC FUNCTIONS 3.1 INTRODUCTION TO THE FAMILY OF QUADRATIC FUNCTIONS Finding the Zeros of a Quadratic Function Examples 1 and and more Find the zeros of f(x) = x x 6. Solution by Factoring f(x) = x x 6 = (x 3)(x + )

More information

Let s review some things we learned earlier about the information we can gather from the graph of a quadratic.

Let s review some things we learned earlier about the information we can gather from the graph of a quadratic. Section 6: Quadratic Equations and Functions Part 2 Section 6 Topic 1 Observations from a Graph of a Quadratic Function Let s review some things we learned earlier about the information we can gather from

More information

CHAPTER 9: Quadratic Equations and Functions

CHAPTER 9: Quadratic Equations and Functions Notes # CHAPTER : Quadratic Equations and Functions -: Exploring Quadratic Graphs A. Intro to Graphs of Quadratic Equations: = ax + bx + c A is a function that can be written in the form = ax + bx + c

More information

Polynomial and Rational Functions. Copyright Cengage Learning. All rights reserved.

Polynomial and Rational Functions. Copyright Cengage Learning. All rights reserved. 2 Polynomial and Rational Functions Copyright Cengage Learning. All rights reserved. 2.1 Quadratic Functions Copyright Cengage Learning. All rights reserved. What You Should Learn Analyze graphs of quadratic

More information

Unit 12 Special Functions

Unit 12 Special Functions Algebra Notes Special Functions Unit 1 Unit 1 Special Functions PREREQUISITE SKILLS: students should be able to describe a relation and a function students should be able to identify the domain and range

More information

February 14, S2.5q Transformations. Vertical Stretching and Shrinking. Examples. Sep 19 3:27 PM. Sep 19 3:27 PM.

February 14, S2.5q Transformations. Vertical Stretching and Shrinking. Examples. Sep 19 3:27 PM. Sep 19 3:27 PM. MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 2: More on Functions 2.1 Increasing, Decreasing, and Piecewise Functions; Applications 2.2 The Algebra of Functions 2.3

More information

Quadratic Equations. Learning Objectives. Quadratic Function 2. where a, b, and c are real numbers and a 0

Quadratic Equations. Learning Objectives. Quadratic Function 2. where a, b, and c are real numbers and a 0 Quadratic Equations Learning Objectives 1. Graph a quadratic function using transformations. Identify the vertex and axis of symmetry of a quadratic function 3. Graph a quadratic function using its vertex,

More information

March 22, Aim: To review for Quarterly #3 Homework: Study Review Materials. Do Now

March 22, Aim: To review for Quarterly #3 Homework: Study Review Materials. Do Now Aim: To review for Quarterly #3 Homework: Study Review Materials Do Now The value of Jenny's financial account has depreciated by 8% each year. If the account was worth $5000 in 2012 when she first opened

More information

Sec 4.1 Coordinates and Scatter Plots. Coordinate Plane: Formed by two real number lines that intersect at a right angle.

Sec 4.1 Coordinates and Scatter Plots. Coordinate Plane: Formed by two real number lines that intersect at a right angle. Algebra I Chapter 4 Notes Name Sec 4.1 Coordinates and Scatter Plots Coordinate Plane: Formed by two real number lines that intersect at a right angle. X-axis: The horizontal axis Y-axis: The vertical

More information

Final Exam Review Algebra Semester 1

Final Exam Review Algebra Semester 1 Final Exam Review Algebra 015-016 Semester 1 Name: Module 1 Find the inverse of each function. 1. f x 10 4x. g x 15x 10 Use compositions to check if the two functions are inverses. 3. s x 7 x and t(x)

More information

1.1 Horizontal & Vertical Translations

1.1 Horizontal & Vertical Translations PC 30 1.1 Horizontal & Vertical Translations To determine the effects of h and k in y = f(x - h) + k on the graph of y = f(x) (Note: Sometimes the above equation y = f(x - h) + k is rewritten as y - k

More information

Section 4.1 Review of Quadratic Functions and Graphs (3 Days)

Section 4.1 Review of Quadratic Functions and Graphs (3 Days) Integrated Math 3 Name What can you remember before Chapter 4? Section 4.1 Review of Quadratic Functions and Graphs (3 Days) I can determine the vertex of a parabola and generate its graph given a quadratic

More information

Quadratic Functions. *These are all examples of polynomial functions.

Quadratic Functions. *These are all examples of polynomial functions. Look at: f(x) = 4x-7 f(x) = 3 f(x) = x 2 + 4 Quadratic Functions *These are all examples of polynomial functions. Definition: Let n be a nonnegative integer and let a n, a n 1,..., a 2, a 1, a 0 be real

More information

Section 1.5 Transformation of Functions

Section 1.5 Transformation of Functions Section 1.5 Transformation of Functions 61 Section 1.5 Transformation of Functions Often when given a problem, we try to model the scenario using mathematics in the form of words, tables, graphs and equations

More information

Assignment Assignment for Lesson 9.1

Assignment Assignment for Lesson 9.1 Assignment Assignment for Lesson.1 Name Date Shifting Away Vertical and Horizontal Translations 1. Graph each cubic function on the grid. a. y x 3 b. y x 3 3 c. y x 3 3 2. Graph each square root function

More information

Lesson 24 - Exploring Graphical Transformations and Composite Functions

Lesson 24 - Exploring Graphical Transformations and Composite Functions (A) Lesson Objectives a. Review composite functions and how it can be represented numerically, algebraically and graphically. b. Introduce graphical transformations c. Understand that graphical transformations

More information

Math 2 Spring Unit 5 Bundle Transformational Graphing and Inverse Variation

Math 2 Spring Unit 5 Bundle Transformational Graphing and Inverse Variation Math 2 Spring 2017 Unit 5 Bundle Transformational Graphing and Inverse Variation 1 Contents Transformations of Functions Day 1... 3 Transformations with Functions Day 1 HW... 10 Transformations with Functions

More information

August 29, Quad2b FactoredForm Graphing.notebook

August 29, Quad2b FactoredForm Graphing.notebook Quadratics 2b Quadratic Function: Graphing Factored Form Standards: F IF.4 & F IF.7 GLOs: #3 Complex Thinker Math Practice: Look for and make use of structure HW: WS #9 (graph on graph paper!) Learning

More information

Graphs and transformations 4G

Graphs and transformations 4G Graphs and transformations 4G a f(x + ) is a translation by one unit to the left. d A (0, ), B ( ),0, C (, 4), D (, 0) A (, ), B (0, 0), C (, 4), D (5, 0) e f(x) is a stretch with scale factor b f(x) 4

More information

Section 1.5 Transformation of Functions

Section 1.5 Transformation of Functions 6 Chapter 1 Section 1.5 Transformation of Functions Often when given a problem, we try to model the scenario using mathematics in the form of words, tables, graphs and equations in order to explain or

More information

8-4 Transforming Quadratic Functions

8-4 Transforming Quadratic Functions 8-4 Transforming Quadratic Functions Warm Up Lesson Presentation Lesson Quiz Algebra 1 Warm Up For each quadratic function, find the axis of symmetry and vertex, and state whether the function opens upward

More information

Objective. 9-4 Transforming Quadratic Functions. Graph and transform quadratic functions.

Objective. 9-4 Transforming Quadratic Functions. Graph and transform quadratic functions. Warm Up Lesson Presentation Lesson Quiz Warm Up For each quadratic function, find the axis of symmetry and vertex, and state whether the function opens upward or downward. 1. y = x 2 + 3 2. y = 2x 2 x

More information

Y. Butterworth Lehmann & 9.2 Page 1 of 11

Y. Butterworth Lehmann & 9.2 Page 1 of 11 Pre Chapter 9 Coverage Quadratic (2 nd Degree) Form a type of graph called a parabola Form of equation we'll be dealing with in this chapter: y = ax 2 + c Sign of a determines opens up or down "+" opens

More information

Unit #3: Quadratic Functions Lesson #13: The Almighty Parabola. Day #1

Unit #3: Quadratic Functions Lesson #13: The Almighty Parabola. Day #1 Algebra I Unit #3: Quadratic Functions Lesson #13: The Almighty Parabola Name Period Date Day #1 There are some important features about the graphs of quadratic functions we are going to explore over the

More information

Properties of Quadratic functions

Properties of Quadratic functions Name Today s Learning Goals: #1 How do we determine the axis of symmetry and vertex of a quadratic function? Properties of Quadratic functions Date 5-1 Properties of a Quadratic Function A quadratic equation

More information

QUADRATIC FUNCTIONS. PROTOTYPE: f(x) = ax 2 + bx + c. (1) The leading coefficient a 0 is called the shape parameter.

QUADRATIC FUNCTIONS. PROTOTYPE: f(x) = ax 2 + bx + c. (1) The leading coefficient a 0 is called the shape parameter. QUADRATIC FUNCTIONS PROTOTYPE: f(x) = ax 2 + bx + c. (1) The leading coefficient a 0 is called the shape parameter. SHAPE-VERTEX FORMULA One can write any quadratic function (1) as f(x) = a(x h) 2 + k,

More information

Chapter Algebra 1 Copyright Big Ideas Learning, LLC Worked-Out Solutions. Maintaining Mathematical Proficiency.

Chapter Algebra 1 Copyright Big Ideas Learning, LLC Worked-Out Solutions. Maintaining Mathematical Proficiency. Chapter Maintaining Mathematical Proficienc. The function q is of the form = f(x h), where h =. So, the graph of q is a horizontal translation units left of the. The function h is of the form = af(x),

More information

Transformations with Quadratic Functions KEY

Transformations with Quadratic Functions KEY Algebra Unit: 05 Lesson: 0 TRY THIS! Use a calculator to generate a table of values for the function y = ( x 3) + 4 y = ( x 3) x + y 4 Next, simplify the function by squaring, distributing, and collecting

More information

Important!!! First homework is due on Monday, September 26 at 8:00 am.

Important!!! First homework is due on Monday, September 26 at 8:00 am. Important!!! First homework is due on Monday, September 26 at 8:00 am. You can solve and submit the homework on line using webwork: http://webwork.dartmouth.edu/webwork2/m3cod/. If you do not have a user

More information

Lesson 3: Exploring Quadratic Relations Graphs Unit 5 Quadratic Relations

Lesson 3: Exploring Quadratic Relations Graphs Unit 5 Quadratic Relations (A) Lesson Context BIG PICTURE of this UNIT: CONTEXT of this LESSON: How do we analyze and then work with a data set that shows both increase and decrease What is a parabola and what key features do they

More information

I. Function Characteristics

I. Function Characteristics I. Function Characteristics Interval of possible x values for a given function. (Left,Right) Interval of possible y values for a given function. (down, up) What is happening at the far ends of the graph?

More information

1. How many white tiles will be in Design 5 of the pattern? Explain your reasoning.

1. How many white tiles will be in Design 5 of the pattern? Explain your reasoning. Algebra 2 Semester 1 Review Answer the question for each pattern. 1. How many white tiles will be in Design 5 of the pattern Explain your reasoning. 2. What is another way to represent the expression 3.

More information

Situation #1: Translating Functions Prepared at University of Georgia William Plummer EMAT 6500 Date last revised: July 28, 2013

Situation #1: Translating Functions Prepared at University of Georgia William Plummer EMAT 6500 Date last revised: July 28, 2013 Situation #1: Translating Functions Prepared at University of Georgia William Plummer EMAT 6500 Date last revised: July 28, 2013 Prompt An Algebra class is discussing the graphing of quadratic functions

More information

Algebra I. Slide 1 / 137. Slide 2 / 137. Slide 3 / 137. Quadratic & Non-Linear Functions. Table of Contents

Algebra I. Slide 1 / 137. Slide 2 / 137. Slide 3 / 137. Quadratic & Non-Linear Functions. Table of Contents Slide 1 / 137 Slide 2 / 137 Algebra I Quadratic & Non-Linear Functions 2015-11-04 www.njctl.org Table of Contents Slide 3 / 137 Click on the topic to go to that section Key Terms Explain Characteristics

More information

Topics 8: Quadratics. Introduction to Solving Quadratics. Table of Contents. Two Formats of Quadratics. Convert from Vertex to

Topics 8: Quadratics. Introduction to Solving Quadratics. Table of Contents. Two Formats of Quadratics. Convert from Vertex to Topics 8: Quadratics 3 Methods to Solving Quadratics Factoring Completing the Square Box Method Perfect Squares Graphing Quadratic Formula Table of Contents 1. Introduction to Solving Quadratics 2. Solving

More information

Do you need a worksheet or a copy of the teacher notes? Go to

Do you need a worksheet or a copy of the teacher notes? Go to Name Period Day Date Assignment (Due the next class meeting) Wednesday Thursday Friday Monday Tuesday Wednesday Thursday Friday Monday Tuesday Wednesday Thursday Friday Monday Tuesday Wednesday Thursday

More information

Warm - Up. Sunday, February 1, HINT: plot points first then connect the dots. Draw a graph with the following characteristics:

Warm - Up. Sunday, February 1, HINT: plot points first then connect the dots. Draw a graph with the following characteristics: Warm - Up Sunday, February 1, 2015 Draw a graph with the following characteristics: Maximums at (-3,4) and (2,2) Minimum at (-1,-3) X intercepts at (-4,0), (-2,0), (1,0), and (3,0) Y intercept at (0,-2)

More information

MEI Desmos Tasks for AS Pure

MEI Desmos Tasks for AS Pure Task 1: Coordinate Geometry Intersection of a line and a curve 1. Add a quadratic curve, e.g. y = x² 4x + 1 2. Add a line, e.g. y = x 3 3. Select the points of intersection of the line and the curve. What

More information

9.1: GRAPHING QUADRATICS ALGEBRA 1

9.1: GRAPHING QUADRATICS ALGEBRA 1 9.1: GRAPHING QUADRATICS ALGEBRA 1 OBJECTIVES I will be able to graph quadratics: Given in Standard Form Given in Vertex Form Given in Intercept Form What does the graph of a quadratic look like? https://www.desmos.com/calculator

More information

September 18, B Math Test Chapter 1 Name: x can be expressed as: {y y 0, y R}.

September 18, B Math Test Chapter 1 Name: x can be expressed as: {y y 0, y R}. September 8, 208 62B Math Test Chapter Name: Part : Objective Questions [ mark each, total 2 marks]. State whether each of the following statements is TRUE or FALSE a) The mapping rule (x, y) (-x, y) represents

More information

CHAPTER 9: Quadratic Equations and Functions

CHAPTER 9: Quadratic Equations and Functions CHAPTER : Quadratic Equations and Functions Notes # -: Exploring Quadratic Graphs A. Graphing ax A is a function that can be written in the form ax bx c where a, b, and c are real numbers and a 0. Examples:

More information

3, 10,( 2, 4) Name. CP Algebra II Midterm Review Packet Unit 1: Linear Equations and Inequalities. Solve each equation. 3.

3, 10,( 2, 4) Name. CP Algebra II Midterm Review Packet Unit 1: Linear Equations and Inequalities. Solve each equation. 3. Name CP Algebra II Midterm Review Packet 018-019 Unit 1: Linear Equations and Inequalities Solve each equation. 1. x. x 4( x 5) 6x. 8x 5(x 1) 5 4. ( k ) k 4 5. x 4 x 6 6. V lhw for h 7. x y b for x z Find

More information

Sections 3.5, : Quadratic Functions

Sections 3.5, : Quadratic Functions Week 7 Handout MAC 1105 Professor Niraj Wagh J Sections 3.5, 4.3-4.4: Quadratic Functions A function that can be written in the form f(x)= ax 2 +bx+c for real numbers a, b, and c, with a not equal to zero,

More information

Math 2 Coordinate Geometry Part 3 Inequalities & Quadratics

Math 2 Coordinate Geometry Part 3 Inequalities & Quadratics Math 2 Coordinate Geometry Part 3 Inequalities & Quadratics 1 DISTANCE BETWEEN TWO POINTS - REVIEW To find the distance between two points, use the Pythagorean theorem. The difference between x 1 and x

More information

Linear Functions. College Algebra

Linear Functions. College Algebra Linear Functions College Algebra Linear Function A linear function is a function whose graph is a straight line. Linear functions can be written in the slope-intercept form of a line: f(x) = mx + b where

More information

Unit 2: Functions and Graphs

Unit 2: Functions and Graphs AMHS Precalculus - Unit 16 Unit : Functions and Graphs Functions A function is a rule that assigns each element in the domain to exactly one element in the range. The domain is the set of all possible

More information

Solving Simple Quadratics 1.0 Topic: Solving Quadratics

Solving Simple Quadratics 1.0 Topic: Solving Quadratics Ns Solving Simple Quadratics 1.0 Topic: Solving Quadratics Date: Objectives: SWBAT (Solving Simple Quadratics and Application dealing with Quadratics) Main Ideas: Assignment: Square Root Property If x

More information

Graphs and transformations, Mixed Exercise 4

Graphs and transformations, Mixed Exercise 4 Graphs and transformations, Mixed Exercise 4 a y = x (x ) 0 = x (x ) So x = 0 or x = The curve crosses the x-axis at (, 0) and touches it at (0, 0). y = x x = x( x) As a = is negative, the graph has a

More information

ALGEBRA 1 NOTES. Quarter 3. Name: Block

ALGEBRA 1 NOTES. Quarter 3. Name: Block 2016-2017 ALGEBRA 1 NOTES Quarter 3 Name: Block Table of Contents Unit 8 Exponent Rules Exponent Rules for Multiplication page 4 Negative and Zero Exponents page 8 Exponent Rules Involving Quotients page

More information

Mission 1 Graph Quadratic Functions in Standard Form

Mission 1 Graph Quadratic Functions in Standard Form Algebra Unit 4 Graphing Quadratics Name Quest Mission 1 Graph Quadratic Functions in Standard Form Objectives: Graph functions expressed symbolically by hand and show key features of the graph, including

More information

Graphing Transformations Techniques -- Partner Pairs Project Packet A

Graphing Transformations Techniques -- Partner Pairs Project Packet A Name Course Days/Times Graphing Transformations Techniques -- Partner Pairs Project Packet A This packet is to be completed by Student A working alone. It should be completed before Students A and B work

More information

POLYNOMIALS Graphing Polynomial Functions Common Core Standard

POLYNOMIALS Graphing Polynomial Functions Common Core Standard K Polynomials, Lesson 6, Graphing Polynomial Functions (r. 2018) POLYNOMIALS Graphing Polynomial Functions Common Core Standard Next Generation Standard F-BF.3 Identify the effect on the graph of replacing

More information

x 2 + 8x - 12 = 0 April 18, 2016 Aim: To review for Quadratic Function Exam #1 Homework: Study Review Materials

x 2 + 8x - 12 = 0 April 18, 2016 Aim: To review for Quadratic Function Exam #1 Homework: Study Review Materials im: To review for Quadratic Function Exam #1 Homework: Study Review Materials o Now - Solve using any strategy. If irrational, express in simplest radical form x 2 + 8x - 12 = 0 Review Topic Index 1. Transformations

More information

Things to Know for the Algebra I Regents

Things to Know for the Algebra I Regents Types of Numbers: Real Number: any number you can think of (integers, rational, irrational) Imaginary Number: square root of a negative number Integers: whole numbers (positive, negative, zero) Things

More information

y 1 ) 2 Mathematically, we write {(x, y)/! y = 1 } is the graph of a parabola with 4c x2 focus F(0, C) and directrix with equation y = c.

y 1 ) 2 Mathematically, we write {(x, y)/! y = 1 } is the graph of a parabola with 4c x2 focus F(0, C) and directrix with equation y = c. Ch. 10 Graphing Parabola Parabolas A parabola is a set of points P whose distance from a fixed point, called the focus, is equal to the perpendicular distance from P to a line, called the directrix. Since

More information

1.2 Reflections and Stretches

1.2 Reflections and Stretches Chapter Part : Reflections.2 Reflections and Stretches Pages 6 3 Investigating a reflection in the x axis:. a) Complete the following table for and sketch on the axis provided. x 2 0 2 y b) Now sketch

More information

Unit Essential Questions: Does it matter which form of a linear equation that you use?

Unit Essential Questions: Does it matter which form of a linear equation that you use? Unit Essential Questions: Does it matter which form of a linear equation that you use? How do you use transformations to help graph absolute value functions? How can you model data with linear equations?

More information

Graphs of Exponential

Graphs of Exponential Graphs of Exponential Functions By: OpenStaxCollege As we discussed in the previous section, exponential functions are used for many realworld applications such as finance, forensics, computer science,

More information

MEI GeoGebra Tasks for AS Pure

MEI GeoGebra Tasks for AS Pure Task 1: Coordinate Geometry Intersection of a line and a curve 1. Add a quadratic curve, e.g. y = x 2 4x + 1 2. Add a line, e.g. y = x 3 3. Use the Intersect tool to find the points of intersection of

More information