Agenda. Perspective projection. Rotations. Camera models

Size: px
Start display at page:

Download "Agenda. Perspective projection. Rotations. Camera models"

Transcription

1 Image formation

2 Agenda Perspective projection Rotations Camera models

3 Light as a wave + particle

4 Light as a wave (ignore for now) Refraction Diffraction

5 Image formation Digital Image Film Human eye

6 Pixel brightness (More on light as psychics at end of semseter)

7 Pinhole optics

8 Camera Obscura

9 World s largest photograph El Toro Marine Corps, Irvine CA 2006

10 Accidental pinholes what s the dark stuff? (the view from Antonio s hotel room)

11

12 Accidental pinhole and pinspeck cameras: revealing the scene outside the picture CVPR 2012 Antonio Torralba, William T. Freeman Computer Science and Artificial Intelligence Laboratory (CSAIL) MIT

13 Perspective projection Closer objects appear larger Closer objects are lower in the image Parallel lines meet

14 Great reference

15 Pinhole Camera optical axis [Aside: right-handed coordinate system] How do we compute P? [on board]

16 Pinhole Camera

17 Image inversion

18 Image inversion Perplexed folks for a while. But software (or the brain) can simply invert this.

19 Physical model that avoids inversion easel COP = pinhole, camera center Distance of COP to easel = focal length

20 Visual angle (common unit in human vision) easel Note: math is easier for a spherical easel (e.g., retina) = L f L = length of projection on sphere theta = units of radians Human head is 9 inches high. At a distance of 9 feet, it subtends 1/12 radians = 4.8 degrees, regardless of focal length

21 Field of view (FOV) 24mm 50mm 135mm FOV = total sensor size (diagonal) focal length (in radians)

22 Increasing the focal length and stepping back What happens to apparant object size and FOV when we double distance to object and double the focal length? x new = 2fX 2Z = fx Z = x old sensor size FOV new = = 1 2f 2 FOV old

23 Decreasing the focal length and moving forward

24 Perspective projection Closer objects appear larger Closer objects are lower in the image Parallel lines meet All these can be simply derived with x = f X Z!

25 (parallel lines meet) Vanishing point: proof 2 3 X 4Y 5 = 2 4 A x B y D x 4D 5 y COP (x,y,f) (X,Y,Z) Z C z D z Compute projected point (x,y) as lambda approaches infinity [on board]: x = fx Z = f(a x + D x ) A z + D z! fd x D z as!1 y = fy Z = f(a x + D x ) A z + D z! fd y D z as!1 3D lines with identical direction vectors coverge to same 2D image location

26 VP 3 Special case: manhatten world Consider a city-block world where all lines follow one of 3 directions VP 1 VP 2

27 Special case: horizon line Claim: all 3D lines on ground plane meet at a horizon line

28 Horizon line: proof 2 3 X 4Y 5 = Z 2 A x 3 4B y 5 + C z 2 D x 3 4D y 5 D z (x, y)! ( fd x D z, fd y D z ) as!1 Equation of ground plane is Y = -h (x,y,f) (X,Y,Z) COP For all points A on ground plane (Ax,-h,Az) with a direction D along ground plane (Dx,0,Dz), where will vanishing points converge to? ( fd x D z, 0) Why is horizon line not always at center of image?

29 Image y position: proof Equation of ground plane is Y = -h A point on ground plane will have y-coordinate=? y = -fh/z Z2 Z3 Z1

30 Image height: proof Bottom of tree: (X,-h,Z) Top of tree: (X,L-h,Z) y top y bot = f(l h) Z fh Z = fl Z

31 Consequence of derivations for image height and parallel lines distances and angles aren t preserved in camera projection

32 Orthographic projection COP (x,y,f) (X,Y,Z) x = fx/z y = fy/z (x,y,f) (X,Y,Z) x = X y = Y Life would be much simpler; we could trust angles and distances 32

33 Scaled orthographic projection Consider two points (A,B) at different depths that are far away from camera: 2 3 A x 4A 5 y Z 2 B x 4 B y Z + Z 3 5 if Z >> deltaz, what happens to their image projections (e.g., ax and bx)? a x = fa x Z = A x b x = fb x Z + Z COP fb x Z = B x for Z Z We can approximate sets of such points with a scaled orthographic model 33

34 Perspective vs Orthogrpahic Wide angle Standard Telephoto

35 Scaled orthographic

36 Scaled orthographic

37 Perspective tends to matter for large objects (change in depth of object large relative to distance from camera)

38 A look back: dominant effects of perspective Parallel lines meet at vanishing points Objects further away are smaller Foreshortening

39 Fronto-parallel view Foreshortened view Perspective view Rotation of far-away plane Affine linear warp Rotation of close-by plane Homography nonlinear warp

40 2D Geometric Transformations y translation similarity projective Euclidean affine x Transformation Matrix # DoF Preserves Icon translation rigid (Euclidean) similarity affine projective h I t h R t h sr t h A h H i i i i 2 3 i orientation 3 lengths S S 4 angles S S 6 parallelism 8 straight lines `` Let s define families of transformations by the properties that they preserve

41 but first, we ll need tools from geometry Where we are headed. Euclidean (trans + rot) preserves lengths + angles Affine: preserves parallel lines Projective: preserves lines Projective Affine Euclidean

42 Agenda Perspective projection Rotations Camera models

43 Orthogonal transformations Defn: Orthogonal transformations are linear transformations that preserve distances and angles a T b = F (a) T F (b) where F (a) =Aa, a 2 R n,a2 R 2 2 n n a T b = a T A T Ab () A T A = I [can conclude by setting a,b = coordinate vectors] Defn: A is a rotation matrix if A T A = I, det(a) = 1 Defn: A is a reflection matrix if A T A = I, det(a) = -1

44 2D Rotations R = apple cos sin sin cos 1 DOF

45 3D Rotations R 2 3 X 4Y 5 = Z 2 3 r 11 r 12 r 13 4r 21 r 22 r 23 5 r 31 r 32 r X 4Y 5 Z Think of as change of basis where ri = r(i,:) are orthonormal basis vectors r2 rotated coordinate frame r1 r3 How many DOFs? 3 = (2 to point r1 + 1 to rotate along r1)

46 Euler s rotation theorm Any rotation of a rigid body in a three-dimensional space is equivalent to a pure rotation about a single fixed axis

47 3D Rotations Lots of parameterizations that try to capture 3 DOFs Helpful ones for vision: orthonormal matrix, axis-angle, exponential maps Represent a 3D rotation with a unit vector pointed along the axis of rotation, and an angle of rotation about that vector -vs- 2D 3D

48 Review: dot and cross products Dot product: a b = a b cos Cross product: a b = 2 3 a 2 b 3 a 3 b 2 4b 1 a 3 a 1 b 3 5 a 1 b 2 a 2 b 1 Cross product matrix: a b = âb = a 3 a 2 b 1 a 3 0 a 1 5 4b 2 5 a 2 a 1 0 b 3

49 Approach! 2 R 3,! =1 x

50 Rodrigues' rotation formula 2 R 3,! =1 x k x? x 1. Write as x as sum of parallel and perpindicular component to omega 2. Rotate perpindicular component by 2D rotation of theta in plane orthogonal to omega R = I +ŵ sin +ŵŵ(1 cos ) [Rx can simplify to cross and dot product computations]

51 Exponential map representation! 2 R 3,! =1 x k x? x R =exp(ˆv), where v =! = I +ˆv + 1 2! ˆv [standard Taylor series expansion of x=0 as 1 + x + (1/2!)x 2 + ] [reduces to Rodrigous formula with Taylor series expansion of sine + cosine] Implies that we can approximate change in position of x due to a small rotation v as: v x,

52 Agenda Perspective projection Rotations Camera models

53 Recall perspective projection y x (x,y,1) (X,Y,Z) COP z x = f Z X y = f Z Y

54 Perspective projection revisited 2 3 x 4y5 = 1 2 f f X 4Y 5 Z Given (X,Y,Z) and f, compute (x,y) and lambda: x = fx = Z x = x = fx Z

55 Special case: f = 1 Natural geometric intuition: 3D point is obtained by scaling ray pointed at image coordinate Scale factor = true depth of point (x,y,1) (X,Y,Z) COP Z 2 3 x 4y5 = X 4Y 5 Z [Aside: given an image with a focal length f, resize by 1/f to obtain unit-focal-length image]

56 Homogenous notation For now, think of above as shorthand notation for 2 4 x y z X Y Z x y z X Y Z s.t. 2 4 x y z 3 5 = 2 4 X Y Z 3 5

57 Camera projection 2 3 x 4y5 = f 0 0 r 11 r 12 r 13 t x 40 f 05 4r 21 r 22 r 23 t 5 y Camera instrinsic matrix K (can include skew & non-square pixel size) r 31 r 32 r 33 t z Camera extrinsics (rotation and translation) X 6Y 4Z D point in world coordinates r2 r1 camera r3 T world coordinate frame Aside: homogenous notation is shorthand for x = x

58 Fancier intrinsics x s = s x x y s = s y y x 0 = x s + o x y 0 = y s + o y x =x 0 + s y 0 } } non-square pixels shifted origin y skewed image axes x K = 2 3 s x s o x 4 0 s y o 5 y f f 05 = fs x fs o x 4 0 fs y o 5 y 0 0 1

59 Notation [Using Matlab s rows x columns] X x fs x fs o x r 11 r 12 r 13 t x 4y5 = 4 0 fs y o y 5 4r 21 r 22 r 23 t y 5 6Y 7 4Z r 31 r 32 r 33 t z X = K 3 3 R3 3 T 3 1 6Y 7 4Z X = M 3 4 6Y 7 4Z 5 1 Claims (without proof): 1. A 3x4 matrix M can be a camera matrix iff det(m) is not zero 2. M is determined only up to a scale factor

60 Notation (more) M X 6Y 4Z = A 3 3 b 3 1 = A X 6Y 4Z X 4Y 5 + b 3 1 Z M = 2 m T 1 4m T 2 m T 3 3 5, A = 2 a T 1 4a T 2 a T 3 3 5, b = 2 3 b 1 4b 5 2 b 3

61 Applying the projection matrix x = 1 ( X Y Z a 1 + b 1 ) y = 1 ( X Y Z a 2 + b 2 ) = X Y Z a 3 + b3 Set of 3D points that project to x = 0: Set of 3D points that project to y = 0: X Y Z a1 + b 1 =0 X Y Z a2 + b 2 =0 Set of 3D points that project to x = inf or y = inf: X Y Z a3 + b 3 =0

62 Rows of the projection matrix describe the 3 planes defined by the image coordinate system a 3 y a 1 COP a 2 x image plane

63 Other geometric properties (x,y) COP (X,Y,Z) Draw plane infront of pinhole. Write (x,y) for normalized coordinate and (u,v) for image coordinates? What s set of (X,Y,Z) points that project to same (x,y)? X x 4Y 5 = w + b where w = A 1 4y5,b= A 1 b Z 1 What s the position of COP / pinhole? 2 3 X A 4Y 5 + b =0 ) Z 2 3 X 4Y 5 = A 1 b Z

64 Affine cameras perspective m T 3 = weak perspective

65 Affine cameras Captures 3D affine transformation + orthographic projection + 2D affine transformation apple x y = = = apple X a 11 a 12 a 13 b 1 4a 21 a 22 a 23 b 2 5 6Y 7 4Z apple X apple a11 a 12 a 13 4Y 5 b1 + a 21 a 22 a 23 b Z 2 x = AX + b X Y Z Projection defined by 8 parameters Parallel lines project to parallel lines 2D points = linear projection of 3D points (+ 2D translation)

66 Affine Cameras m T 3 = x = X Y Z a 1 + b 1 y = X Y Z a 2 + b 1 Image coordinates (x,y) are an affine function of world coordinates (X,Y,Z) Example: Weak-perspective projection model Projection defined by 8 parameters Parallel lines project to parallel lines The transformation can be written as a direct linear transformation plus an offset

67 Geometric Transformations Euclidean (trans + rot) preserves lengths + angles Affine: preserves parallel lines Projective: preserves lines Projective Affine Euclidean

Agenda. Rotations. Camera calibration. Homography. Ransac

Agenda. Rotations. Camera calibration. Homography. Ransac Agenda Rotations Camera calibration Homography Ransac Geometric Transformations y x Transformation Matrix # DoF Preserves Icon translation rigid (Euclidean) similarity affine projective h I t h R t h sr

More information

Agenda. Rotations. Camera models. Camera calibration. Homographies

Agenda. Rotations. Camera models. Camera calibration. Homographies Agenda Rotations Camera models Camera calibration Homographies D Rotations R Y = Z r r r r r r r r r Y Z Think of as change of basis where ri = r(i,:) are orthonormal basis vectors r rotated coordinate

More information

Camera Model and Calibration

Camera Model and Calibration Camera Model and Calibration Lecture-10 Camera Calibration Determine extrinsic and intrinsic parameters of camera Extrinsic 3D location and orientation of camera Intrinsic Focal length The size of the

More information

COSC579: Scene Geometry. Jeremy Bolton, PhD Assistant Teaching Professor

COSC579: Scene Geometry. Jeremy Bolton, PhD Assistant Teaching Professor COSC579: Scene Geometry Jeremy Bolton, PhD Assistant Teaching Professor Overview Linear Algebra Review Homogeneous vs non-homogeneous representations Projections and Transformations Scene Geometry The

More information

Camera Model and Calibration. Lecture-12

Camera Model and Calibration. Lecture-12 Camera Model and Calibration Lecture-12 Camera Calibration Determine extrinsic and intrinsic parameters of camera Extrinsic 3D location and orientation of camera Intrinsic Focal length The size of the

More information

Introduction to Computer Vision

Introduction to Computer Vision Introduction to Computer Vision Michael J. Black Nov 2009 Perspective projection and affine motion Goals Today Perspective projection 3D motion Wed Projects Friday Regularization and robust statistics

More information

Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

Image Formation I Chapter 1 (Forsyth&Ponce) Cameras Image Formation I Chapter 1 (Forsyth&Ponce) Cameras Guido Gerig CS 632 Spring 213 cknowledgements: Slides used from Prof. Trevor Darrell, (http://www.eecs.berkeley.edu/~trevor/cs28.html) Some slides modified

More information

Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

Image Formation I Chapter 1 (Forsyth&Ponce) Cameras Image Formation I Chapter 1 (Forsyth&Ponce) Cameras Guido Gerig CS 632 Spring 215 cknowledgements: Slides used from Prof. Trevor Darrell, (http://www.eecs.berkeley.edu/~trevor/cs28.html) Some slides modified

More information

Perspective projection and Transformations

Perspective projection and Transformations Perspective projection and Transformations The pinhole camera The pinhole camera P = (X,,) p = (x,y) O λ = 0 Q λ = O λ = 1 Q λ = P =-1 Q λ X = 0 + λ X 0, 0 + λ 0, 0 + λ 0 = (λx, λ, λ) The pinhole camera

More information

Visual Recognition: Image Formation

Visual Recognition: Image Formation Visual Recognition: Image Formation Raquel Urtasun TTI Chicago Jan 5, 2012 Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 1 / 61 Today s lecture... Fundamentals of image formation You should know

More information

Augmented Reality II - Camera Calibration - Gudrun Klinker May 11, 2004

Augmented Reality II - Camera Calibration - Gudrun Klinker May 11, 2004 Augmented Reality II - Camera Calibration - Gudrun Klinker May, 24 Literature Richard Hartley and Andrew Zisserman, Multiple View Geometry in Computer Vision, Cambridge University Press, 2. (Section 5,

More information

Pinhole Camera Model 10/05/17. Computational Photography Derek Hoiem, University of Illinois

Pinhole Camera Model 10/05/17. Computational Photography Derek Hoiem, University of Illinois Pinhole Camera Model /5/7 Computational Photography Derek Hoiem, University of Illinois Next classes: Single-view Geometry How tall is this woman? How high is the camera? What is the camera rotation? What

More information

Projective Geometry and Camera Models

Projective Geometry and Camera Models /2/ Projective Geometry and Camera Models Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Note about HW Out before next Tues Prob: covered today, Tues Prob2: covered next Thurs Prob3:

More information

CMPSCI 670: Computer Vision! Image formation. University of Massachusetts, Amherst September 8, 2014 Instructor: Subhransu Maji

CMPSCI 670: Computer Vision! Image formation. University of Massachusetts, Amherst September 8, 2014 Instructor: Subhransu Maji CMPSCI 670: Computer Vision! Image formation University of Massachusetts, Amherst September 8, 2014 Instructor: Subhransu Maji MATLAB setup and tutorial Does everyone have access to MATLAB yet? EdLab accounts

More information

DD2423 Image Analysis and Computer Vision IMAGE FORMATION. Computational Vision and Active Perception School of Computer Science and Communication

DD2423 Image Analysis and Computer Vision IMAGE FORMATION. Computational Vision and Active Perception School of Computer Science and Communication DD2423 Image Analysis and Computer Vision IMAGE FORMATION Mårten Björkman Computational Vision and Active Perception School of Computer Science and Communication November 8, 2013 1 Image formation Goal:

More information

Perspective projection. A. Mantegna, Martyrdom of St. Christopher, c. 1450

Perspective projection. A. Mantegna, Martyrdom of St. Christopher, c. 1450 Perspective projection A. Mantegna, Martyrdom of St. Christopher, c. 1450 Overview of next two lectures The pinhole projection model Qualitative properties Perspective projection matrix Cameras with lenses

More information

Image Formation I Chapter 2 (R. Szelisky)

Image Formation I Chapter 2 (R. Szelisky) Image Formation I Chapter 2 (R. Selisky) Guido Gerig CS 632 Spring 22 cknowledgements: Slides used from Prof. Trevor Darrell, (http://www.eecs.berkeley.edu/~trevor/cs28.html) Some slides modified from

More information

Rigid Body Motion and Image Formation. Jana Kosecka, CS 482

Rigid Body Motion and Image Formation. Jana Kosecka, CS 482 Rigid Body Motion and Image Formation Jana Kosecka, CS 482 A free vector is defined by a pair of points : Coordinates of the vector : 1 3D Rotation of Points Euler angles Rotation Matrices in 3D 3 by 3

More information

Computer Vision CS 776 Fall 2018

Computer Vision CS 776 Fall 2018 Computer Vision CS 776 Fall 2018 Cameras & Photogrammetry 1 Prof. Alex Berg (Slide credits to many folks on individual slides) Cameras & Photogrammetry 1 Albrecht Dürer early 1500s Brunelleschi, early

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 5: Projection Reading: Szeliski 2.1 Projection Reading: Szeliski 2.1 Projection Müller Lyer Illusion http://www.michaelbach.de/ot/sze_muelue/index.html Modeling

More information

Homogeneous Coordinates. Lecture18: Camera Models. Representation of Line and Point in 2D. Cross Product. Overall scaling is NOT important.

Homogeneous Coordinates. Lecture18: Camera Models. Representation of Line and Point in 2D. Cross Product. Overall scaling is NOT important. Homogeneous Coordinates Overall scaling is NOT important. CSED44:Introduction to Computer Vision (207F) Lecture8: Camera Models Bohyung Han CSE, POSTECH bhhan@postech.ac.kr (",, ) ()", ), )) ) 0 It is

More information

Image formation. Thanks to Peter Corke and Chuck Dyer for the use of some slides

Image formation. Thanks to Peter Corke and Chuck Dyer for the use of some slides Image formation Thanks to Peter Corke and Chuck Dyer for the use of some slides Image Formation Vision infers world properties form images. How do images depend on these properties? Two key elements Geometry

More information

CS4670: Computer Vision

CS4670: Computer Vision CS467: Computer Vision Noah Snavely Lecture 13: Projection, Part 2 Perspective study of a vase by Paolo Uccello Szeliski 2.1.3-2.1.6 Reading Announcements Project 2a due Friday, 8:59pm Project 2b out Friday

More information

Specifying Complex Scenes

Specifying Complex Scenes Transformations Specifying Complex Scenes (x,y,z) (r x,r y,r z ) 2 (,,) Specifying Complex Scenes Absolute position is not very natural Need a way to describe relative relationship: The lego is on top

More information

Projective Geometry and Camera Models

Projective Geometry and Camera Models Projective Geometry and Camera Models Computer Vision CS 43 Brown James Hays Slides from Derek Hoiem, Alexei Efros, Steve Seitz, and David Forsyth Administrative Stuff My Office hours, CIT 375 Monday and

More information

Computer Vision Projective Geometry and Calibration. Pinhole cameras

Computer Vision Projective Geometry and Calibration. Pinhole cameras Computer Vision Projective Geometry and Calibration Professor Hager http://www.cs.jhu.edu/~hager Jason Corso http://www.cs.jhu.edu/~jcorso. Pinhole cameras Abstract camera model - box with a small hole

More information

Computer Vision cmput 428/615

Computer Vision cmput 428/615 Computer Vision cmput 428/615 Basic 2D and 3D geometry and Camera models Martin Jagersand The equation of projection Intuitively: How do we develop a consistent mathematical framework for projection calculations?

More information

CHAPTER 3. Single-view Geometry. 1. Consequences of Projection

CHAPTER 3. Single-view Geometry. 1. Consequences of Projection CHAPTER 3 Single-view Geometry When we open an eye or take a photograph, we see only a flattened, two-dimensional projection of the physical underlying scene. The consequences are numerous and startling.

More information

3D Geometry and Camera Calibration

3D Geometry and Camera Calibration 3D Geometry and Camera Calibration 3D Coordinate Systems Right-handed vs. left-handed x x y z z y 2D Coordinate Systems 3D Geometry Basics y axis up vs. y axis down Origin at center vs. corner Will often

More information

Pin Hole Cameras & Warp Functions

Pin Hole Cameras & Warp Functions Pin Hole Cameras & Warp Functions Instructor - Simon Lucey 16-423 - Designing Computer Vision Apps Today Pinhole Camera. Homogenous Coordinates. Planar Warp Functions. Motivation Taken from: http://img.gawkerassets.com/img/18w7i1umpzoa9jpg/original.jpg

More information

Scene Modeling for a Single View

Scene Modeling for a Single View Scene Modeling for a Single View René MAGRITTE Portrait d'edward James CS194: Image Manipulation & Computational Photography with a lot of slides stolen from Alexei Efros, UC Berkeley, Fall 2014 Steve

More information

Image Formation. Antonino Furnari. Image Processing Lab Dipartimento di Matematica e Informatica Università degli Studi di Catania

Image Formation. Antonino Furnari. Image Processing Lab Dipartimento di Matematica e Informatica Università degli Studi di Catania Image Formation Antonino Furnari Image Processing Lab Dipartimento di Matematica e Informatica Università degli Studi di Catania furnari@dmi.unict.it 18/03/2014 Outline Introduction; Geometric Primitives

More information

Computer Vision Project-1

Computer Vision Project-1 University of Utah, School Of Computing Computer Vision Project- Singla, Sumedha sumedha.singla@utah.edu (00877456 February, 205 Theoretical Problems. Pinhole Camera (a A straight line in the world space

More information

Geometric camera models and calibration

Geometric camera models and calibration Geometric camera models and calibration http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 13 Course announcements Homework 3 is out. - Due October

More information

Geometric Transformations

Geometric Transformations Geometric Transformations CS 4620 Lecture 9 2017 Steve Marschner 1 A little quick math background Notation for sets, functions, mappings Linear and affine transformations Matrices Matrix-vector multiplication

More information

Humanoid Robotics. Projective Geometry, Homogeneous Coordinates. (brief introduction) Maren Bennewitz

Humanoid Robotics. Projective Geometry, Homogeneous Coordinates. (brief introduction) Maren Bennewitz Humanoid Robotics Projective Geometry, Homogeneous Coordinates (brief introduction) Maren Bennewitz Motivation Cameras generate a projected image of the 3D world In Euclidian geometry, the math for describing

More information

Scene Modeling for a Single View

Scene Modeling for a Single View Scene Modeling for a Single View René MAGRITTE Portrait d'edward James with a lot of slides stolen from Steve Seitz and David Brogan, 15-463: Computational Photography Alexei Efros, CMU, Fall 2005 Classes

More information

Scene Modeling for a Single View

Scene Modeling for a Single View on to 3D Scene Modeling for a Single View We want real 3D scene walk-throughs: rotation translation Can we do it from a single photograph? Reading: A. Criminisi, I. Reid and A. Zisserman, Single View Metrology

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 7: Image Alignment and Panoramas What s inside your fridge? http://www.cs.washington.edu/education/courses/cse590ss/01wi/ Projection matrix intrinsics projection

More information

GEOMETRIC TRANSFORMATIONS AND VIEWING

GEOMETRIC TRANSFORMATIONS AND VIEWING GEOMETRIC TRANSFORMATIONS AND VIEWING 2D and 3D 1/44 2D TRANSFORMATIONS HOMOGENIZED Transformation Scaling Rotation Translation Matrix s x s y cosθ sinθ sinθ cosθ 1 dx 1 dy These 3 transformations are

More information

How to achieve this goal? (1) Cameras

How to achieve this goal? (1) Cameras How to achieve this goal? (1) Cameras History, progression and comparisons of different Cameras and optics. Geometry, Linear Algebra Images Image from Chris Jaynes, U. Kentucky Discrete vs. Continuous

More information

Module 4F12: Computer Vision and Robotics Solutions to Examples Paper 2

Module 4F12: Computer Vision and Robotics Solutions to Examples Paper 2 Engineering Tripos Part IIB FOURTH YEAR Module 4F2: Computer Vision and Robotics Solutions to Examples Paper 2. Perspective projection and vanishing points (a) Consider a line in 3D space, defined in camera-centered

More information

calibrated coordinates Linear transformation pixel coordinates

calibrated coordinates Linear transformation pixel coordinates 1 calibrated coordinates Linear transformation pixel coordinates 2 Calibration with a rig Uncalibrated epipolar geometry Ambiguities in image formation Stratified reconstruction Autocalibration with partial

More information

Camera Calibration. Schedule. Jesus J Caban. Note: You have until next Monday to let me know. ! Today:! Camera calibration

Camera Calibration. Schedule. Jesus J Caban. Note: You have until next Monday to let me know. ! Today:! Camera calibration Camera Calibration Jesus J Caban Schedule! Today:! Camera calibration! Wednesday:! Lecture: Motion & Optical Flow! Monday:! Lecture: Medical Imaging! Final presentations:! Nov 29 th : W. Griffin! Dec 1

More information

Vision Review: Image Formation. Course web page:

Vision Review: Image Formation. Course web page: Vision Review: Image Formation Course web page: www.cis.udel.edu/~cer/arv September 10, 2002 Announcements Lecture on Thursday will be about Matlab; next Tuesday will be Image Processing The dates some

More information

Single View Geometry. Camera model & Orientation + Position estimation. What am I?

Single View Geometry. Camera model & Orientation + Position estimation. What am I? Single View Geometry Camera model & Orientation + Position estimation What am I? Vanishing point Mapping from 3D to 2D Point & Line Goal: Point Homogeneous coordinates represent coordinates in 2 dimensions

More information

N-Views (1) Homographies and Projection

N-Views (1) Homographies and Projection CS 4495 Computer Vision N-Views (1) Homographies and Projection Aaron Bobick School of Interactive Computing Administrivia PS 2: Get SDD and Normalized Correlation working for a given windows size say

More information

Projective geometry for Computer Vision

Projective geometry for Computer Vision Department of Computer Science and Engineering IIT Delhi NIT, Rourkela March 27, 2010 Overview Pin-hole camera Why projective geometry? Reconstruction Computer vision geometry: main problems Correspondence

More information

INTRODUCTION TO COMPUTER GRAPHICS. It looks like a matrix Sort of. Viewing III. Projection in Practice. Bin Sheng 10/11/ / 52

INTRODUCTION TO COMPUTER GRAPHICS. It looks like a matrix Sort of. Viewing III. Projection in Practice. Bin Sheng 10/11/ / 52 cs337 It looks like a matrix Sort of Viewing III Projection in Practice / 52 cs337 Arbitrary 3D views Now that we have familiarity with terms we can say that these view volumes/frusta can be specified

More information

Midterm Exam Solutions

Midterm Exam Solutions Midterm Exam Solutions Computer Vision (J. Košecká) October 27, 2009 HONOR SYSTEM: This examination is strictly individual. You are not allowed to talk, discuss, exchange solutions, etc., with other fellow

More information

COS429: COMPUTER VISON CAMERAS AND PROJECTIONS (2 lectures)

COS429: COMPUTER VISON CAMERAS AND PROJECTIONS (2 lectures) COS429: COMPUTER VISON CMERS ND PROJECTIONS (2 lectures) Pinhole cameras Camera with lenses Sensing nalytical Euclidean geometry The intrinsic parameters of a camera The extrinsic parameters of a camera

More information

Camera Calibration. COS 429 Princeton University

Camera Calibration. COS 429 Princeton University Camera Calibration COS 429 Princeton University Point Correspondences What can you figure out from point correspondences? Noah Snavely Point Correspondences X 1 X 4 X 3 X 2 X 5 X 6 X 7 p 1,1 p 1,2 p 1,3

More information

3-D D Euclidean Space - Vectors

3-D D Euclidean Space - Vectors 3-D D Euclidean Space - Vectors Rigid Body Motion and Image Formation A free vector is defined by a pair of points : Jana Kosecka http://cs.gmu.edu/~kosecka/cs682.html Coordinates of the vector : 3D Rotation

More information

Capturing Light: Geometry of Image Formation

Capturing Light: Geometry of Image Formation Capturing Light: Geometry of Image Formation Computer Vision James Hays Slides from Derek Hoiem, Alexei Efros, Steve Seitz, and David Forsyth Administrative Stuff My Office hours, CoC building 35 Monday

More information

Pin Hole Cameras & Warp Functions

Pin Hole Cameras & Warp Functions Pin Hole Cameras & Warp Functions Instructor - Simon Lucey 16-423 - Designing Computer Vision Apps Today Pinhole Camera. Homogenous Coordinates. Planar Warp Functions. Example of SLAM for AR Taken from:

More information

CIS 580, Machine Perception, Spring 2015 Homework 1 Due: :59AM

CIS 580, Machine Perception, Spring 2015 Homework 1 Due: :59AM CIS 580, Machine Perception, Spring 2015 Homework 1 Due: 2015.02.09. 11:59AM Instructions. Submit your answers in PDF form to Canvas. This is an individual assignment. 1 Camera Model, Focal Length and

More information

Instance-level recognition I. - Camera geometry and image alignment

Instance-level recognition I. - Camera geometry and image alignment Reconnaissance d objets et vision artificielle 2011 Instance-level recognition I. - Camera geometry and image alignment Josef Sivic http://www.di.ens.fr/~josef INRIA, WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire

More information

Camera Projection Models We will introduce different camera projection models that relate the location of an image point to the coordinates of the

Camera Projection Models We will introduce different camera projection models that relate the location of an image point to the coordinates of the Camera Projection Models We will introduce different camera projection models that relate the location of an image point to the coordinates of the corresponding 3D points. The projection models include:

More information

METRIC PLANE RECTIFICATION USING SYMMETRIC VANISHING POINTS

METRIC PLANE RECTIFICATION USING SYMMETRIC VANISHING POINTS METRIC PLANE RECTIFICATION USING SYMMETRIC VANISHING POINTS M. Lefler, H. Hel-Or Dept. of CS, University of Haifa, Israel Y. Hel-Or School of CS, IDC, Herzliya, Israel ABSTRACT Video analysis often requires

More information

Cameras and Radiometry. Last lecture in a nutshell. Conversion Euclidean -> Homogenous -> Euclidean. Affine Camera Model. Simplified Camera Models

Cameras and Radiometry. Last lecture in a nutshell. Conversion Euclidean -> Homogenous -> Euclidean. Affine Camera Model. Simplified Camera Models Cameras and Radiometry Last lecture in a nutshell CSE 252A Lecture 5 Conversion Euclidean -> Homogenous -> Euclidean In 2-D Euclidean -> Homogenous: (x, y) -> k (x,y,1) Homogenous -> Euclidean: (x, y,

More information

Geometric transformations assign a point to a point, so it is a point valued function of points. Geometric transformation may destroy the equation

Geometric transformations assign a point to a point, so it is a point valued function of points. Geometric transformation may destroy the equation Geometric transformations assign a point to a point, so it is a point valued function of points. Geometric transformation may destroy the equation and the type of an object. Even simple scaling turns a

More information

Epipolar Geometry Prof. D. Stricker. With slides from A. Zisserman, S. Lazebnik, Seitz

Epipolar Geometry Prof. D. Stricker. With slides from A. Zisserman, S. Lazebnik, Seitz Epipolar Geometry Prof. D. Stricker With slides from A. Zisserman, S. Lazebnik, Seitz 1 Outline 1. Short introduction: points and lines 2. Two views geometry: Epipolar geometry Relation point/line in two

More information

Lecture 11 MRF s (conbnued), cameras and lenses.

Lecture 11 MRF s (conbnued), cameras and lenses. 6.869 Advances in Computer Vision Bill Freeman and Antonio Torralba Spring 2011 Lecture 11 MRF s (conbnued), cameras and lenses. remember correction on Gibbs sampling Motion application image patches image

More information

Math background. 2D Geometric Transformations. Implicit representations. Explicit representations. Read: CS 4620 Lecture 6

Math background. 2D Geometric Transformations. Implicit representations. Explicit representations. Read: CS 4620 Lecture 6 Math background 2D Geometric Transformations CS 4620 Lecture 6 Read: Chapter 2: Miscellaneous Math Chapter 5: Linear Algebra Notation for sets, functions, mappings Linear transformations Matrices Matrix-vector

More information

Vector Algebra Transformations. Lecture 4

Vector Algebra Transformations. Lecture 4 Vector Algebra Transformations Lecture 4 Cornell CS4620 Fall 2008 Lecture 4 2008 Steve Marschner 1 Geometry A part of mathematics concerned with questions of size, shape, and relative positions of figures

More information

Introduction to Computer Vision. Introduction CMPSCI 591A/691A CMPSCI 570/670. Image Formation

Introduction to Computer Vision. Introduction CMPSCI 591A/691A CMPSCI 570/670. Image Formation Introduction CMPSCI 591A/691A CMPSCI 570/670 Image Formation Lecture Outline Light and Optics Pinhole camera model Perspective projection Thin lens model Fundamental equation Distortion: spherical & chromatic

More information

Assignment 2 : Projection and Homography

Assignment 2 : Projection and Homography TECHNISCHE UNIVERSITÄT DRESDEN EINFÜHRUNGSPRAKTIKUM COMPUTER VISION Assignment 2 : Projection and Homography Hassan Abu Alhaija November 7,204 INTRODUCTION In this exercise session we will get a hands-on

More information

Autonomous Navigation for Flying Robots

Autonomous Navigation for Flying Robots Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 3.1: 3D Geometry Jürgen Sturm Technische Universität München Points in 3D 3D point Augmented vector Homogeneous

More information

Camera Models and Image Formation. Srikumar Ramalingam School of Computing University of Utah

Camera Models and Image Formation. Srikumar Ramalingam School of Computing University of Utah Camera Models and Image Formation Srikumar Ramalingam School of Computing University of Utah srikumar@cs.utah.edu Reference Most slides are adapted from the following notes: Some lecture notes on geometric

More information

CSE 252B: Computer Vision II

CSE 252B: Computer Vision II CSE 252B: Computer Vision II Lecturer: Serge Belongie Scribe: Sameer Agarwal LECTURE 1 Image Formation 1.1. The geometry of image formation We begin by considering the process of image formation when a

More information

Computer Vision Projective Geometry and Calibration. Pinhole cameras

Computer Vision Projective Geometry and Calibration. Pinhole cameras Computer Vision Projective Geometry and Calibration Professor Hager http://www.cs.jhu.edu/~hager Jason Corso http://www.cs.jhu.edu/~jcorso. Pinhole cameras Abstract camera model - box with a small hole

More information

3D Viewing. CMPT 361 Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller

3D Viewing. CMPT 361 Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller 3D Viewing CMPT 361 Introduction to Computer Graphics Torsten Möller Reading Chapter 4 of Angel Chapter 6 of Foley, van Dam, 2 Objectives What kind of camera we use? (pinhole) What projections make sense

More information

Computer Vision Projective Geometry and Calibration

Computer Vision Projective Geometry and Calibration Computer Vision Projective Geometry and Calibration Professor Hager http://www.cs.jhu.edu/~hager Jason Corso http://www.cs.jhu.edu/~jcorso. Pinhole cameras Abstract camera model - box with a small hole

More information

Perspective Projection [2 pts]

Perspective Projection [2 pts] Instructions: CSE252a Computer Vision Assignment 1 Instructor: Ben Ochoa Due: Thursday, October 23, 11:59 PM Submit your assignment electronically by email to iskwak+252a@cs.ucsd.edu with the subject line

More information

Understanding Variability

Understanding Variability Understanding Variability Why so different? Light and Optics Pinhole camera model Perspective projection Thin lens model Fundamental equation Distortion: spherical & chromatic aberration, radial distortion

More information

INTRODUCTION TO COMPUTER GRAPHICS. cs123. It looks like a matrix Sort of. Viewing III. Projection in Practice 1 / 52

INTRODUCTION TO COMPUTER GRAPHICS. cs123. It looks like a matrix Sort of. Viewing III. Projection in Practice 1 / 52 It looks like a matrix Sort of Viewing III Projection in Practice 1 / 52 Arbitrary 3D views } view volumes/frusta spec d by placement and shape } Placement: } Position (a point) } look and up vectors }

More information

Viewing. Announcements. A Note About Transformations. Orthographic and Perspective Projection Implementation Vanishing Points

Viewing. Announcements. A Note About Transformations. Orthographic and Perspective Projection Implementation Vanishing Points Viewing Announcements. A Note About Transformations. Orthographic and Perspective Projection Implementation Vanishing Points Viewing Announcements. A Note About Transformations. Orthographic and Perspective

More information

Single-view 3D Reconstruction

Single-view 3D Reconstruction Single-view 3D Reconstruction 10/12/17 Computational Photography Derek Hoiem, University of Illinois Some slides from Alyosha Efros, Steve Seitz Notes about Project 4 (Image-based Lighting) You can work

More information

3D Viewing. Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller

3D Viewing. Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller 3D Viewing Introduction to Computer Graphics Torsten Möller Machiraju/Zhang/Möller Reading Chapter 4 of Angel Chapter 13 of Hughes, van Dam, Chapter 7 of Shirley+Marschner Machiraju/Zhang/Möller 2 Objectives

More information

2D/3D Geometric Transformations and Scene Graphs

2D/3D Geometric Transformations and Scene Graphs 2D/3D Geometric Transformations and Scene Graphs Week 4 Acknowledgement: The course slides are adapted from the slides prepared by Steve Marschner of Cornell University 1 A little quick math background

More information

Lecture 5: Transforms II. Computer Graphics and Imaging UC Berkeley CS184/284A

Lecture 5: Transforms II. Computer Graphics and Imaging UC Berkeley CS184/284A Lecture 5: Transforms II Computer Graphics and Imaging UC Berkeley 3D Transforms 3D Transformations Use homogeneous coordinates again: 3D point = (x, y, z, 1) T 3D vector = (x, y, z, 0) T Use 4 4 matrices

More information

Camera model and multiple view geometry

Camera model and multiple view geometry Chapter Camera model and multiple view geometry Before discussing how D information can be obtained from images it is important to know how images are formed First the camera model is introduced and then

More information

Projective geometry, camera models and calibration

Projective geometry, camera models and calibration Projective geometry, camera models and calibration Subhashis Banerjee Dept. Computer Science and Engineering IIT Delhi email: suban@cse.iitd.ac.in January 6, 2008 The main problems in computer vision Image

More information

CSE152a Computer Vision Assignment 1 WI14 Instructor: Prof. David Kriegman. Revision 0

CSE152a Computer Vision Assignment 1 WI14 Instructor: Prof. David Kriegman. Revision 0 CSE152a Computer Vision Assignment 1 WI14 Instructor: Prof. David Kriegman. Revision Instructions: This assignment should be solved, and written up in groups of 2. Work alone only if you can not find a

More information

Camera Geometry II. COS 429 Princeton University

Camera Geometry II. COS 429 Princeton University Camera Geometry II COS 429 Princeton University Outline Projective geometry Vanishing points Application: camera calibration Application: single-view metrology Epipolar geometry Application: stereo correspondence

More information

(Refer Slide Time: 00:01:26)

(Refer Slide Time: 00:01:26) Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 9 Three Dimensional Graphics Welcome back everybody to the lecture on computer

More information

Computer Vision. Coordinates. Prof. Flávio Cardeal DECOM / CEFET- MG.

Computer Vision. Coordinates. Prof. Flávio Cardeal DECOM / CEFET- MG. Computer Vision Coordinates Prof. Flávio Cardeal DECOM / CEFET- MG cardeal@decom.cefetmg.br Abstract This lecture discusses world coordinates and homogeneous coordinates, as well as provides an overview

More information

Scene Modeling for a Single View

Scene Modeling for a Single View Scene Modeling for a Single View René MAGRITTE Portrait d'edward James with a lot of slides stolen from Steve Seitz and David Brogan, Breaking out of 2D now we are ready to break out of 2D And enter the

More information

Mysteries of Parameterizing Camera Motion - Part 1

Mysteries of Parameterizing Camera Motion - Part 1 Mysteries of Parameterizing Camera Motion - Part 1 Instructor - Simon Lucey 16-623 - Advanced Computer Vision Apps Today Motivation SO(3) Convex? Exponential Maps SL(3) Group. Adapted from: Computer vision:

More information

Image Transformations & Camera Calibration. Mašinska vizija, 2018.

Image Transformations & Camera Calibration. Mašinska vizija, 2018. Image Transformations & Camera Calibration Mašinska vizija, 2018. Image transformations What ve we learnt so far? Example 1 resize and rotate Open warp_affine_template.cpp Perform simple resize

More information

CIS 580, Machine Perception, Spring 2016 Homework 2 Due: :59AM

CIS 580, Machine Perception, Spring 2016 Homework 2 Due: :59AM CIS 580, Machine Perception, Spring 2016 Homework 2 Due: 2015.02.24. 11:59AM Instructions. Submit your answers in PDF form to Canvas. This is an individual assignment. 1 Recover camera orientation By observing

More information

Stereo CSE 576. Ali Farhadi. Several slides from Larry Zitnick and Steve Seitz

Stereo CSE 576. Ali Farhadi. Several slides from Larry Zitnick and Steve Seitz Stereo CSE 576 Ali Farhadi Several slides from Larry Zitnick and Steve Seitz Why do we perceive depth? What do humans use as depth cues? Motion Convergence When watching an object close to us, our eyes

More information

Introduction to Homogeneous coordinates

Introduction to Homogeneous coordinates Last class we considered smooth translations and rotations of the camera coordinate system and the resulting motions of points in the image projection plane. These two transformations were expressed mathematically

More information

Viewing. Part II (The Synthetic Camera) CS123 INTRODUCTION TO COMPUTER GRAPHICS. Andries van Dam 10/10/2017 1/31

Viewing. Part II (The Synthetic Camera) CS123 INTRODUCTION TO COMPUTER GRAPHICS. Andries van Dam 10/10/2017 1/31 Viewing Part II (The Synthetic Camera) Brownie camera courtesy of http://www.geh.org/fm/brownie2/htmlsrc/me13000034_ful.html 1/31 The Camera and the Scene } What does a camera do? } Takes in a 3D scene

More information

EXAM SOLUTIONS. Image Processing and Computer Vision Course 2D1421 Monday, 13 th of March 2006,

EXAM SOLUTIONS. Image Processing and Computer Vision Course 2D1421 Monday, 13 th of March 2006, School of Computer Science and Communication, KTH Danica Kragic EXAM SOLUTIONS Image Processing and Computer Vision Course 2D1421 Monday, 13 th of March 2006, 14.00 19.00 Grade table 0-25 U 26-35 3 36-45

More information

Structure from Motion

Structure from Motion Structure from Motion Outline Bundle Adjustment Ambguities in Reconstruction Affine Factorization Extensions Structure from motion Recover both 3D scene geoemetry and camera positions SLAM: Simultaneous

More information

ECE-161C Cameras. Nuno Vasconcelos ECE Department, UCSD

ECE-161C Cameras. Nuno Vasconcelos ECE Department, UCSD ECE-161C Cameras Nuno Vasconcelos ECE Department, UCSD Image formation all image understanding starts with understanding of image formation: projection of a scene from 3D world into image on 2D plane 2

More information

CS 664 Slides #9 Multi-Camera Geometry. Prof. Dan Huttenlocher Fall 2003

CS 664 Slides #9 Multi-Camera Geometry. Prof. Dan Huttenlocher Fall 2003 CS 664 Slides #9 Multi-Camera Geometry Prof. Dan Huttenlocher Fall 2003 Pinhole Camera Geometric model of camera projection Image plane I, which rays intersect Camera center C, through which all rays pass

More information

CSE528 Computer Graphics: Theory, Algorithms, and Applications

CSE528 Computer Graphics: Theory, Algorithms, and Applications CSE528 Computer Graphics: Theory, Algorithms, and Applications Hong Qin Stony Brook University (SUNY at Stony Brook) Stony Brook, New York 11794-2424 Tel: (631)632-845; Fax: (631)632-8334 qin@cs.stonybrook.edu

More information

CS223b Midterm Exam, Computer Vision. Monday February 25th, Winter 2008, Prof. Jana Kosecka

CS223b Midterm Exam, Computer Vision. Monday February 25th, Winter 2008, Prof. Jana Kosecka CS223b Midterm Exam, Computer Vision Monday February 25th, Winter 2008, Prof. Jana Kosecka Your name email This exam is 8 pages long including cover page. Make sure your exam is not missing any pages.

More information