Learning Convolutional Feature Hierarchies for Visual Recognition

Size: px
Start display at page:

Download "Learning Convolutional Feature Hierarchies for Visual Recognition"

Transcription

1 Learning Convolutional Feature Hierarchies for Visual Recognition Koray Kavukcuoglu, Pierre Sermanet, Y-Lan Boureau, Karol Gregor, Michael Mathieu, Yann LeCun Computer Science Department Courant Institute of Mathematical Sciences New York University

2 Overview Feature Extractors Unsupervised Feature Learning Sparse Coding Convolutional Sparse Coding Efficient Predictors for Recognition Hierarchical Object Recognition

3 Object Recognition Feature Extraction Gabor, SIFT, HoG, Color, combinations... Classification PMK-SVM, Linear,... Grauman 05, Lazebnik 06, Serre 05, Mutch 06,...

4 Object Recognition Feature Extractor Classifier It would be better to learn everything adaptive to different domains Learn feature extractor and classifier together

5 Feature Extraction Filterbank Non-lin pooling Can be based on unsupervised learning Should be efficient to extract features Overcomplete sparse representations are easily separable Conventional sparse coding is slow

6 Sparse Coding Represent an input vector using an overcomplete dictionary y i X D j 0 D j i D z j # of dictionary elements > size of input # of zero elements > > > # of non-zero Input Dictionary z Representation (sparse) Each X is represented using a linear combination of columns of D How do we calculate z for a given X? How do we learn D?

7 Sparse Coding 1) Find the sparsest solution that satisfies a given reconstruction error min z 0 s.t. x i D i z i 2 2 2) Find the best k-sparse representation that minimizes reconstruction error min x i D i z i 2 2 s.t. z 0 = k L0 minimization requires search not tractable

8 Sparse Coding Matching Pursuit Algorithms offer greedy solution [Mallat and Zhang 93] Greedily pick the dictionary element that reduces residual most very fast, but unstable Function MP (Y,D,n) R=Y,z=0 for k=1..n i = argmax(d T R) z_i = D it R R end = R - z_i D i

9 Sparse Coding min 1 2 x Dz2 2 + λ i z i Input Code Dictionary Sparsity D is given, search for optimal z Reconstruction + Sparsity A mapping f : x z For every input x optimization required to get z Chen 98, Beck 09, Li 09

10 Sparse Modeling min 1 2 x Dz2 2 + λ i z i Learn from data D has to be bounded to avoid trivial solutions Online or batch algorithms for updating dictionary Learn mapping f D : x z Olshausen and Field 97, Aharon 06, Lee 07, Ranzato 07, Kavukcuoglu 08, Zeiler 10,...

11 Per sample energy Sparse Modeling E(x, z, D) =min 1 2 x Dz2 2 + λ i z i Loss L(x, D) = 1 X x X E(x, z, D) For each sample, 1. do inference minimize E(x,z,D) wrt z (sparse coding) 2. update parameters D D η E D 3. Constrain elements of D to be unit norm

12 Sparse Modeling Two problems 1. Inference takes long time Train a predictor function 2. Patch based modeling produces redundant features Use convolutional sparse modeling

13 Predictive Sparse Decomposition min 1 2 x Dz2 2 + λ i z i + z C(x; K) 2 2 z j = g j tanh(k j x) Learning For each sample from data, do: 1. Fix K and D, minimize to get optimal z 2. Using the optimal value of z update D and K 3. Scale elements of D to be unit norm.

14 Predictive Sparse Decomposition Encoder (K) Decoder (D) 12x12 image patches 256 dictionary elements

15 Predictive Sparse Decomposition Encoder (k) Decoder (D) 28x28 MNIST digit images 200 dictionary elements Strokes for digit parts

16 Recognition Architecture C(x; K) Filterbank + Non-linearity + Pooling Linear classifier 64 filters Pinto 08

17 Recognition - C101 Optimal (Feature Sign, Lee 07) vs PSD features PSD features perform slightly better Naturally optimal point of sparsity After 64 features not much gain PSD features are hundreds of times faster

18 Redundancy in Feature Extraction Filters Convolve Feature maps Patch based learning has to model same structure at every location They produce highly redundant features

19 Convolutional PSD 1 2 mask(x) i D i z i z 1 + i z i C(k i x) 2 2 x R w h D R K s s z R K (w s+1) (h s+1) Patch based Convolutional Convolutional training yields a more diverse set of features

20 Convolutional PSD Measuring the redundancy in the dictionary Cumulative histogram of angle between every pair of dictionary elements 10 4 acos(abs(max(d i D T j ))) Patch Based Training Convolutional Training # of cross corr > deg deg

21 Convolutional PSD Encoder Training 2nd order information is important for fast convergence Better sparse representations can be obtained by using shrinkage operator Smooth shrinkage is important for conserving derivatives and parameters are learned 1 β log(exp(β b)+exp(β s) 1) b

22 Convolutional PSD Recognition Performance on C101 Low level convolutional feature learning improves significantly Patch Based SC Convolutional SC Unsup 52.2% 57.1% Unsup+ 54.2% 57.6% Unsup+ Unsupervised feature learning followed by supervised fine tuning

23 Multi-Stage Object Recognition Unsupervised Pre-Training Filter Bank Non- Linearity Pooling Unsupervised Pre-Training x z 1 Filter Bank Non- Linearity Pooling z 2 Supervised Refinement Filterbank - C(x;K) Non-linearities Pooling Building block of a multi-stage architecture

24 Recognition Accuracy on Caltech Patch Based Training 57.1 Unsupervised Unsupervised + Supervised 63.7 Convolutional Training 65.3 Unsupervised Stage 1 Stage 2 Stages 2 Stages Unsupervised + Supervised Unsupervised pre-training with Convolutional PSD yields better accuracy than patch-based PSD

25 Pedestrian Detection On INRIA Shapelet orig (90.5%) PoseInvSvm (68.6%) VJ OpenCv (53.0%) PoseInv (51.4%) Shapelet (50.4%) 0.3 VJ (47.5%) FtrMine (34.0%) miss rate % Pls (23.4%) HOG (23.1%) HikSvm (21.9%) LatSvm V1 (17.5%) MultiFtr (15.6%) R+R+ (14.8%) U+U+ (11.5%) 0.05 MultiFtr+CSS (10.9%) 11.5% LatSvm V2 (9.3%) FPDW (9.3%) ChnFtrs (8.7%) false positives per image Purely supervised training: 14.8% miss rate Unsupervised pre-training with Conv PSD + supervised refinement : 11.5% Close to state of the art and improving quickly...

26 Questions?

Learning Feature Hierarchies for Object Recognition

Learning Feature Hierarchies for Object Recognition Learning Feature Hierarchies for Object Recognition Koray Kavukcuoglu Computer Science Department Courant Institute of Mathematical Sciences New York University Marc Aurelio Ranzato, Kevin Jarrett, Pierre

More information

Learning Convolutional Feature Hierarchies for Visual Recognition

Learning Convolutional Feature Hierarchies for Visual Recognition Learning Convolutional Feature Hierarchies for Visual Recognition Koray Kavukcuoglu 1, Pierre Sermanet 1, Y-Lan Boureau 2,1, Karol Gregor 1, Michaël Mathieu 1, Yann LeCun 1 1 Courant Institute of Mathematical

More information

A Sparse and Locally Shift Invariant Feature Extractor Applied to Document Images

A Sparse and Locally Shift Invariant Feature Extractor Applied to Document Images A Sparse and Locally Shift Invariant Feature Extractor Applied to Document Images Marc Aurelio Ranzato Yann LeCun Courant Institute of Mathematical Sciences New York University - New York, NY 10003 Abstract

More information

A Sparse and Locally Shift Invariant Feature Extractor Applied to Document Images

A Sparse and Locally Shift Invariant Feature Extractor Applied to Document Images A Sparse and Locally Shift Invariant Feature Extractor Applied to Document Images Marc Aurelio Ranzato Yann LeCun Courant Institute of Mathematical Sciences New York University - New York, NY 10003 Abstract

More information

Integral Channel Features Addendum

Integral Channel Features Addendum DOLLÁR, et al.: INTEGRAL CHANNEL FEATURES ADDENDUM 1 Integral Channel Features Addendum Piotr Dollár 1 pdollar@caltech.edu Zhuowen Tu 2 zhuowen.tu@loni.ucla.edu Pietro Perona 1 perona@caltech.edu Serge

More information

What is the Best Multi-Stage Architecture for Object Recognition?

What is the Best Multi-Stage Architecture for Object Recognition? What is the Best Multi-Stage Architecture for Object Recognition? Kevin Jarrett, Koray Kavukcuoglu, Marc Aurelio Ranzato and Yann LeCun The Courant Institute of Mathematical Sciences New York University,

More information

Pedestrian Detection with Unsupervised Multi-Stage Feature Learning

Pedestrian Detection with Unsupervised Multi-Stage Feature Learning 2013 IEEE Conference on Computer Vision and Pattern Recognition Pedestrian Detection with Unsupervised Multi-Stage Feature Learning Pierre Sermanet Koray Kavukcuoglu Soumith Chintala Yann LeCun Courant

More information

CS229 Final Project Report. A Multi-Task Feature Learning Approach to Human Detection. Tiffany Low

CS229 Final Project Report. A Multi-Task Feature Learning Approach to Human Detection. Tiffany Low CS229 Final Project Report A Multi-Task Feature Learning Approach to Human Detection Tiffany Low tlow@stanford.edu Abstract We focus on the task of human detection using unsupervised pre-trained neutral

More information

Hierarchical Matching Pursuit for Image Classification: Architecture and Fast Algorithms

Hierarchical Matching Pursuit for Image Classification: Architecture and Fast Algorithms Hierarchical Matching Pursuit for Image Classification: Architecture and Fast Algorithms Liefeng Bo University of Washington Seattle WA 98195, USA Xiaofeng Ren ISTC-Pervasive Computing Intel Labs Seattle

More information

Adaptive Deconvolutional Networks for Mid and High Level Feature Learning

Adaptive Deconvolutional Networks for Mid and High Level Feature Learning ICCV 2011 submission. Currently under review. Please do not distribute. Adaptive Deconvolutional Networks for Mid and High Level Feature Learning Matthew D. Zeiler, Graham W. Taylor and Rob Fergus Dept.

More information

Unsupervised Learning of Feature Hierarchies

Unsupervised Learning of Feature Hierarchies Unsupervised Learning of Feature Hierarchies by Marc Aurelio Ranzato A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Computer Science

More information

Learning Hierarchical Feature Extractors For Image Recognition

Learning Hierarchical Feature Extractors For Image Recognition Learning Hierarchical Feature Extractors For Image Recognition by Y-Lan Boureau A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of

More information

Learning Hierarchical Feature Extractors For Image Recognition

Learning Hierarchical Feature Extractors For Image Recognition Learning Hierarchical Feature Extractors For Image Recognition by Y-Lan Boureau A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of

More information

C. Poultney S. Cho pra (NYU Courant Institute) Y. LeCun

C. Poultney S. Cho pra (NYU Courant Institute) Y. LeCun Efficient Learning of Sparse Overcomplete Representations with an Energy-Based Model Marc'Aurelio Ranzato C. Poultney S. Cho pra (NYU Courant Institute) Y. LeCun CIAR Summer School Toronto 2006 Why Extracting

More information

Learning-based Methods in Vision

Learning-based Methods in Vision Learning-based Methods in Vision 16-824 Sparsity and Deep Learning Motivation Multitude of hand-designed features currently in use in vision - SIFT, HoG, LBP, MSER, etc. Even the best approaches, just

More information

Supplementary material for the paper Are Sparse Representations Really Relevant for Image Classification?

Supplementary material for the paper Are Sparse Representations Really Relevant for Image Classification? Supplementary material for the paper Are Sparse Representations Really Relevant for Image Classification? Roberto Rigamonti, Matthew A. Brown, Vincent Lepetit CVLab, EPFL Lausanne, Switzerland firstname.lastname@epfl.ch

More information

Efficient Algorithms may not be those we think

Efficient Algorithms may not be those we think Efficient Algorithms may not be those we think Yann LeCun, Computational and Biological Learning Lab The Courant Institute of Mathematical Sciences New York University http://yann.lecun.com http://www.cs.nyu.edu/~yann

More information

Sparse Models in Image Understanding And Computer Vision

Sparse Models in Image Understanding And Computer Vision Sparse Models in Image Understanding And Computer Vision Jayaraman J. Thiagarajan Arizona State University Collaborators Prof. Andreas Spanias Karthikeyan Natesan Ramamurthy Sparsity Sparsity of a vector

More information

Generalized Lasso based Approximation of Sparse Coding for Visual Recognition

Generalized Lasso based Approximation of Sparse Coding for Visual Recognition Generalized Lasso based Approximation of Sparse Coding for Visual Recognition Nobuyuki Morioka The University of New South Wales & NICTA Sydney, Australia nmorioka@cse.unsw.edu.au Shin ichi Satoh National

More information

Bilevel Sparse Coding

Bilevel Sparse Coding Adobe Research 345 Park Ave, San Jose, CA Mar 15, 2013 Outline 1 2 The learning model The learning algorithm 3 4 Sparse Modeling Many types of sensory data, e.g., images and audio, are in high-dimensional

More information

LEARNING A SPARSE DICTIONARY OF VIDEO STRUCTURE FOR ACTIVITY MODELING. Nandita M. Nayak, Amit K. Roy-Chowdhury. University of California, Riverside

LEARNING A SPARSE DICTIONARY OF VIDEO STRUCTURE FOR ACTIVITY MODELING. Nandita M. Nayak, Amit K. Roy-Chowdhury. University of California, Riverside LEARNING A SPARSE DICTIONARY OF VIDEO STRUCTURE FOR ACTIVITY MODELING Nandita M. Nayak, Amit K. Roy-Chowdhury University of California, Riverside ABSTRACT We present an approach which incorporates spatiotemporal

More information

Histograms of Sparse Codes for Object Detection

Histograms of Sparse Codes for Object Detection Histograms of Sparse Codes for Object Detection Xiaofeng Ren (Amazon), Deva Ramanan (UC Irvine) Presented by Hossein Azizpour What does the paper do? (learning) a new representation local histograms of

More information

arxiv: v1 [cs.lg] 20 Dec 2013

arxiv: v1 [cs.lg] 20 Dec 2013 Unsupervised Feature Learning by Deep Sparse Coding Yunlong He Koray Kavukcuoglu Yun Wang Arthur Szlam Yanjun Qi arxiv:1312.5783v1 [cs.lg] 20 Dec 2013 Abstract In this paper, we propose a new unsupervised

More information

Modeling Visual Cortex V4 in Naturalistic Conditions with Invari. Representations

Modeling Visual Cortex V4 in Naturalistic Conditions with Invari. Representations Modeling Visual Cortex V4 in Naturalistic Conditions with Invariant and Sparse Image Representations Bin Yu Departments of Statistics and EECS University of California at Berkeley Rutgers University, May

More information

Semi-Supervised Hierarchical Models for 3D Human Pose Reconstruction

Semi-Supervised Hierarchical Models for 3D Human Pose Reconstruction Semi-Supervised Hierarchical Models for 3D Human Pose Reconstruction Atul Kanaujia, CBIM, Rutgers Cristian Sminchisescu, TTI-C Dimitris Metaxas,CBIM, Rutgers 3D Human Pose Inference Difficulties Towards

More information

Facial Expression Classification with Random Filters Feature Extraction

Facial Expression Classification with Random Filters Feature Extraction Facial Expression Classification with Random Filters Feature Extraction Mengye Ren Facial Monkey mren@cs.toronto.edu Zhi Hao Luo It s Me lzh@cs.toronto.edu I. ABSTRACT In our work, we attempted to tackle

More information

Using Machine Learning for Classification of Cancer Cells

Using Machine Learning for Classification of Cancer Cells Using Machine Learning for Classification of Cancer Cells Camille Biscarrat University of California, Berkeley I Introduction Cell screening is a commonly used technique in the development of new drugs.

More information

CPSC340. State-of-the-art Neural Networks. Nando de Freitas November, 2012 University of British Columbia

CPSC340. State-of-the-art Neural Networks. Nando de Freitas November, 2012 University of British Columbia CPSC340 State-of-the-art Neural Networks Nando de Freitas November, 2012 University of British Columbia Outline of the lecture This lecture provides an overview of two state-of-the-art neural networks:

More information

CS 2750: Machine Learning. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh April 13, 2016

CS 2750: Machine Learning. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh April 13, 2016 CS 2750: Machine Learning Neural Networks Prof. Adriana Kovashka University of Pittsburgh April 13, 2016 Plan for today Neural network definition and examples Training neural networks (backprop) Convolutional

More information

Supervised Translation-Invariant Sparse Coding

Supervised Translation-Invariant Sparse Coding Supervised Translation-Invariant Sparse Coding Jianchao Yang,KaiYu, Thomas Huang Beckman Institute, University of Illinois at Urbana-Champaign NEC Laboratories America, Inc., Cupertino, California {jyang29,

More information

Unsupervised Learning of Spatiotemporally Coherent Metrics

Unsupervised Learning of Spatiotemporally Coherent Metrics Unsupervised Learning of Spatiotemporally Coherent Metrics Ross Goroshin, Joan Bruna, Jonathan Tompson, David Eigen, Yann LeCun arxiv 2015. Presented by Jackie Chu Contributions Insight between slow feature

More information

A HMAX with LLC for Visual Recognition

A HMAX with LLC for Visual Recognition A HMAX with LLC for Visual Recognition Kean Hong Lau, Yong Haur Tay, Fook Loong Lo Centre for Computing and Intelligent System Universiti Tunku Abdul Rahman, Kuala Lumpur, Malaysia {laukh,tayyh,lofl}@utar.edu.my

More information

Joint Deep Learning for Pedestrian Detection

Joint Deep Learning for Pedestrian Detection Joint Deep Learning for Pedestrian Detection Wanli Ouyang and Xiaogang Wang Department of Electronic Engineering, the Chinese University of Hong Kong wlouyang, xgwang@ee.cuhk.edu.hk Abstract Feature extraction,

More information

Computer Vision Lecture 16

Computer Vision Lecture 16 Announcements Computer Vision Lecture 16 Deep Learning Applications 11.01.2017 Seminar registration period starts on Friday We will offer a lab course in the summer semester Deep Robot Learning Topic:

More information

Convolutional-Recursive Deep Learning for 3D Object Classification

Convolutional-Recursive Deep Learning for 3D Object Classification Convolutional-Recursive Deep Learning for 3D Object Classification Richard Socher, Brody Huval, Bharath Bhat, Christopher D. Manning, Andrew Y. Ng NIPS 2012 Iro Armeni, Manik Dhar Motivation Hand-designed

More information

COMP 551 Applied Machine Learning Lecture 16: Deep Learning

COMP 551 Applied Machine Learning Lecture 16: Deep Learning COMP 551 Applied Machine Learning Lecture 16: Deep Learning Instructor: Ryan Lowe (ryan.lowe@cs.mcgill.ca) Slides mostly by: Class web page: www.cs.mcgill.ca/~hvanho2/comp551 Unless otherwise noted, all

More information

Computer Vision Lecture 16

Computer Vision Lecture 16 Computer Vision Lecture 16 Deep Learning Applications 11.01.2017 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Seminar registration period starts

More information

Deep Learning for Generic Object Recognition

Deep Learning for Generic Object Recognition Deep Learning for Generic Object Recognition, Computational and Biological Learning Lab The Courant Institute of Mathematical Sciences New York University Collaborators: Marc'Aurelio Ranzato, Fu Jie Huang,

More information

The Fastest Pedestrian Detector in the West

The Fastest Pedestrian Detector in the West DOLLÁR, et al.: THE FASTEST PEDESTRIAN DETECTOR IN THE WEST The Fastest Pedestrian Detector in the West Piotr Dollár pdollar@caltech.edu Serge Belongie 2 sjb@cs.ucsd.edu Pietro Perona perona@caltech.edu

More information

arxiv: v1 [cs.cv] 4 Oct 2017

arxiv: v1 [cs.cv] 4 Oct 2017 ENERGY-BASED SPHERICAL SPARSE CODING Bailey Kong and Charless C. Fowlkes Department of Computer Science University of California, Irvine Irvine, CA 92697 USA {bhkong,fowlkes}@ics.uci.edu ABSTRACT arxiv:1710.01820v1

More information

Object detection with CNNs

Object detection with CNNs Object detection with CNNs 80% PASCAL VOC mean0average0precision0(map) 70% 60% 50% 40% 30% 20% 10% Before CNNs After CNNs 0% 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 year Region proposals

More information

Object detection using Region Proposals (RCNN) Ernest Cheung COMP Presentation

Object detection using Region Proposals (RCNN) Ernest Cheung COMP Presentation Object detection using Region Proposals (RCNN) Ernest Cheung COMP790-125 Presentation 1 2 Problem to solve Object detection Input: Image Output: Bounding box of the object 3 Object detection using CNN

More information

Sparse coding for image classification

Sparse coding for image classification Sparse coding for image classification Columbia University Electrical Engineering: Kun Rong(kr2496@columbia.edu) Yongzhou Xiang(yx2211@columbia.edu) Yin Cui(yc2776@columbia.edu) Outline Background Introduction

More information

Image Restoration and Background Separation Using Sparse Representation Framework

Image Restoration and Background Separation Using Sparse Representation Framework Image Restoration and Background Separation Using Sparse Representation Framework Liu, Shikun Abstract In this paper, we introduce patch-based PCA denoising and k-svd dictionary learning method for the

More information

Extracting and Composing Robust Features with Denoising Autoencoders

Extracting and Composing Robust Features with Denoising Autoencoders Presenter: Alexander Truong March 16, 2017 Extracting and Composing Robust Features with Denoising Autoencoders Pascal Vincent, Hugo Larochelle, Yoshua Bengio, Pierre-Antoine Manzagol 1 Outline Introduction

More information

Learning Visual Semantics: Models, Massive Computation, and Innovative Applications

Learning Visual Semantics: Models, Massive Computation, and Innovative Applications Learning Visual Semantics: Models, Massive Computation, and Innovative Applications Part II: Visual Features and Representations Liangliang Cao, IBM Watson Research Center Evolvement of Visual Features

More information

A New Algorithm for Training Sparse Autoencoders

A New Algorithm for Training Sparse Autoencoders A New Algorithm for Training Sparse Autoencoders Ali Shahin Shamsabadi, Massoud Babaie-Zadeh, Seyyede Zohreh Seyyedsalehi, Hamid R. Rabiee, Christian Jutten Sharif University of Technology, University

More information

Learning Fast Approximations of Sparse Coding

Learning Fast Approximations of Sparse Coding Karol Gregor and Yann LeCun {kgregor,yann}@cs.nyu.edu Courant Institute, New York University, 715 Broadway, New York, NY 10003, USA Abstract In Sparse Coding (SC), input vectors are reconstructed using

More information

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun Presented by Tushar Bansal Objective 1. Get bounding box for all objects

More information

arxiv: v2 [cs.lg] 22 Mar 2014

arxiv: v2 [cs.lg] 22 Mar 2014 Alireza Makhzani makhzani@psi.utoronto.ca Brendan Frey frey@psi.utoronto.ca University of Toronto, 10 King s College Rd. Toronto, Ontario M5S 3G4, Canada arxiv:1312.5663v2 [cs.lg] 22 Mar 2014 Abstract

More information

Developing Open Source code for Pyramidal Histogram Feature Sets

Developing Open Source code for Pyramidal Histogram Feature Sets Developing Open Source code for Pyramidal Histogram Feature Sets BTech Project Report by Subodh Misra subodhm@iitk.ac.in Y648 Guide: Prof. Amitabha Mukerjee Dept of Computer Science and Engineering IIT

More information

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations Honglak Lee Roger Grosse Rajesh Ranganath Andrew Y. Ng Computer Science Department, Stanford University,

More information

Learning Algorithms for Medical Image Analysis. Matteo Santoro slipguru

Learning Algorithms for Medical Image Analysis. Matteo Santoro slipguru Learning Algorithms for Medical Image Analysis Matteo Santoro slipguru santoro@disi.unige.it June 8, 2010 Outline 1. learning-based strategies for quantitative image analysis 2. automatic annotation of

More information

Sparse Coding and Dictionary Learning for Image Analysis

Sparse Coding and Dictionary Learning for Image Analysis Sparse Coding and Dictionary Learning for Image Analysis Part IV: Recent Advances in Computer Vision and New Models Francis Bach, Julien Mairal, Jean Ponce and Guillermo Sapiro CVPR 10 tutorial, San Francisco,

More information

Stacks of Convolutional Restricted Boltzmann Machines for Shift-Invariant Feature Learning

Stacks of Convolutional Restricted Boltzmann Machines for Shift-Invariant Feature Learning Stacks of Convolutional Restricted Boltzmann Machines for Shift-Invariant Feature Learning Mohammad Norouzi, Mani Ranjbar, and Greg Mori School of Computing Science Simon Fraser University Burnaby, BC

More information

Deep learning for object detection. Slides from Svetlana Lazebnik and many others

Deep learning for object detection. Slides from Svetlana Lazebnik and many others Deep learning for object detection Slides from Svetlana Lazebnik and many others Recent developments in object detection 80% PASCAL VOC mean0average0precision0(map) 70% 60% 50% 40% 30% 20% 10% Before deep

More information

Deep Neural Networks:

Deep Neural Networks: Deep Neural Networks: Part II Convolutional Neural Network (CNN) Yuan-Kai Wang, 2016 Web site of this course: http://pattern-recognition.weebly.com source: CNN for ImageClassification, by S. Lazebnik,

More information

Efficient Learning of Sparse Representations with an Energy-Based Model

Efficient Learning of Sparse Representations with an Energy-Based Model Efficient of Sparse Representations with an Energy-Based Model Marc Aurelio Ranzato, Christopher Poultney, Sumit Chopra, Yann Le Cun Presented by Pascal Lamblin February 14 th, 2007 Efficient of Sparse

More information

Sparsity and image processing

Sparsity and image processing Sparsity and image processing Aurélie Boisbunon INRIA-SAM, AYIN March 6, Why sparsity? Main advantages Dimensionality reduction Fast computation Better interpretability Image processing pattern recognition

More information

Pedestrian Detection with Deep Convolutional Neural Network

Pedestrian Detection with Deep Convolutional Neural Network Pedestrian Detection with Deep Convolutional Neural Network Xiaogang Chen, Pengxu Wei, Wei Ke, Qixiang Ye, Jianbin Jiao School of Electronic,Electrical and Communication Engineering, University of Chinese

More information

Pedestrian Detection Based on Deep Convolutional Neural Network with Ensemble Inference Network

Pedestrian Detection Based on Deep Convolutional Neural Network with Ensemble Inference Network Pedestrian Detection Based on Deep Convolutional Neural Network with Ensemble Inference Network Hiroshi Fukui 1 Takayoshi Yamashita 1 Yui Yamauchi 1 Hironobu Fuiyoshi 1 Hiroshi Murase 2 Abstract Pedestrian

More information

Greedy algorithms for Sparse Dictionary Learning

Greedy algorithms for Sparse Dictionary Learning Greedy algorithms for Sparse Dictionary Learning Varun Joshi 26 Apr 2017 Background. Sparse dictionary learning is a kind of representation learning where we express the data as a sparse linear combination

More information

Supplementary material: Efficient pedestrian detection by directly optimizing the partial area under the ROC curve

Supplementary material: Efficient pedestrian detection by directly optimizing the partial area under the ROC curve Supplementary material: Efficient pedestrian detection by directly optimizing the partial area under the ROC curve Sakrapee Paisitkriangkrai, Chunhua Shen, Anton van den Hengel The University of Adelaide,

More information

TA Section: Problem Set 4

TA Section: Problem Set 4 TA Section: Problem Set 4 Outline Discriminative vs. Generative Classifiers Image representation and recognition models Bag of Words Model Part-based Model Constellation Model Pictorial Structures Model

More information

Object Classification Problem

Object Classification Problem HIERARCHICAL OBJECT CATEGORIZATION" Gregory Griffin and Pietro Perona. Learning and Using Taxonomies For Fast Visual Categorization. CVPR 2008 Marcin Marszalek and Cordelia Schmid. Constructing Category

More information

Discriminative sparse model and dictionary learning for object category recognition

Discriminative sparse model and dictionary learning for object category recognition Discriative sparse model and dictionary learning for object category recognition Xiao Deng and Donghui Wang Institute of Artificial Intelligence, Zhejiang University Hangzhou, China, 31007 {yellowxiao,dhwang}@zju.edu.cn

More information

Reconstructive Sparse Code Transfer for Contour Detection and Semantic Labeling

Reconstructive Sparse Code Transfer for Contour Detection and Semantic Labeling Reconstructive Sparse Code Transfer for Contour Detection and Semantic Labeling Michael Maire 1,2 Stella X. Yu 3 Pietro Perona 2 1 TTI Chicago 2 California Institute of Technology 3 University of California

More information

Return of the Devil in the Details: Delving Deep into Convolutional Nets

Return of the Devil in the Details: Delving Deep into Convolutional Nets Return of the Devil in the Details: Delving Deep into Convolutional Nets Ken Chatfield - Karen Simonyan - Andrea Vedaldi - Andrew Zisserman University of Oxford The Devil is still in the Details 2011 2014

More information

An Exploration of Computer Vision Techniques for Bird Species Classification

An Exploration of Computer Vision Techniques for Bird Species Classification An Exploration of Computer Vision Techniques for Bird Species Classification Anne L. Alter, Karen M. Wang December 15, 2017 Abstract Bird classification, a fine-grained categorization task, is a complex

More information

Novel Lossy Compression Algorithms with Stacked Autoencoders

Novel Lossy Compression Algorithms with Stacked Autoencoders Novel Lossy Compression Algorithms with Stacked Autoencoders Anand Atreya and Daniel O Shea {aatreya, djoshea}@stanford.edu 11 December 2009 1. Introduction 1.1. Lossy compression Lossy compression is

More information

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Si Chen The George Washington University sichen@gwmail.gwu.edu Meera Hahn Emory University mhahn7@emory.edu Mentor: Afshin

More information

An Analysis of Single-Layer Networks in Unsupervised Feature Learning

An Analysis of Single-Layer Networks in Unsupervised Feature Learning An Analysis of Single-Layer Networks in Unsupervised Feature Learning Adam Coates Honglak Lee Andrew Y. Ng Stanford University Computer Science Dept. 353 Serra Mall Stanford, CA 94305 University of Michigan

More information

Computer Vision Lecture 16

Computer Vision Lecture 16 Computer Vision Lecture 16 Deep Learning for Object Categorization 14.01.2016 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Seminar registration period

More information

Effective Auto Encoder For Unsupervised Sparse Representation

Effective Auto Encoder For Unsupervised Sparse Representation Wayne State University Wayne State University Theses 1-1-2015 Effective Auto Encoder For Unsupervised Sparse Representation Faria Mahnaz Wayne State University, Follow this and additional works at: http://digitalcommons.wayne.edu/oa_theses

More information

Human Vision Based Object Recognition Sye-Min Christina Chan

Human Vision Based Object Recognition Sye-Min Christina Chan Human Vision Based Object Recognition Sye-Min Christina Chan Abstract Serre, Wolf, and Poggio introduced an object recognition algorithm that simulates image processing in visual cortex and claimed to

More information

Lightweight Unsupervised Domain Adaptation by Convolutional Filter Reconstruction

Lightweight Unsupervised Domain Adaptation by Convolutional Filter Reconstruction Lightweight Unsupervised Domain Adaptation by Convolutional Filter Reconstruction Rahaf Aljundi, Tinne Tuytelaars KU Leuven, ESAT-PSI - iminds, Belgium Abstract. Recently proposed domain adaptation methods

More information

Machine Learning. Deep Learning. Eric Xing (and Pengtao Xie) , Fall Lecture 8, October 6, Eric CMU,

Machine Learning. Deep Learning. Eric Xing (and Pengtao Xie) , Fall Lecture 8, October 6, Eric CMU, Machine Learning 10-701, Fall 2015 Deep Learning Eric Xing (and Pengtao Xie) Lecture 8, October 6, 2015 Eric Xing @ CMU, 2015 1 A perennial challenge in computer vision: feature engineering SIFT Spin image

More information

Machine Learning. MGS Lecture 3: Deep Learning

Machine Learning. MGS Lecture 3: Deep Learning Dr Michel F. Valstar http://cs.nott.ac.uk/~mfv/ Machine Learning MGS Lecture 3: Deep Learning Dr Michel F. Valstar http://cs.nott.ac.uk/~mfv/ WHAT IS DEEP LEARNING? Shallow network: Only one hidden layer

More information

A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization and continuation [Wen,Yin,Goldfarb,Zhang 2009]

A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization and continuation [Wen,Yin,Goldfarb,Zhang 2009] A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization and continuation [Wen,Yin,Goldfarb,Zhang 2009] Yongjia Song University of Wisconsin-Madison April 22, 2010 Yongjia Song

More information

Multipath Sparse Coding Using Hierarchical Matching Pursuit

Multipath Sparse Coding Using Hierarchical Matching Pursuit Multipath Sparse Coding Using Hierarchical Matching Pursuit Liefeng Bo, Xiaofeng Ren ISTC Pervasive Computing, Intel Labs Seattle WA 98195, USA {liefeng.bo,xiaofeng.ren}@intel.com Dieter Fox University

More information

Large-Scale Visual Recognition With Deep Learning

Large-Scale Visual Recognition With Deep Learning Large-Scale Visual Recognition With Deep Learning Marc'Aurelio ranzato@google.com www.cs.toronto.edu/~ranzato Sunday 23 June 2013 Why Is Recognition Hard? Object Recognizer panda 2 Why Is Recognition Hard?

More information

DEEP LEARNING REVIEW. Yann LeCun, Yoshua Bengio & Geoffrey Hinton Nature Presented by Divya Chitimalla

DEEP LEARNING REVIEW. Yann LeCun, Yoshua Bengio & Geoffrey Hinton Nature Presented by Divya Chitimalla DEEP LEARNING REVIEW Yann LeCun, Yoshua Bengio & Geoffrey Hinton Nature 2015 -Presented by Divya Chitimalla What is deep learning Deep learning allows computational models that are composed of multiple

More information

A Learned Dictionary Model for Texture Classification

A Learned Dictionary Model for Texture Classification Clara Fannjiang clarafj@stanford.edu. Abstract. Introduction Biological visual systems process incessant streams of natural images, and have done so since organisms first developed vision. To capture and

More information

Unsupervised Learning

Unsupervised Learning Deep Learning for Graphics Unsupervised Learning Niloy Mitra Iasonas Kokkinos Paul Guerrero Vladimir Kim Kostas Rematas Tobias Ritschel UCL UCL/Facebook UCL Adobe Research U Washington UCL Timetable Niloy

More information

Alternatives to Direct Supervision

Alternatives to Direct Supervision CreativeAI: Deep Learning for Graphics Alternatives to Direct Supervision Niloy Mitra Iasonas Kokkinos Paul Guerrero Nils Thuerey Tobias Ritschel UCL UCL UCL TUM UCL Timetable Theory and Basics State of

More information

Deep Learning & Neural Networks

Deep Learning & Neural Networks Deep Learning & Neural Networks Machine Learning CSE4546 Sham Kakade University of Washington November 29, 2016 Sham Kakade 1 Announcements: HW4 posted Poster Session Thurs, Dec 8 Today: Review: EM Neural

More information

Multipath Sparse Coding Using Hierarchical Matching Pursuit

Multipath Sparse Coding Using Hierarchical Matching Pursuit Multipath Sparse Coding Using Hierarchical Matching Pursuit Liefeng Bo ISTC-PC Intel Labs liefeng.bo@intel.com Xiaofeng Ren ISTC-PC Intel Labs xren@cs.washington.edu Dieter Fox University of Washington

More information

Deep Learning in Visual Recognition. Thanks Da Zhang for the slides

Deep Learning in Visual Recognition. Thanks Da Zhang for the slides Deep Learning in Visual Recognition Thanks Da Zhang for the slides Deep Learning is Everywhere 2 Roadmap Introduction Convolutional Neural Network Application Image Classification Object Detection Object

More information

Support Kernel Machines for Object Recognition

Support Kernel Machines for Object Recognition Support Kernel Machines for Object Recognition Ankita Kumar University of Pennsylvania Cristian Sminchisescu TTI-Chicago Abstract Kernel classifiers based on Support Vector Machines (SVM) have recently

More information

On Compact Codes for Spatially Pooled Features

On Compact Codes for Spatially Pooled Features Yangqing Jia Oriol Vinyals Trevor Darrell UC Berkeley EECS, Berkeley, CA 97 USA jiayq@eecs.berkeley.edu vinyals@eecs.berkeley.edu trevor@eecs.berkeley.edu Abstract Feature encoding with an overcomplete

More information

A FRAMEWORK OF EXTRACTING MULTI-SCALE FEATURES USING MULTIPLE CONVOLUTIONAL NEURAL NETWORKS. Kuan-Chuan Peng and Tsuhan Chen

A FRAMEWORK OF EXTRACTING MULTI-SCALE FEATURES USING MULTIPLE CONVOLUTIONAL NEURAL NETWORKS. Kuan-Chuan Peng and Tsuhan Chen A FRAMEWORK OF EXTRACTING MULTI-SCALE FEATURES USING MULTIPLE CONVOLUTIONAL NEURAL NETWORKS Kuan-Chuan Peng and Tsuhan Chen School of Electrical and Computer Engineering, Cornell University, Ithaca, NY

More information

WITH increasing penetration of portable multimedia. A Convolutional Neural Network Based Chinese Text Detection Algorithm via Text Structure Modeling

WITH increasing penetration of portable multimedia. A Convolutional Neural Network Based Chinese Text Detection Algorithm via Text Structure Modeling 1 A Convolutional Neural Network Based Chinese Text Detection Algorithm via Text Structure Modeling Xiaohang Ren, Yi Zhou, Jianhua He, Senior Member, IEEE, Kai Chen Member, IEEE, Xiaokang Yang, Senior

More information

Visual Perception with Deep Learning

Visual Perception with Deep Learning Visual Perception with Deep Learning Yann LeCun The Courant Institute of Mathematical Sciences New York University joint work with: Marc'Aurelio Ranzato, Y Lan Boureau, Koray Kavackuoglu, Fu Jie Huang,

More information

Sparsity Based Regularization

Sparsity Based Regularization 9.520: Statistical Learning Theory and Applications March 8th, 200 Sparsity Based Regularization Lecturer: Lorenzo Rosasco Scribe: Ioannis Gkioulekas Introduction In previous lectures, we saw how regularization

More information

arxiv: v1 [cs.lg] 16 Nov 2010

arxiv: v1 [cs.lg] 16 Nov 2010 DIPARTIMENTO DI INFORMATICA E SCIENZE DELL INFORMAZIONE arxiv:1011.3728v1 [cs.lg] 16 Nov 2010 PADDLE: Proximal Algorithm for Dual Dictionaries LEarning Curzio Basso, Matteo Santoro, Alessandro Verri, Silvia

More information

Machine Learning for Physicists Lecture 6. Summer 2017 University of Erlangen-Nuremberg Florian Marquardt

Machine Learning for Physicists Lecture 6. Summer 2017 University of Erlangen-Nuremberg Florian Marquardt Machine Learning for Physicists Lecture 6 Summer 2017 University of Erlangen-Nuremberg Florian Marquardt Channels MxM image MxM image K K 3 channels conv 6 channels in any output channel, each pixel receives

More information

Deconvolution Networks

Deconvolution Networks Deconvolution Networks Johan Brynolfsson Mathematical Statistics Centre for Mathematical Sciences Lund University December 6th 2016 1 / 27 Deconvolution Neural Networks 2 / 27 Image Deconvolution True

More information

ECE 6504: Deep Learning for Perception

ECE 6504: Deep Learning for Perception ECE 6504: Deep Learning for Perception Topics: (Finish) Backprop Convolutional Neural Nets Dhruv Batra Virginia Tech Administrativia Presentation Assignments https://docs.google.com/spreadsheets/d/ 1m76E4mC0wfRjc4HRBWFdAlXKPIzlEwfw1-u7rBw9TJ8/

More information

Object Category Detection. Slides mostly from Derek Hoiem

Object Category Detection. Slides mostly from Derek Hoiem Object Category Detection Slides mostly from Derek Hoiem Today s class: Object Category Detection Overview of object category detection Statistical template matching with sliding window Part-based Models

More information

LEARNING TO GENERATE CHAIRS WITH CONVOLUTIONAL NEURAL NETWORKS

LEARNING TO GENERATE CHAIRS WITH CONVOLUTIONAL NEURAL NETWORKS LEARNING TO GENERATE CHAIRS WITH CONVOLUTIONAL NEURAL NETWORKS Alexey Dosovitskiy, Jost Tobias Springenberg and Thomas Brox University of Freiburg Presented by: Shreyansh Daftry Visual Learning and Recognition

More information