Approximating the Maximum Quadratic Assignment Problem 1

Size: px
Start display at page:

Download "Approximating the Maximum Quadratic Assignment Problem 1"

Transcription

1 Approximating the Maximum Quadratic Assignment Problem 1 Esther M. Arkin Refael Hassin 3 Maxim Sviridenko 4 Keywords: Approximation algorithm; quadratic assignment problem 1 Introduction In the maximum quadratic assignment problem three n n nonnegative symmetric matrices A = (a ij ), B = (b ij ), and P C = (c ij ) are given P and the objective is to compute a permutation of V = f1; : : :; ng so that i;jv a (i);(j) b i;j + iv c i;(i) is maximized. i6=j The problem is NP-hard and generalizes many NP-hard problems such as max clustering with given sizes (see denition below). An indication to the hardness of approximating the problem is that the best known approximation factors for two special cases of max clustering with given sizes are 1, when all sizes are equal to a constant c [7], and (n)?1 3 when all sizes c except for one are 1 [5]. In this note we provide an approximation algorithm with a constant performance guarantee, 1, 4 under the assumption that the weights in B satisfy the triangle inequality (TI), b i;j b i;k + b k;j, for all i; j; k V. For maximum linear arrangement (see denition below) the bound guaranteed by our algorithm is 1, which slightly improves a result of [15]. Special cases and related problems There are many interesting special cases, some of which are `graphic', that is, A is a 0/1 incidence matrix of a graph. In this case, the problem is to compute in B a subgraph isomorphic to A of maximum total weight. In some of these applications, the role of C may be to represent the eect of a partial solution which has already been determined, so that the weights of C represent the total weight incurred by i if it is permuted to (i) through interactions with the imposed partial solution (see, for example, [3]). We will describe below the meaning of A and B in these applications. In max weight perfect matching A consists of n disjoint edges. This problem can be solved in polynomial time. In max clustering with given sizes A is the union of vertex disjoint cliques. Assuming TI [7] and [13] provide algorithms with bound 1 1 if all clusters have the same size and [13] gives a p bound if the sizes dier. In a special case, max dispersion, A consists of a clique of p vertices 1 and n? p isolated vertices. and 1 approximation algorithms were developed in [0] and [16], 4 respectively. 1 A shortened preliminary version of this paper appeared in Proc. Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA '00), , January, 000. Department of Applied Mathematics and Statistics, SUNY Stony Brook, Stony Brook, NY , estie@ams.sunysb.edu. Partially supported by NSF (CCR9730). 3 Department of Statistics and Operations Research, Tel-Aviv University, Tel-Aviv 69978, Israel, hassin@math.tau.ac.il 4 Basic Research Institute in Computer Science (BRICS), University of Aarhus, Denmark, sviri@brics.dk. Research of the third author was partially supported by the Russian Foundation for Basic Research, grants , ,

2 In max cut with given sizes A consists of a complete bipartite graph. [1] and [8] give 1 and approximations for the general and for the equal parts case (graph bisection), respectively, without TI. Both results are slightly improved in [6]. Constant factor approximations, without TI, when A consists of a collection of vertex disjoint paths are described in [1]. In particular, the bound for packing of 3-edge paths is 3. 4 In max TSP A consists of a cycle. With TI, a 5 bound is given in [17]. Without TI, a 6 deterministic algorithm with bound 3 5 and a randomized algorithm with bound are given in [1] 4 33 and [14], respectively. In max star packing A consists of a collection of vertex disjoint stars. A p 1 -approximation assuming TI is given in [13]. In maximum latency TSP A consists of a Hamiltonian path with weights 1; ; :::; n? 1 in this order. With TI, a 1 factor is given in [4], while [14] obtains a bound of 1 time that of max TSP, without TI. In maximum linear arrangement A is a complete graph with nonnegative weights and b i;j = jj? ij. [15] contains a randomized asymptotic 1 -approximation algorithm for this problem. It also contains a 1 -approximation for generalized maximum linear arrangement in which 3 a vector x 1 ; :::; x n is given and b i;j = jx j? x i j. In contrast, [] show that no constant factor approximation exists for minimum quadratic assignment unless P=NP. In fact, Queyranne showed that approximating minimum quadratic assignment with the triangle inequality within any constant factor in polynomial time implies P=NP even for the problem with matrix B introducing a line metric [19]. Special graphic cases in which A consists of p vertex disjoint paths, (cycles, cliques) have constant factor approximations under restrictions: For p xed see [10, 11], and for equal-sized sets see [9]. However, these special cases with general p and unequal sized sets are open. Notice also that the maximum quadratic assignment problem with triangle inequality is MAXSNP-hard since it contains the maximum f1; g-tsp as a special case. The MAXSNPhardness of the later problem can be simply derived from the work [18]. 3 Algorithm Denote by apx the expected weight returned by Quadratic Assignment of Figure 1. Let opt denote the weight of an optimal solution. Theorem 1 apx 1 4 opt. Proof: Since M B is a maximum matching with respect to the weights b, it follows that for every p; q V such that (p; q) = M B but (p; p 0 ) M B and (q; q 0 ) M B b p;q b p;p 0 + b q;q 0: (1) Also, if v is not incident to any edges in M B then for i = 1; :::; l b v;wi ; b v;zi b wi;z i. Let be an optimal permutation. Summing over all i; j V i 6= j we get opt = X i;jv i6=j a (i);(j) b i;j + X iv c i;(i) lx i=1 b wi;z i (deg A (w i) + deg A (z i)) + X iv c i(i) = X iv f i;(i) X iv f i;^(i) : We now consider the approximate solution returned by Quadratic Assignment. The algorithm sets ((w i ); (z i )) to (^(w i ); ^(z i )) or to (^(z i ); ^(w i )) each with probability 1. Therefore,

3 Quadratic Assignment input 1. n n nonnegative matrices A = (a ij ) and C = (c ij ).. n n nonnegative matrix B = (b ij ), satisfying the triangle inequality. returns 1. Permutation of V = f1; :::; ng of weight P i;jv a (i);(j)b i;j + P iv c i;(i): begin Compute a maximum weight matching M B in V with respect to weights fb ij g. Assume that M B = f(w 1 ; z 1 ); :::; (w l ; z l )g where l = b n c for i V if i fw k ; z k g for some k f1; :::; lg then b(i) := b wk;zk. else b(i) := 0 (there is at most one such vertex). end if for i V P deg A i := a jv nfig ij. for i; j V f ij := b(i)deg A j + c ij. ^ := an optimal solution to a linear assignment problem max Pi f i;(i). for i = 1; :::; l (w i ) := ^(w i ) and (z i ) := ^(z i ) with probability 1. (w i ) := ^(z i ) and (z i ) := ^(w i ), otherwise. if v is a vertex which is free with respect to M B, then (v) := ^(v). return. end Quadratic Assignment Figure 1: Algorithm Quadratic Assignment 3

4 a^(p);^(q) for (p; q) = M B is multiplied in a random approximate solution by one of the numbers b pq ; b pq 0; b p 0 q ; b p 0 q 0, each with probability 1 4 where (p; p0 ) M B and (q; q 0 ) M B. Hence, the expected contribution of pair ^(p); ^(q) is equal to 1 4 a^(p);^(q)(b pq + b pq 0 + b p 0 q + b p 0 q 0) 1 4 a^(p);^(q) maxfb pp 0; b qq 0g 1 4 a^(p);^(q)(b pp 0 + b qq 0) where the rst inequality follows from the triangle inequality. If (p; q) M B then a^(p);^(q) is always multiplied by b pq. Summing over all p 6= w i and q 6= z i we get that the contribution of the edge (w i ; z i ) to apx is at least 1 4 (dega^(w + i) dega^(z )b i) w i;z i. Notice also that the contribution of c i(i) in apx is at least 1 c i^(i) since i doesn't change its assignment with probability 1. We obtain apx 1 4X iv b(i)deg A^(i) + 1 X iv c i;^(i) 1 4 X iv f i;^(i) so that the claim of the theorem follows. The running time of the algorithm is O(n 3 ) due to the matching and assignment steps it uses. We note that the maximum weight matching can be replaced by a `greedy' matching (include vertex-disjoint edges in non-increasing order of weights). The only property required from the matching is b p;q b p;p 0 + b q;q 0 which the greedy matching satises as well. A greedy matching can be computed in O(n log n) time. If C = 0 the assignment problem in the algorithm has a special `factored structure' and can be solved as follows: Sort the b(i)'s and the deg A j 's in non-increasing orders i 1 ; :::; i n and j 1 ; :::; j n, respectively, and assign i r to j r for r = 1; :::; n (see for example Exercise 1.a in []). Combined with the previous observation, the running time of the algorithm in the C = 0 case is O(n log n). The algorithm can be derandomized by the method of conditional probabilities [3]. Finally, we prove the following: Theorem For maximum linear arrangement, Quadratic Assignment is a 1 -approximation algorithm. Proof: Recall that in maximum linear arrangement b i;j = jj?ij. The greedy matching (which is one of numerous maximum weight matchings) contains the edges (1; n); (; n? 1); (3; n? ); :::. For any edge (p; q) not in the greedy matching, Equation (1) can be replaced by b p;q 1 (b p;p 0 + b q;q 0): Consequently, the bound of Theorem 1 improves in this case to 1. Acknowledgement We thank Alexander Ageev for helpful comments. References [1] A.A. Ageev and M.I. Sviridenko, \Approximation algorithms for maximum coverage and max cut with given sizes of parts", Proceedings of IPCO'99, Lecture Notes in Computer Science 1610 (1999), [] R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network Flows: Theory, Algorithms, and Applications, Prentice-Hall, New Jersey,

5 [3] N. Alon and J.H. Spencer, The probabilistic method, John Wiley and Sons, New York, 199. [4] P. Chalasani and R. Motwani, \Approximating capacitated routing and delivery problems", SIAM J. Comput. 8 (1999), [5] U. Feige, G. Kortsarz, and D. Peleg, \The dense k-subgraph problem", Algorithmica, to appear. [6] U. Feige and M. Langberg, \Approximation algorithms for maximization problems arising in graph partitioning", manuscript (1999). [7] T. Feo and M. Khellaf, \A class of bounded approximation algorithms for graph partitioning", Networks 0 (1990), [8] A. Frieze and M. Jerrum, \Improved approximation algorithms for MAX k-cut and MAX BISECTION," Algorithmica 18 (1997), [9] M.X. Goemans and D.P. Williamson, \A general approximation technique for constrained forest problems", SIAM J. Comput. 4 (1995), [10] N. Guttmann-Beck and R. Hassin, \Approximation algorithms for minimum tree partition", Disc. Applied Math. 87 (1998), [11] N. Guttmann-Beck and R. Hassin, \Approximation algorithms for min-sum p-clustering", Disc. Applied Math. 89 (1998), [1] R. Hassin and S. Rubinstein, \An approximation algorithm for maximum packing of 3-edge paths", Information Processing Letters 63 (1997), [13] R. Hassin and S. Rubinstein, \Robust matchings, maximum clustering, and maximum capacitated medians", submitted for publication. Extended abstract appeared in Algorithm Theory - SWAT000 M. Halldorsson (Ed.) (Lecture Notes in Computer Science 1851, 51-58). [14] R. Hassin and S. Rubinstein, \Better approximations for Max TSP", Information Processing Letters, to appear. [15] R. Hassin and S. Rubinstein, \Approximation algorithms for maximum linear arrangement", (1999). Extended abstract appeared in Algorithm Theory - SWAT000 M. Halldorsson (Ed.) (Lecture Notes in Computer Science 1851, 31-36).. [16] R. Hassin, S. Rubinstein and A. Tamir, \Approximation algorithms for maximum dispersion", Operations Research Letters 1 (1997), [17] A.V. Kostochka and A.I. Serdyukov, \Polynomial algorithms with the estimates 3 4 and 5 6 for the traveling salesman problem of the maximum" (in Russian), Upravlyaemye Sistemy 6 (1985) [18] C.H. Papadimitriou and M. Yannakakis, \The traveling salesman problem with distances one and two", Math. Oper. Res. 18 (1993) 1{11. [19] M. Queyranne, \Performance ratio of polynomial heuristics for triangle inequality quadratic assignment problems", Operations Research Letters, 4 (1986),

6 [0] S.S. Ravi, D.J. Rosenkrantz and G.K. Tayi, \Heuristic and special case algorithms for dispersion problems," Operations Research 4 (1994), [1] A.I. Serdyukov, \An algorithm with an estimate for the traveling salesman problem of the maximum" (in Russian), Upravlyaemye Sistemy 5 (1984) [] S. Sahni and T. Gonzalez, \P-complete approximation problems", J. ACM 3 (1976) [3] A. Tamir, \Obnoxious facility location on graphs," SIAM J. Discrete Mathematics 4 (1991)

On the Maximum Quadratic Assignment Problem

On the Maximum Quadratic Assignment Problem MATHEMATICS OF OPERATIONS RESEARCH Vol. 34, No. 4, November 009, pp. 859 868 issn 0364-765X eissn 156-5471 09 3404 0859 informs doi 10.187/moor.1090.0418 009 INFORMS On the Maximum Quadratic Assignment

More information

Better approximations for max TSP

Better approximations for max TSP Information Processing Letters 75 (2000) 181 186 Better approximations for max TSP Refael Hassin,1, Shlomi Rubinstein Department of Statistics and Operations Research, School of Mathematical Sciences,

More information

On the Maximum Quadratic Assignment Problem

On the Maximum Quadratic Assignment Problem On the Maximum Quadratic Assignment Problem Viswanath Nagarajan Maxim Sviridenko Abstract Quadratic Assignment is a basic problem in combinatorial optimization, which generalizes several other problems

More information

Restricted Delivery Problems on a Network. December 17, Abstract

Restricted Delivery Problems on a Network. December 17, Abstract Restricted Delivery Problems on a Network Esther M. Arkin y, Refael Hassin z and Limor Klein x December 17, 1996 Abstract We consider a delivery problem on a network one is given a network in which nodes

More information

APPROXIMATING THE TREE AND TOUR COVERS OF A GRAPH

APPROXIMATING THE TREE AND TOUR COVERS OF A GRAPH APPROXIMATING THE TREE AND TOUR COVERS OF A GRAPH Esther M. Arkin Department of Applied Mathematics and Statistics SUNY Stony Brook Stony Brook, NY 11794-3600 estie@ams.sunysb.edu Magnús M. Halldórsson

More information

Acyclic Edge Colorings of Graphs

Acyclic Edge Colorings of Graphs Acyclic Edge Colorings of Graphs Noga Alon Ayal Zaks Abstract A proper coloring of the edges of a graph G is called acyclic if there is no 2-colored cycle in G. The acyclic edge chromatic number of G,

More information

Two Approximation Algorithms for 3-Cycle Covers

Two Approximation Algorithms for 3-Cycle Covers Two Approximation Algorithms for 3-Cycle Covers Markus Bläser and Bodo Manthey Institut für Theoretische Informatik Universität zu Lübeck Wallstraße 40, 2350 Lübeck, Germany blaeser/manthey@tcs.mu-luebeck.de

More information

An O(log n) Approximation Ratio for the Asymmetric Traveling Salesman Path Problem

An O(log n) Approximation Ratio for the Asymmetric Traveling Salesman Path Problem An O(log n) Approximation Ratio for the Asymmetric Traveling Salesman Path Problem Chandra Chekuri Martin Pál y April 11, 2006 Abstract Given an arc-weighted directed graph G = (V; A; `) and a pair of

More information

A linear time approximation scheme for computing geometric maximum k-star

A linear time approximation scheme for computing geometric maximum k-star DOI 10.1007/s10898-012-9867-6 A linear time approximation scheme for computing geometric maximum k-star Jia Wang Shiyan Hu Received: 11 April 2011 / Accepted: 1 February 2012 Springer Science+Business

More information

Local Search Approximation Algorithms for the Complement of the Min-k-Cut Problems

Local Search Approximation Algorithms for the Complement of the Min-k-Cut Problems Local Search Approximation Algorithms for the Complement of the Min-k-Cut Problems Wenxing Zhu, Chuanyin Guo Center for Discrete Mathematics and Theoretical Computer Science, Fuzhou University, Fuzhou

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Prof. Tapio Elomaa tapio.elomaa@tut.fi Course Basics A new 4 credit unit course Part of Theoretical Computer Science courses at the Department of Mathematics There will be 4 hours

More information

All 0-1 Polytopes are. Abstract. We study the facial structure of two important permutation polytopes

All 0-1 Polytopes are. Abstract. We study the facial structure of two important permutation polytopes All 0-1 Polytopes are Traveling Salesman Polytopes L.J. Billera and A. Sarangarajan y Abstract We study the facial structure of two important permutation polytopes in R n2, the Birkho or assignment polytope

More information

Topic: Local Search: Max-Cut, Facility Location Date: 2/13/2007

Topic: Local Search: Max-Cut, Facility Location Date: 2/13/2007 CS880: Approximations Algorithms Scribe: Chi Man Liu Lecturer: Shuchi Chawla Topic: Local Search: Max-Cut, Facility Location Date: 2/3/2007 In previous lectures we saw how dynamic programming could be

More information

Acyclic Edge Colorings of Graphs

Acyclic Edge Colorings of Graphs Acyclic Edge Colorings of Graphs Noga Alon Benny Sudaov Ayal Zas Abstract A proper coloring of the edges of a graph G is called acyclic if there is no 2-colored cycle in G. The acyclic edge chromatic number

More information

Simpler Approximation of the Maximum Asymmetric Traveling Salesman Problem

Simpler Approximation of the Maximum Asymmetric Traveling Salesman Problem Simpler Approximation of the Maximum Asymmetric Traveling Salesman Problem Katarzyna Paluch 1, Khaled Elbassioni 2, and Anke van Zuylen 2 1 Institute of Computer Science, University of Wroclaw ul. Joliot-Curie

More information

Algorithmic Aspects of Acyclic Edge Colorings

Algorithmic Aspects of Acyclic Edge Colorings Algorithmic Aspects of Acyclic Edge Colorings Noga Alon Ayal Zaks Abstract A proper coloring of the edges of a graph G is called acyclic if there is no -colored cycle in G. The acyclic edge chromatic number

More information

On Approximating Minimum Vertex Cover for Graphs with Perfect Matching

On Approximating Minimum Vertex Cover for Graphs with Perfect Matching On Approximating Minimum Vertex Cover for Graphs with Perfect Matching Jianer Chen and Iyad A. Kanj Abstract It has been a challenging open problem whether there is a polynomial time approximation algorithm

More information

1 The Traveling Salesperson Problem (TSP)

1 The Traveling Salesperson Problem (TSP) CS 598CSC: Approximation Algorithms Lecture date: January 23, 2009 Instructor: Chandra Chekuri Scribe: Sungjin Im In the previous lecture, we had a quick overview of several basic aspects of approximation

More information

Lower Bounds for Insertion Methods for TSP. Yossi Azar. Abstract. optimal tour. The lower bound holds even in the Euclidean Plane.

Lower Bounds for Insertion Methods for TSP. Yossi Azar. Abstract. optimal tour. The lower bound holds even in the Euclidean Plane. Lower Bounds for Insertion Methods for TSP Yossi Azar Abstract We show that the random insertion method for the traveling salesman problem (TSP) may produce a tour (log log n= log log log n) times longer

More information

Report on article The Travelling Salesman Problem: A Linear Programming Formulation

Report on article The Travelling Salesman Problem: A Linear Programming Formulation Report on article The Travelling Salesman Problem: A Linear Programming Formulation Radosław Hofman, Poznań 2008 Abstract This article describes counter example prepared in order to prove that linear formulation

More information

Theorem 2.9: nearest addition algorithm

Theorem 2.9: nearest addition algorithm There are severe limits on our ability to compute near-optimal tours It is NP-complete to decide whether a given undirected =(,)has a Hamiltonian cycle An approximation algorithm for the TSP can be used

More information

Randomized rounding of semidefinite programs and primal-dual method for integer linear programming. Reza Moosavi Dr. Saeedeh Parsaeefard Dec.

Randomized rounding of semidefinite programs and primal-dual method for integer linear programming. Reza Moosavi Dr. Saeedeh Parsaeefard Dec. Randomized rounding of semidefinite programs and primal-dual method for integer linear programming Dr. Saeedeh Parsaeefard 1 2 3 4 Semidefinite Programming () 1 Integer Programming integer programming

More information

LEXICOGRAPHIC LOCAL SEARCH AND THE P-CENTER PROBLEM

LEXICOGRAPHIC LOCAL SEARCH AND THE P-CENTER PROBLEM LEXICOGRAPHIC LOCAL SEARCH AND THE P-CENTER PROBLEM Refael Hassin, Asaf Levin and Dana Morad Abstract We introduce a local search strategy that suits combinatorial optimization problems with a min-max

More information

CS 598CSC: Approximation Algorithms Lecture date: March 2, 2011 Instructor: Chandra Chekuri

CS 598CSC: Approximation Algorithms Lecture date: March 2, 2011 Instructor: Chandra Chekuri CS 598CSC: Approximation Algorithms Lecture date: March, 011 Instructor: Chandra Chekuri Scribe: CC Local search is a powerful and widely used heuristic method (with various extensions). In this lecture

More information

Judicious bisections

Judicious bisections Judicious bisections Po-Shen Loh Carnegie Mellon University Joint work with Choongbum Lee and Benny Sudakov Max Cut Problem Given a graph, find a bipartition which maximizes the number of crossing edges.

More information

The Set Cover with Pairs Problem

The Set Cover with Pairs Problem The Set Cover with Pairs Problem Refael Hassin Danny Segev Abstract We consider a generalization of the set cover problem, in which elements are covered by pairs of objects, and we are required to find

More information

A 4-Approximation Algorithm for k-prize Collecting Steiner Tree Problems

A 4-Approximation Algorithm for k-prize Collecting Steiner Tree Problems arxiv:1802.06564v1 [cs.cc] 19 Feb 2018 A 4-Approximation Algorithm for k-prize Collecting Steiner Tree Problems Yusa Matsuda and Satoshi Takahashi The University of Electro-Communications, Japan February

More information

A General Class of Heuristics for Minimum Weight Perfect Matching and Fast Special Cases with Doubly and Triply Logarithmic Errors 1

A General Class of Heuristics for Minimum Weight Perfect Matching and Fast Special Cases with Doubly and Triply Logarithmic Errors 1 Algorithmica (1997) 18: 544 559 Algorithmica 1997 Springer-Verlag New York Inc. A General Class of Heuristics for Minimum Weight Perfect Matching and Fast Special Cases with Doubly and Triply Logarithmic

More information

The strong chromatic number of a graph

The strong chromatic number of a graph The strong chromatic number of a graph Noga Alon Abstract It is shown that there is an absolute constant c with the following property: For any two graphs G 1 = (V, E 1 ) and G 2 = (V, E 2 ) on the same

More information

Lecture 9. Semidefinite programming is linear programming where variables are entries in a positive semidefinite matrix.

Lecture 9. Semidefinite programming is linear programming where variables are entries in a positive semidefinite matrix. CSE525: Randomized Algorithms and Probabilistic Analysis Lecture 9 Lecturer: Anna Karlin Scribe: Sonya Alexandrova and Keith Jia 1 Introduction to semidefinite programming Semidefinite programming is linear

More information

Notes for Lecture 24

Notes for Lecture 24 U.C. Berkeley CS170: Intro to CS Theory Handout N24 Professor Luca Trevisan December 4, 2001 Notes for Lecture 24 1 Some NP-complete Numerical Problems 1.1 Subset Sum The Subset Sum problem is defined

More information

Minimum-Link Watchman Tours

Minimum-Link Watchman Tours Minimum-Link Watchman Tours Esther M. Arkin Joseph S. B. Mitchell Christine D. Piatko Abstract We consider the problem of computing a watchman route in a polygon with holes. We show that the problem of

More information

Introduction to Approximation Algorithms

Introduction to Approximation Algorithms Introduction to Approximation Algorithms Dr. Gautam K. Das Departmet of Mathematics Indian Institute of Technology Guwahati, India gkd@iitg.ernet.in February 19, 2016 Outline of the lecture Background

More information

XLVI Pesquisa Operacional na Gestão da Segurança Pública

XLVI Pesquisa Operacional na Gestão da Segurança Pública Setembro de 014 Approximation algorithms for simple maxcut of split graphs Rubens Sucupira 1 Luerbio Faria 1 Sulamita Klein 1- IME/UERJ UERJ, Rio de JaneiroRJ, Brasil rasucupira@oi.com.br, luerbio@cos.ufrj.br

More information

v 2 v 3 v 1 v 0 K 3 K 1

v 2 v 3 v 1 v 0 K 3 K 1 It is Hard to Know when Greedy is Good for Finding Independent Sets Hans L. Bodlaender, Dimitrios M. Thilikos, Koichi Yamazaki Department of Computer Science, Utrecht University, P.O. Box 80.089, 3508

More information

arxiv:cs/ v1 [cs.cc] 28 Apr 2003

arxiv:cs/ v1 [cs.cc] 28 Apr 2003 ICM 2002 Vol. III 1 3 arxiv:cs/0304039v1 [cs.cc] 28 Apr 2003 Approximation Thresholds for Combinatorial Optimization Problems Uriel Feige Abstract An NP-hard combinatorial optimization problem Π is said

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Prof. Tapio Elomaa tapio.elomaa@tut.fi Course Basics A 4 credit unit course Part of Theoretical Computer Science courses at the Laboratory of Mathematics There will be 4 hours

More information

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory Tandy Warnow January 20, 2017 Graphs Tandy Warnow Graphs A graph G = (V, E) is an object that contains a vertex set V and an edge set E. We also write V (G) to denote the vertex

More information

The Design of Approximation Algorithms

The Design of Approximation Algorithms The Design of Approximation Algorithms David P. Williamson Cornell University David B. Shmoys Cornell University m Щ0 CAMBRIDGE UNIVERSITY PRESS Contents Preface page ix I An Introduction to the Techniques

More information

Approximation Algorithms for Degree-Constrained Minimum-Cost Network-Design Problems

Approximation Algorithms for Degree-Constrained Minimum-Cost Network-Design Problems Approximation Algorithms for Degree-Constrained Minimum-Cost Network-Design Problems R. RAVI DANIEL J. ROSENKRANTZ MADHAV V. MARATHE S. S. RAVI HARRY B. HUNT III Abstract We study network-design problems

More information

An Efficient Approximation for the Generalized Assignment Problem

An Efficient Approximation for the Generalized Assignment Problem An Efficient Approximation for the Generalized Assignment Problem Reuven Cohen Liran Katzir Danny Raz Department of Computer Science Technion Haifa 32000, Israel Abstract We present a simple family of

More information

Discrete Mathematics

Discrete Mathematics Discrete Mathematics 310 (2010) 2769 2775 Contents lists available at ScienceDirect Discrete Mathematics journal homepage: www.elsevier.com/locate/disc Optimal acyclic edge colouring of grid like graphs

More information

CSE 548: Analysis of Algorithms. Lecture 13 ( Approximation Algorithms )

CSE 548: Analysis of Algorithms. Lecture 13 ( Approximation Algorithms ) CSE 548: Analysis of Algorithms Lecture 13 ( Approximation Algorithms ) Rezaul A. Chowdhury Department of Computer Science SUNY Stony Brook Fall 2017 Approximation Ratio Consider an optimization problem

More information

CS270 Combinatorial Algorithms & Data Structures Spring Lecture 19:

CS270 Combinatorial Algorithms & Data Structures Spring Lecture 19: CS270 Combinatorial Algorithms & Data Structures Spring 2003 Lecture 19: 4.1.03 Lecturer: Satish Rao Scribes: Kevin Lacker and Bill Kramer Disclaimer: These notes have not been subjected to the usual scrutiny

More information

Acyclic Edge Colorings of Graphs

Acyclic Edge Colorings of Graphs Acyclic Edge Colorings of Graphs Noga Alon, 1 Benny Sudakov, 2 and Ayal Zaks 3 1 DEPARTMENT OF MATHEMATICS RAYMOND AND BEVERLY SACKLER FACULTY OF EXACT SCIENCES TEL AVIV UNIVERSITY TEL AVIV, ISRAEL E-mail:

More information

Approximation Algorithms

Approximation Algorithms Chapter 8 Approximation Algorithms Algorithm Theory WS 2016/17 Fabian Kuhn Approximation Algorithms Optimization appears everywhere in computer science We have seen many examples, e.g.: scheduling jobs

More information

Approximation Algorithms: The Primal-Dual Method. My T. Thai

Approximation Algorithms: The Primal-Dual Method. My T. Thai Approximation Algorithms: The Primal-Dual Method My T. Thai 1 Overview of the Primal-Dual Method Consider the following primal program, called P: min st n c j x j j=1 n a ij x j b i j=1 x j 0 Then the

More information

COMP 355 Advanced Algorithms Approximation Algorithms: VC and TSP Chapter 11 (KT) Section (CLRS)

COMP 355 Advanced Algorithms Approximation Algorithms: VC and TSP Chapter 11 (KT) Section (CLRS) COMP 355 Advanced Algorithms Approximation Algorithms: VC and TSP Chapter 11 (KT) Section 35.1-35.2(CLRS) 1 Coping with NP-Completeness Brute-force search: This is usually only a viable option for small

More information

CME 305: Discrete Mathematics and Algorithms Instructor: Reza Zadeh HW#3 Due at the beginning of class Thursday 02/26/15

CME 305: Discrete Mathematics and Algorithms Instructor: Reza Zadeh HW#3 Due at the beginning of class Thursday 02/26/15 CME 305: Discrete Mathematics and Algorithms Instructor: Reza Zadeh (rezab@stanford.edu) HW#3 Due at the beginning of class Thursday 02/26/15 1. Consider a model of a nonbipartite undirected graph in which

More information

Part II. Graph Theory. Year

Part II. Graph Theory. Year Part II Year 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2017 53 Paper 3, Section II 15H Define the Ramsey numbers R(s, t) for integers s, t 2. Show that R(s, t) exists for all s,

More information

Conflict-free Covering

Conflict-free Covering CCCG 05, Kingston, Ontario, August 0, 05 Conflict-free Covering Esther M. Arkin Aritra Banik Paz Carmi Gui Citovsky Matthew J. Katz Joseph S. B. Mitchell Marina Simakov Abstract Let P = {C, C,..., C n

More information

Proposed running head: Minimum Color Sum of Bipartite Graphs. Contact Author: Prof. Amotz Bar-Noy, Address: Faculty of Engineering, Tel Aviv Universit

Proposed running head: Minimum Color Sum of Bipartite Graphs. Contact Author: Prof. Amotz Bar-Noy, Address: Faculty of Engineering, Tel Aviv Universit Minimum Color Sum of Bipartite Graphs Amotz Bar-Noy Department of Electrical Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel. E-mail: amotz@eng.tau.ac.il. Guy Kortsarz Department of Computer Science,

More information

Lecture 24: More Reductions (1997) Steven Skiena. skiena

Lecture 24: More Reductions (1997) Steven Skiena.   skiena Lecture 24: More Reductions (1997) Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Prove that subgraph isomorphism

More information

Max-Planck Institut fur Informatik, Im Stadtwald, Saarbrucken, Germany,

Max-Planck Institut fur Informatik, Im Stadtwald, Saarbrucken, Germany, An Approximation Scheme for Bin Packing with Conicts Klaus Jansen 1 Max-Planck Institut fur Informatik, Im Stadtwald, 66 13 Saarbrucken, Germany, email : jansen@mpi-sb.mpg.de Abstract. In this paper we

More information

Math 776 Graph Theory Lecture Note 1 Basic concepts

Math 776 Graph Theory Lecture Note 1 Basic concepts Math 776 Graph Theory Lecture Note 1 Basic concepts Lectured by Lincoln Lu Transcribed by Lincoln Lu Graph theory was founded by the great Swiss mathematician Leonhard Euler (1707-178) after he solved

More information

1 Introduction The concept of graph spanners has been studied in several recent papers in the context of communication networks, distributed computing

1 Introduction The concept of graph spanners has been studied in several recent papers in the context of communication networks, distributed computing On the Hardness of Approximating Spanners Guy Kortsarz June 1, 1999 Abstract A k spanner of a connected graph G = (V; E) is a subgraph G 0 consisting of all the vertices of V and a subset of the edges,

More information

arxiv: v2 [cs.dm] 3 Dec 2014

arxiv: v2 [cs.dm] 3 Dec 2014 The Student/Project Allocation problem with group projects Aswhin Arulselvan, Ágnes Cseh, and Jannik Matuschke arxiv:4.035v [cs.dm] 3 Dec 04 Department of Management Science, University of Strathclyde,

More information

Improving Minimum Cost Spanning Trees by Upgrading Nodes

Improving Minimum Cost Spanning Trees by Upgrading Nodes 0 2 7 5 8 6 Improving Minimum Cost Spanning Trees by Upgrading Nodes S. O. Krumke M. V. Marathe H. Noltemeier R. Ravi S. S. Ravi R. Sundaram H.-C. Wirth Abstract We study budget constrained network upgrading

More information

CSC Linear Programming and Combinatorial Optimization Lecture 12: Semidefinite Programming(SDP) Relaxation

CSC Linear Programming and Combinatorial Optimization Lecture 12: Semidefinite Programming(SDP) Relaxation CSC411 - Linear Programming and Combinatorial Optimization Lecture 1: Semidefinite Programming(SDP) Relaxation Notes taken by Xinwei Gui May 1, 007 Summary: This lecture introduces the semidefinite programming(sdp)

More information

Augmenting a Graph of Minimum Degree 2 to have Two Disjoint Total Dominating Sets

Augmenting a Graph of Minimum Degree 2 to have Two Disjoint Total Dominating Sets Augmenting a Graph of Minimum Degree 2 to have Two Disjoint Total Dominating Sets Michael Dorfling a,1 Wayne Goddard b,c Johannes H. Hattingh d Michael A. Henning a,1 a School of Mathematical Sciences,

More information

A Linear Time Algorithm for the Minimum Spanning Tree Problem. on a Planar Graph. Tomomi MATSUI. (January 1994 )

A Linear Time Algorithm for the Minimum Spanning Tree Problem. on a Planar Graph. Tomomi MATSUI. (January 1994 ) A Linear Time Algorithm for the Minimum Spanning Tree Problem on a Planar Graph Tomomi MATSUI (January 994 ) Department of Mathematical Engineering and Information Physics Faculty of Engineering, University

More information

Matching 4/21/2016. Bipartite Matching. 3330: Algorithms. First Try. Maximum Matching. Key Questions. Existence of Perfect Matching

Matching 4/21/2016. Bipartite Matching. 3330: Algorithms. First Try. Maximum Matching. Key Questions. Existence of Perfect Matching Bipartite Matching Matching 3330: Algorithms A graph is bipartite if its vertex set can be partitioned into two subsets A and B so that each edge has one endpoint in A and the other endpoint in B. A B

More information

Grundy chromatic number of the complement of bipartite graphs

Grundy chromatic number of the complement of bipartite graphs Grundy chromatic number of the complement of bipartite graphs Manouchehr Zaker Institute for Advanced Studies in Basic Sciences P. O. BOX 45195-159 Zanjan, Iran E-mail: mzaker@iasbs.ac.ir Abstract A Grundy

More information

Graphs and Network Flows IE411. Lecture 21. Dr. Ted Ralphs

Graphs and Network Flows IE411. Lecture 21. Dr. Ted Ralphs Graphs and Network Flows IE411 Lecture 21 Dr. Ted Ralphs IE411 Lecture 21 1 Combinatorial Optimization and Network Flows In general, most combinatorial optimization and integer programming problems are

More information

APPROXIMATION ALGORITHMS FOR GEOMETRIC PROBLEMS

APPROXIMATION ALGORITHMS FOR GEOMETRIC PROBLEMS APPROXIMATION ALGORITHMS FOR GEOMETRIC PROBLEMS Subhas C. Nandy (nandysc@isical.ac.in) Advanced Computing and Microelectronics Unit Indian Statistical Institute Kolkata 70010, India. Organization Introduction

More information

CME 305: Discrete Mathematics and Algorithms Instructor: Reza Zadeh HW#3 Due at the beginning of class Thursday 03/02/17

CME 305: Discrete Mathematics and Algorithms Instructor: Reza Zadeh HW#3 Due at the beginning of class Thursday 03/02/17 CME 305: Discrete Mathematics and Algorithms Instructor: Reza Zadeh (rezab@stanford.edu) HW#3 Due at the beginning of class Thursday 03/02/17 1. Consider a model of a nonbipartite undirected graph in which

More information

On-line Steiner Trees in the Euclidean Plane

On-line Steiner Trees in the Euclidean Plane On-line Steiner Trees in the Euclidean Plane Noga Alon Yossi Azar Abstract Suppose we are given a sequence of n points in the Euclidean plane, and our objective is to construct, on-line, a connected graph

More information

Covering the edges of a graph by a prescribed tree with minimum overlap

Covering the edges of a graph by a prescribed tree with minimum overlap Covering the edges of a graph by a prescribed tree with minimum overlap Noga Alon Yair Caro Raphael Yuster Abstract Let H = (V H, E H ) be a graph, and let k be a positive integer. A graph G = (V G, E

More information

Improved Approximations for Graph-TSP in Regular Graphs

Improved Approximations for Graph-TSP in Regular Graphs Improved Approximations for Graph-TSP in Regular Graphs R Ravi Carnegie Mellon University Joint work with Uriel Feige (Weizmann), Jeremy Karp (CMU) and Mohit Singh (MSR) 1 Graph TSP Given a connected unweighted

More information

Independent Sets in Hypergraphs with. Applications to Routing Via Fixed Paths. y.

Independent Sets in Hypergraphs with. Applications to Routing Via Fixed Paths. y. Independent Sets in Hypergraphs with Applications to Routing Via Fixed Paths Noga Alon 1, Uri Arad 2, and Yossi Azar 3 1 Department of Mathematics and Computer Science, Tel-Aviv University noga@mathtauacil

More information

Matching Algorithms. Proof. If a bipartite graph has a perfect matching, then it is easy to see that the right hand side is a necessary condition.

Matching Algorithms. Proof. If a bipartite graph has a perfect matching, then it is easy to see that the right hand side is a necessary condition. 18.433 Combinatorial Optimization Matching Algorithms September 9,14,16 Lecturer: Santosh Vempala Given a graph G = (V, E), a matching M is a set of edges with the property that no two of the edges have

More information

Hardness of Approximation for the TSP. Michael Lampis LAMSADE Université Paris Dauphine

Hardness of Approximation for the TSP. Michael Lampis LAMSADE Université Paris Dauphine Hardness of Approximation for the TSP Michael Lampis LAMSADE Université Paris Dauphine Sep 2, 2015 Overview Hardness of Approximation What is it? How to do it? (Easy) Examples The PCP Theorem What is it?

More information

PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS

PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS PAUL BALISTER Abstract It has been shown [Balister, 2001] that if n is odd and m 1,, m t are integers with m i 3 and t i=1 m i = E(K n) then K n can be decomposed

More information

Lecture 1. 2 Motivation: Fast. Reliable. Cheap. Choose two.

Lecture 1. 2 Motivation: Fast. Reliable. Cheap. Choose two. Approximation Algorithms and Hardness of Approximation February 19, 2013 Lecture 1 Lecturer: Ola Svensson Scribes: Alantha Newman 1 Class Information 4 credits Lecturers: Ola Svensson (ola.svensson@epfl.ch)

More information

On Modularity Clustering. Group III (Ying Xuan, Swati Gambhir & Ravi Tiwari)

On Modularity Clustering. Group III (Ying Xuan, Swati Gambhir & Ravi Tiwari) On Modularity Clustering Presented by: Presented by: Group III (Ying Xuan, Swati Gambhir & Ravi Tiwari) Modularity A quality index for clustering a graph G=(V,E) G=(VE) q( C): EC ( ) EC ( ) + ECC (, ')

More information

Parameterized graph separation problems

Parameterized graph separation problems Parameterized graph separation problems Dániel Marx Department of Computer Science and Information Theory, Budapest University of Technology and Economics Budapest, H-1521, Hungary, dmarx@cs.bme.hu Abstract.

More information

arxiv: v1 [cs.dm] 21 Dec 2015

arxiv: v1 [cs.dm] 21 Dec 2015 The Maximum Cardinality Cut Problem is Polynomial in Proper Interval Graphs Arman Boyacı 1, Tinaz Ekim 1, and Mordechai Shalom 1 Department of Industrial Engineering, Boğaziçi University, Istanbul, Turkey

More information

Vertex Cover Approximations on Random Graphs.

Vertex Cover Approximations on Random Graphs. Vertex Cover Approximations on Random Graphs. Eyjolfur Asgeirsson 1 and Cliff Stein 2 1 Reykjavik University, Reykjavik, Iceland. 2 Department of IEOR, Columbia University, New York, NY. Abstract. The

More information

Assignment 5: Solutions

Assignment 5: Solutions Algorithm Design Techniques Assignment 5: Solutions () Port Authority. [This problem is more commonly called the Bin Packing Problem.] (a) Suppose K = 3 and (w, w, w 3, w 4 ) = (,,, ). The optimal solution

More information

A primal dual interpretation of two 2-approximation algorithms for the feedback vertex set problem in undirected graphs

A primal dual interpretation of two 2-approximation algorithms for the feedback vertex set problem in undirected graphs Operations Research Letters 22 (1998) 111 118 A primal dual interpretation of two 2-approximation algorithms for the feedback vertex set problem in undirected graphs Fabian A. Chudak a;1, Michel X. Goemans

More information

Vertex 3-colorability of claw-free graphs

Vertex 3-colorability of claw-free graphs Algorithmic Operations Research Vol.2 (27) 5 2 Vertex 3-colorability of claw-free graphs Marcin Kamiński a Vadim Lozin a a RUTCOR - Rutgers University Center for Operations Research, 64 Bartholomew Road,

More information

Theory of Computing. Lecture 10 MAS 714 Hartmut Klauck

Theory of Computing. Lecture 10 MAS 714 Hartmut Klauck Theory of Computing Lecture 10 MAS 714 Hartmut Klauck Seven Bridges of Königsberg Can one take a walk that crosses each bridge exactly once? Seven Bridges of Königsberg Model as a graph Is there a path

More information

Advanced Methods in Algorithms HW 5

Advanced Methods in Algorithms HW 5 Advanced Methods in Algorithms HW 5 Written by Pille Pullonen 1 Vertex-disjoint cycle cover Let G(V, E) be a finite, strongly-connected, directed graph. Let w : E R + be a positive weight function dened

More information

val(y, I) α (9.0.2) α (9.0.3)

val(y, I) α (9.0.2) α (9.0.3) CS787: Advanced Algorithms Lecture 9: Approximation Algorithms In this lecture we will discuss some NP-complete optimization problems and give algorithms for solving them that produce a nearly optimal,

More information

Graphs with Two Disjoint Total Dominating Sets

Graphs with Two Disjoint Total Dominating Sets Graphs with Two Disjoint Total Dominating Sets Izak Broere, Rand Afrikaans University Michael Dorfling, Rand Afrikaans University Wayne Goddard, University of Natal Johannes H. Hattingh, Georgia State

More information

Algorithmic complexity of two defence budget problems

Algorithmic complexity of two defence budget problems 21st International Congress on Modelling and Simulation, Gold Coast, Australia, 29 Nov to 4 Dec 2015 www.mssanz.org.au/modsim2015 Algorithmic complexity of two defence budget problems R. Taylor a a Defence

More information

Progress Towards the Total Domination Game 3 4 -Conjecture

Progress Towards the Total Domination Game 3 4 -Conjecture Progress Towards the Total Domination Game 3 4 -Conjecture 1 Michael A. Henning and 2 Douglas F. Rall 1 Department of Pure and Applied Mathematics University of Johannesburg Auckland Park, 2006 South Africa

More information

Sparse Hypercube 3-Spanners

Sparse Hypercube 3-Spanners Sparse Hypercube 3-Spanners W. Duckworth and M. Zito Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3052, Australia Department of Computer Science, University of

More information

Module 7. Independent sets, coverings. and matchings. Contents

Module 7. Independent sets, coverings. and matchings. Contents Module 7 Independent sets, coverings Contents and matchings 7.1 Introduction.......................... 152 7.2 Independent sets and coverings: basic equations..... 152 7.3 Matchings in bipartite graphs................

More information

1 The Traveling Salesman Problem

1 The Traveling Salesman Problem Comp 260: Advanced Algorithms Tufts University, Spring 2011 Prof. Lenore Cowen Scribe: Jisoo Park Lecture 3: The Traveling Salesman Problem 1 The Traveling Salesman Problem The Traveling Salesman Problem

More information

Fast and Simple Algorithms for Weighted Perfect Matching

Fast and Simple Algorithms for Weighted Perfect Matching Fast and Simple Algorithms for Weighted Perfect Matching Mirjam Wattenhofer, Roger Wattenhofer {mirjam.wattenhofer,wattenhofer}@inf.ethz.ch, Department of Computer Science, ETH Zurich, Switzerland Abstract

More information

Polynomial Time Approximation Schemes for the Euclidean Traveling Salesman Problem

Polynomial Time Approximation Schemes for the Euclidean Traveling Salesman Problem PROJECT FOR CS388G: ALGORITHMS: TECHNIQUES/THEORY (FALL 2015) Polynomial Time Approximation Schemes for the Euclidean Traveling Salesman Problem Shanshan Wu Vatsal Shah October 20, 2015 Abstract In this

More information

More NP-complete Problems. CS255 Chris Pollett May 3, 2006.

More NP-complete Problems. CS255 Chris Pollett May 3, 2006. More NP-complete Problems CS255 Chris Pollett May 3, 2006. Outline More NP-Complete Problems Hamiltonian Cycle Recall a hamiltonian cycle is a permutation of the vertices v i_1,, v i_n of a graph G so

More information

PLANAR GRAPH BIPARTIZATION IN LINEAR TIME

PLANAR GRAPH BIPARTIZATION IN LINEAR TIME PLANAR GRAPH BIPARTIZATION IN LINEAR TIME SAMUEL FIORINI, NADIA HARDY, BRUCE REED, AND ADRIAN VETTA Abstract. For each constant k, we present a linear time algorithm that, given a planar graph G, either

More information

Disjoint directed cycles

Disjoint directed cycles Disjoint directed cycles Noga Alon Abstract It is shown that there exists a positive ɛ so that for any integer k, every directed graph with minimum outdegree at least k contains at least ɛk vertex disjoint

More information

1 Better Approximation of the Traveling Salesman

1 Better Approximation of the Traveling Salesman Stanford University CS261: Optimization Handout 4 Luca Trevisan January 13, 2011 Lecture 4 In which we describe a 1.5-approximate algorithm for the Metric TSP, we introduce the Set Cover problem, observe

More information

Chapter Design Techniques for Approximation Algorithms

Chapter Design Techniques for Approximation Algorithms Chapter 2 Design Techniques for Approximation Algorithms I N THE preceding chapter we observed that many relevant optimization problems are NP-hard, and that it is unlikely that we will ever be able to

More information

Fork-forests in bi-colored complete bipartite graphs

Fork-forests in bi-colored complete bipartite graphs Fork-forests in bi-colored complete bipartite graphs Maria Axenovich, Marcus Krug, Georg Osang, and Ignaz Rutter January 1, 01 Abstract Motivated by the problem in [6], which studies the relative efficiency

More information

6 Randomized rounding of semidefinite programs

6 Randomized rounding of semidefinite programs 6 Randomized rounding of semidefinite programs We now turn to a new tool which gives substantially improved performance guarantees for some problems We now show how nonlinear programming relaxations can

More information

1 Introduction and Results

1 Introduction and Results On the Structure of Graphs with Large Minimum Bisection Cristina G. Fernandes 1,, Tina Janne Schmidt,, and Anusch Taraz, 1 Instituto de Matemática e Estatística, Universidade de São Paulo, Brazil, cris@ime.usp.br

More information