User Authentication Based On Behavioral Mouse Dynamics Biometrics

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "User Authentication Based On Behavioral Mouse Dynamics Biometrics"

Transcription

1 User Authentcaton Based On Behavoral Mouse Dynamcs Bometrcs Chee-Hyung Yoon Danel Donghyun Km Department of Computer Scence Department of Computer Scence Stanford Unversty Stanford Unversty Stanford, CA 9435 Stanford, CA Abstract In ths machne learnng applcaton, we try to complement the exstng securty system by provdng another layer of user authentcaton protecton by applyng behavoral bometrcs on user mouse dynamcs. Frst we collect the user s mouse dynamcs data through an applcaton that montors the mouse movement for the specfed duraton. We extract out certan sgnature characterstcs n the patterns of a user s mouse dynamcs, such as double-clckng speed, movement velocty and acceleraton per drecton. Usng machne learnng technques, we buld a Nave Bayes model of a user s mouse dynamcs. Then t s possble to detect unauthorzed users by fndng anomales n the measured mouse dynamcs and to prevent the ntruder from further accessng the system. Although there has been consderable amount of lterature on fngerprntng or keystroke bometrcs, behavoral bometrcs based on mouse dynamcs has not been very successful so far. Dfferent from the tred methods, we used slghtly more detaled features and machne learnng technques such as unsupervsed learnng for anomaly detecton. 1 Mouse dynamcs Usng the WnNT/XP applcaton we mplemented usng C# and Wn3 assembly, we collect the nformaton on mouse actons generated as a result of user nteracton wth a graphcal user nterface by nstallng a global mouse hook on the user system. We consulted [1] Detectng Computer Intrusons Usng Behavoral Bometrcs by Awad E. A. Issa Traore n defnng three classes of acton,.e., Mouse Movement, Pont and Clck, and Drag & Drop and n selectng the features to nclude. The collected data nclude movement speed (pxels/second) over traveled dstance (pxels) per defned acton, mouse movement speed and acceleraton per movement drecton, and dstrbuton of double clck speed. 1.1 Movement speed over traveled dstance per defned acton Mouse Movement s smply defned as the user movng mouse from pont A to pont B wthout pressng any mouse button. One movement ends when there s no mouse nput for the pre-defned duraton. Pont and Clck s nearly dentcal to Mouse Movement, but ends wth the user pressng any mouse button. Drag & Drop s defned as pressng a button followed by movement and release of the button. We measure the speed of mouse movement at each tme slce of 5 ms and the dstance at each acton. Snce speed vares much even for specfc dstance (thnk that when you start to move a mouse, the speed s about, but when you are at mddle of movement, the speed would reach the maxmum), each user s unque pattern can be found by focusng more on the data ponts near the maxmum values. Ths s dscussed n more detal n the data analyss secton. Our collected data show that the speed-over-dstance patterns are somewhat dfferent for each acton.

2 1. Movement speed per drecton of movement We measure the speed of mouse movement at each tme slce of 5 ms along wth the angle of movement. Although the movement speed somewhat depends on what applcaton the user s runnng, there s a notceably detectable pattern that s unque to each user. Ths unque pattern can be found by focusng more on the data ponts near the maxmum values by almost same reason of Acceleraton per drecton of movement Ths s dentcal to the movement speed per drecton except that we measure acceleraton nstead of the movement speed. Note that the data set ncludes both negatve and postve values snce acceleraton s a vector. 1.4 Dstrbuton of double clck speed Based on our collected data, users have farly unque and stable dstrbuton n ther double clck speed or the tme duraton between two clcks n a double clck acton, more precsely. Data analyss and machne learnng.1 Dscretzaton After collectng enough data for a user, we pre-process the data usng our program mplemented n Java. Manly, we dscretze the very fne dscrete varables the angle radan value, movement speed, and acceleraton, n the ncrements of.5. Dstance traveled s also dscretzed n the ncrements of 1 pxels so that the resultng curve s affected less by the nose n the data. Double clnkng speed s also dscretzed n the ncrements of.1 sec. These ncrement values were chosen manually after tryng a number of dfferent values.. 95 percentle Our ntal assumpton was that the unque characterstcs of a user s mouse movement speed per drecton lay n the dstrbuton of dfferent values. As we analyzed the data, however, we found that the values near the maxmal value are more stable over dfferent sessons and also unque over dfferent users. As mentoned n the mouse dynamcs secton, mouse movng s generally composed of acceleraton, constant speed movng, and deceleraton. Thus maxmal speed tends to represent user s unque characterstc. We also beleve that ths was the case because whereas the dstrbuton of dfferent values may get affected by what type of applcaton the user s usng, the maxmal speed values represent the user s behavoral character. Therefore, we extracted the hgh 95 percentle values at dfferent angles as the sgnature vector of each user. Ths approach s also reslent to the outlers, whch are consdered just noses from a few jerky movements. Fgure 1 s the result of takng 95 percentle values from the movement speed by movement angle data set. 4 3 data ponts 95% percentle ponts angle of movement (rad) speed (pxels / sec)

3 Fgure 1 Movement speed by movement angle and 95 percentle values.3 Nave Bayes In order to detect anomales, we used the Nave Bayes assumpton such that the values of movement speed or acceleraton by angle are ndependent gven the dentty of the user. Furthermore, we assumed Gaussan dstrbuton of the 95-percentle-values and used ths for computng the lkelhood of a test set value, gven the dentty of the user. Thus, our log lkelhood s computed as l = ( ) ( ) y x 1 ( μ ) ( ) log( p ( x y)) = log( exp( )) πσ σ The value of standard devaton was hand-tuned for dfferent features to guarantee a large dfference n the resultng lkelhood value dependng on whether t was the data from the same user. Ths approach gave us much better results compared to smply comparng vector dstance over the datasets. Fgure shows the movement speed by traveled dstance values of three dfferent users ncludng the data over two dfferent sessons for one user. The sgnature lne for dfferent users s readly observed from the fgure. Table 1 shows the calculated log lkelhood values where the mean values are taken from sesson 1 of user A and tested aganst the other three test sets user A, sesson 1 user A, sesson Traveled dstance (pxels) Average movement speed (pxels/second) Fgure Traveled dstance by movement speed when performng Pont and Clck Aganst user A, sesson 1 User A, sesson User B User C User D Table 1 Log lkelhood for dfferent user denttes In processng the acceleraton data, we observed a strong symmetry between the postve (acceleraton) and negatve (deceleraton) over all users. Thus, we decded to use the absolute value of the acceleraton for smplcty. Fgure 3 shows the sgnature acceleraton vectors of selected users. Here, the blue and red curves represent the sgnature acceleraton vector of the same user over two dfferent sessons. The overlap between the two curves s easy to observe. Fgure 4 s the sgnature double clck speed dstrbuton vectors.

4 acceleraton (pxels/seconds/seconds) user A, sesson 1 user A, sesson angle of acceleraton (rad) Fgure 3 Acceleraton by angle for selected users double clck speed (1 ms) user A, sesson 1 user A, sesson probablty Fgure 4 double clck speed dstrbuton.4 Fnal weght adjustments and anomaly detecton After computng the sx log lkelhoods for dfferent features, we calculated the lnear combnaton of the log lkelhood values to get the fnal valuaton. The weghts for each lkelhood was adjusted manually; t could have been done usng some automatc technque such as gradent descent, but our dataset contaned only about a dozen datasets from dfferent sessons, whch was not suffcent for usng an automatc convergence algorthm. After determnng the weghts, a threshold value for the fnal log lkelhood value s set for each user by runnng some tranng sesson values aganst the traned sesson value so that each tranng set s fnal valuaton s hgher than the threshold. If a test set value s hgher than the threshold, the set s dstngushed as legtmate user, and the set s dstngushed as an ntruder, otherwse. If the user tends to be very stable over multple sessons, the threshold value s set hgher and the detecton s lkely to be more accurate unless the user devates much from her profle, n whch case a false postve occurs. On

5 the other hand, f the user tends to show unsteady sgnature vectors over multple sessons, the threshold value wll be set lower n order to prevent frequent false warnngs. In order to confrm the performance of our algorthm, we tested the traned model aganst the data sets not used n the tranng process, both from the same user over a dfferent sesson and from other users ncludng some new users. Although the lmted number of tranng sets and test sets does not allow us to draw ultmate concluson on the performance, the algorthm worked surprsngly well on our test sets. It was able to correctly classfy all the test sets fed to t. We plan to further collect large set of data and run more rgorous tests. Another aspect we would lke to see mprovement on n the future s the duraton of data collecton tme. Current span of an hour to two hours s probably too long to be actually deployed for securty extenson, as an ntruder may harm or explot the system n much shorter duraton. 3 Implementaton 3.1 Data collecton Data collecton program MouseRecorder.exe was wrtten n C# and Wn3 assembly code. Usng WnNT/XP low level global mouse hook support, t stores the features descrbed n mouse dynamcs secton n four dfferent fles. 3. Data pre-processng Data pre-processng program Rounder.java was mplementng usng Java 5.. It reads n the fles generated by the data collecton program and performs dscretzaton on the dataset. 3.3 Data analyss and learnng Data analyss was done exclusvely n Matlab 7.. extractsg.m performs 95 percentle value extractons, sortng and smoothng of the data usng lnear nterpolaton. lkelhood.m performs the log lkelhood calculaton descrbed n secton.3. 4 Experments We collected data from eght dfferent subjects over multple sessons by dstrbutng the MouseRecorder.exe applcaton. Each subject ran the program n background for several hours, and each sesson generated four data fles each rangng n sze from 3KB to 1MB. In general, havng larger data fle resulted n smoother and more stable sgnature vectors and fnal lkelhood value dffered more from the lkelhood obtaned from the other test sets. References [1] Ahmed Awad E. A. and Issa Traore (5) Detectng Computer Intrusons Usng Behavoral Bometrcs, Unversty of Vctora.

SLAM Summer School 2006 Practical 2: SLAM using Monocular Vision

SLAM Summer School 2006 Practical 2: SLAM using Monocular Vision SLAM Summer School 2006 Practcal 2: SLAM usng Monocular Vson Javer Cvera, Unversty of Zaragoza Andrew J. Davson, Imperal College London J.M.M Montel, Unversty of Zaragoza. josemar@unzar.es, jcvera@unzar.es,

More information

Classifier Selection Based on Data Complexity Measures *

Classifier Selection Based on Data Complexity Measures * Classfer Selecton Based on Data Complexty Measures * Edth Hernández-Reyes, J.A. Carrasco-Ochoa, and J.Fco. Martínez-Trndad Natonal Insttute for Astrophyscs, Optcs and Electroncs, Lus Enrque Erro No.1 Sta.

More information

A Binarization Algorithm specialized on Document Images and Photos

A Binarization Algorithm specialized on Document Images and Photos A Bnarzaton Algorthm specalzed on Document mages and Photos Ergna Kavalleratou Dept. of nformaton and Communcaton Systems Engneerng Unversty of the Aegean kavalleratou@aegean.gr Abstract n ths paper, a

More information

S1 Note. Basis functions.

S1 Note. Basis functions. S1 Note. Bass functons. Contents Types of bass functons...1 The Fourer bass...2 B-splne bass...3 Power and type I error rates wth dfferent numbers of bass functons...4 Table S1. Smulaton results of type

More information

Optimizing Document Scoring for Query Retrieval

Optimizing Document Scoring for Query Retrieval Optmzng Document Scorng for Query Retreval Brent Ellwen baellwe@cs.stanford.edu Abstract The goal of ths project was to automate the process of tunng a document query engne. Specfcally, I used machne learnng

More information

X- Chart Using ANOM Approach

X- Chart Using ANOM Approach ISSN 1684-8403 Journal of Statstcs Volume 17, 010, pp. 3-3 Abstract X- Chart Usng ANOM Approach Gullapall Chakravarth 1 and Chaluvad Venkateswara Rao Control lmts for ndvdual measurements (X) chart are

More information

TN348: Openlab Module - Colocalization

TN348: Openlab Module - Colocalization TN348: Openlab Module - Colocalzaton Topc The Colocalzaton module provdes the faclty to vsualze and quantfy colocalzaton between pars of mages. The Colocalzaton wndow contans a prevew of the two mages

More information

Machine Learning 9. week

Machine Learning 9. week Machne Learnng 9. week Mappng Concept Radal Bass Functons (RBF) RBF Networks 1 Mappng It s probably the best scenaro for the classfcaton of two dataset s to separate them lnearly. As you see n the below

More information

Learning physical Models of Robots

Learning physical Models of Robots Learnng physcal Models of Robots Jochen Mück Technsche Unverstät Darmstadt jochen.mueck@googlemal.com Abstract In robotcs good physcal models are needed to provde approprate moton control for dfferent

More information

Learning the Kernel Parameters in Kernel Minimum Distance Classifier

Learning the Kernel Parameters in Kernel Minimum Distance Classifier Learnng the Kernel Parameters n Kernel Mnmum Dstance Classfer Daoqang Zhang 1,, Songcan Chen and Zh-Hua Zhou 1* 1 Natonal Laboratory for Novel Software Technology Nanjng Unversty, Nanjng 193, Chna Department

More information

Edge Detection in Noisy Images Using the Support Vector Machines

Edge Detection in Noisy Images Using the Support Vector Machines Edge Detecton n Nosy Images Usng the Support Vector Machnes Hlaro Gómez-Moreno, Saturnno Maldonado-Bascón, Francsco López-Ferreras Sgnal Theory and Communcatons Department. Unversty of Alcalá Crta. Madrd-Barcelona

More information

Improvement of Spatial Resolution Using BlockMatching Based Motion Estimation and Frame. Integration

Improvement of Spatial Resolution Using BlockMatching Based Motion Estimation and Frame. Integration Improvement of Spatal Resoluton Usng BlockMatchng Based Moton Estmaton and Frame Integraton Danya Suga and Takayuk Hamamoto Graduate School of Engneerng, Tokyo Unversty of Scence, 6-3-1, Nuku, Katsuska-ku,

More information

FEATURE EXTRACTION. Dr. K.Vijayarekha. Associate Dean School of Electrical and Electronics Engineering SASTRA University, Thanjavur

FEATURE EXTRACTION. Dr. K.Vijayarekha. Associate Dean School of Electrical and Electronics Engineering SASTRA University, Thanjavur FEATURE EXTRACTION Dr. K.Vjayarekha Assocate Dean School of Electrcal and Electroncs Engneerng SASTRA Unversty, Thanjavur613 41 Jont Intatve of IITs and IISc Funded by MHRD Page 1 of 8 Table of Contents

More information

MULTISPECTRAL IMAGES CLASSIFICATION BASED ON KLT AND ATR AUTOMATIC TARGET RECOGNITION

MULTISPECTRAL IMAGES CLASSIFICATION BASED ON KLT AND ATR AUTOMATIC TARGET RECOGNITION MULTISPECTRAL IMAGES CLASSIFICATION BASED ON KLT AND ATR AUTOMATIC TARGET RECOGNITION Paulo Quntlano 1 & Antono Santa-Rosa 1 Federal Polce Department, Brasla, Brazl. E-mals: quntlano.pqs@dpf.gov.br and

More information

Parallelism for Nested Loops with Non-uniform and Flow Dependences

Parallelism for Nested Loops with Non-uniform and Flow Dependences Parallelsm for Nested Loops wth Non-unform and Flow Dependences Sam-Jn Jeong Dept. of Informaton & Communcaton Engneerng, Cheonan Unversty, 5, Anseo-dong, Cheonan, Chungnam, 330-80, Korea. seong@cheonan.ac.kr

More information

Outline. Type of Machine Learning. Examples of Application. Unsupervised Learning

Outline. Type of Machine Learning. Examples of Application. Unsupervised Learning Outlne Artfcal Intellgence and ts applcatons Lecture 8 Unsupervsed Learnng Professor Danel Yeung danyeung@eee.org Dr. Patrck Chan patrckchan@eee.org South Chna Unversty of Technology, Chna Introducton

More information

Assignment # 2. Farrukh Jabeen Algorithms 510 Assignment #2 Due Date: June 15, 2009.

Assignment # 2. Farrukh Jabeen Algorithms 510 Assignment #2 Due Date: June 15, 2009. Farrukh Jabeen Algorthms 51 Assgnment #2 Due Date: June 15, 29. Assgnment # 2 Chapter 3 Dscrete Fourer Transforms Implement the FFT for the DFT. Descrbed n sectons 3.1 and 3.2. Delverables: 1. Concse descrpton

More information

Content Based Image Retrieval Using 2-D Discrete Wavelet with Texture Feature with Different Classifiers

Content Based Image Retrieval Using 2-D Discrete Wavelet with Texture Feature with Different Classifiers IOSR Journal of Electroncs and Communcaton Engneerng (IOSR-JECE) e-issn: 78-834,p- ISSN: 78-8735.Volume 9, Issue, Ver. IV (Mar - Apr. 04), PP 0-07 Content Based Image Retreval Usng -D Dscrete Wavelet wth

More information

A Fast Content-Based Multimedia Retrieval Technique Using Compressed Data

A Fast Content-Based Multimedia Retrieval Technique Using Compressed Data A Fast Content-Based Multmeda Retreval Technque Usng Compressed Data Borko Furht and Pornvt Saksobhavvat NSF Multmeda Laboratory Florda Atlantc Unversty, Boca Raton, Florda 3343 ABSTRACT In ths paper,

More information

Term Weighting Classification System Using the Chi-square Statistic for the Classification Subtask at NTCIR-6 Patent Retrieval Task

Term Weighting Classification System Using the Chi-square Statistic for the Classification Subtask at NTCIR-6 Patent Retrieval Task Proceedngs of NTCIR-6 Workshop Meetng, May 15-18, 2007, Tokyo, Japan Term Weghtng Classfcaton System Usng the Ch-square Statstc for the Classfcaton Subtask at NTCIR-6 Patent Retreval Task Kotaro Hashmoto

More information

Support Vector Machines

Support Vector Machines /9/207 MIST.6060 Busness Intellgence and Data Mnng What are Support Vector Machnes? Support Vector Machnes Support Vector Machnes (SVMs) are supervsed learnng technques that analyze data and recognze patterns.

More information

A Gradient Difference based Technique for Video Text Detection

A Gradient Difference based Technique for Video Text Detection A Gradent Dfference based Technque for Vdeo Text Detecton Palaahnakote Shvakumara, Trung Quy Phan and Chew Lm Tan School of Computng, Natonal Unversty of Sngapore {shva, phanquyt, tancl }@comp.nus.edu.sg

More information

Skew Angle Estimation and Correction of Hand Written, Textual and Large areas of Non-Textual Document Images: A Novel Approach

Skew Angle Estimation and Correction of Hand Written, Textual and Large areas of Non-Textual Document Images: A Novel Approach Angle Estmaton and Correcton of Hand Wrtten, Textual and Large areas of Non-Textual Document Images: A Novel Approach D.R.Ramesh Babu Pyush M Kumat Mahesh D Dhannawat PES Insttute of Technology Research

More information

A Gradient Difference based Technique for Video Text Detection

A Gradient Difference based Technique for Video Text Detection 2009 10th Internatonal Conference on Document Analyss and Recognton A Gradent Dfference based Technque for Vdeo Text Detecton Palaahnakote Shvakumara, Trung Quy Phan and Chew Lm Tan School of Computng,

More information

A Fast Visual Tracking Algorithm Based on Circle Pixels Matching

A Fast Visual Tracking Algorithm Based on Circle Pixels Matching A Fast Vsual Trackng Algorthm Based on Crcle Pxels Matchng Zhqang Hou hou_zhq@sohu.com Chongzhao Han czhan@mal.xjtu.edu.cn Ln Zheng Abstract: A fast vsual trackng algorthm based on crcle pxels matchng

More information

CS 534: Computer Vision Model Fitting

CS 534: Computer Vision Model Fitting CS 534: Computer Vson Model Fttng Sprng 004 Ahmed Elgammal Dept of Computer Scence CS 534 Model Fttng - 1 Outlnes Model fttng s mportant Least-squares fttng Maxmum lkelhood estmaton MAP estmaton Robust

More information

The Codesign Challenge

The Codesign Challenge ECE 4530 Codesgn Challenge Fall 2007 Hardware/Software Codesgn The Codesgn Challenge Objectves In the codesgn challenge, your task s to accelerate a gven software reference mplementaton as fast as possble.

More information

Neural Networks in Statistical Anomaly Intrusion Detection

Neural Networks in Statistical Anomaly Intrusion Detection Neural Networks n Statstcal Anomaly Intruson Detecton ZHENG ZHANG, JUN LI, C. N. MANIKOPOULOS, JAY JORGENSON and JOSE UCLES ECE Department, New Jersey Inst. of Tech., Unversty Heghts, Newark, NJ 72, USA

More information

Lecture 5: Multilayer Perceptrons

Lecture 5: Multilayer Perceptrons Lecture 5: Multlayer Perceptrons Roger Grosse 1 Introducton So far, we ve only talked about lnear models: lnear regresson and lnear bnary classfers. We noted that there are functons that can t be represented

More information

Three supervised learning methods on pen digits character recognition dataset

Three supervised learning methods on pen digits character recognition dataset Three supervsed learnng methods on pen dgts character recognton dataset Chrs Flezach Department of Computer Scence and Engneerng Unversty of Calforna, San Dego San Dego, CA 92093 cflezac@cs.ucsd.edu Satoru

More information

Investigating the Performance of Naïve- Bayes Classifiers and K- Nearest Neighbor Classifiers

Investigating the Performance of Naïve- Bayes Classifiers and K- Nearest Neighbor Classifiers Journal of Convergence Informaton Technology Volume 5, Number 2, Aprl 2010 Investgatng the Performance of Naïve- Bayes Classfers and K- Nearest Neghbor Classfers Mohammed J. Islam *, Q. M. Jonathan Wu,

More information

Smoothing Spline ANOVA for variable screening

Smoothing Spline ANOVA for variable screening Smoothng Splne ANOVA for varable screenng a useful tool for metamodels tranng and mult-objectve optmzaton L. Rcco, E. Rgon, A. Turco Outlne RSM Introducton Possble couplng Test case MOO MOO wth Game Theory

More information

Detection of an Object by using Principal Component Analysis

Detection of an Object by using Principal Component Analysis Detecton of an Object by usng Prncpal Component Analyss 1. G. Nagaven, 2. Dr. T. Sreenvasulu Reddy 1. M.Tech, Department of EEE, SVUCE, Trupath, Inda. 2. Assoc. Professor, Department of ECE, SVUCE, Trupath,

More information

Face Recognition Based on SVM and 2DPCA

Face Recognition Based on SVM and 2DPCA Vol. 4, o. 3, September, 2011 Face Recognton Based on SVM and 2DPCA Tha Hoang Le, Len Bu Faculty of Informaton Technology, HCMC Unversty of Scence Faculty of Informaton Scences and Engneerng, Unversty

More information

Wishing you all a Total Quality New Year!

Wishing you all a Total Quality New Year! Total Qualty Management and Sx Sgma Post Graduate Program 214-15 Sesson 4 Vnay Kumar Kalakband Assstant Professor Operatons & Systems Area 1 Wshng you all a Total Qualty New Year! Hope you acheve Sx sgma

More information

R s s f. m y s. SPH3UW Unit 7.3 Spherical Concave Mirrors Page 1 of 12. Notes

R s s f. m y s. SPH3UW Unit 7.3 Spherical Concave Mirrors Page 1 of 12. Notes SPH3UW Unt 7.3 Sphercal Concave Mrrors Page 1 of 1 Notes Physcs Tool box Concave Mrror If the reflectng surface takes place on the nner surface of the sphercal shape so that the centre of the mrror bulges

More information

Unsupervised Learning

Unsupervised Learning Pattern Recognton Lecture 8 Outlne Introducton Unsupervsed Learnng Parametrc VS Non-Parametrc Approach Mxture of Denstes Maxmum-Lkelhood Estmates Clusterng Prof. Danel Yeung School of Computer Scence and

More information

Implementation Naïve Bayes Algorithm for Student Classification Based on Graduation Status

Implementation Naïve Bayes Algorithm for Student Classification Based on Graduation Status Internatonal Journal of Appled Busness and Informaton Systems ISSN: 2597-8993 Vol 1, No 2, September 2017, pp. 6-12 6 Implementaton Naïve Bayes Algorthm for Student Classfcaton Based on Graduaton Status

More information

Lecture 13: High-dimensional Images

Lecture 13: High-dimensional Images Lec : Hgh-dmensonal Images Grayscale Images Lecture : Hgh-dmensonal Images Math 90 Prof. Todd Wttman The Ctadel A grayscale mage s an nteger-valued D matrx. An 8-bt mage takes on values between 0 and 55.

More information

An Optimal Algorithm for Prufer Codes *

An Optimal Algorithm for Prufer Codes * J. Software Engneerng & Applcatons, 2009, 2: 111-115 do:10.4236/jsea.2009.22016 Publshed Onlne July 2009 (www.scrp.org/journal/jsea) An Optmal Algorthm for Prufer Codes * Xaodong Wang 1, 2, Le Wang 3,

More information

3D vector computer graphics

3D vector computer graphics 3D vector computer graphcs Paolo Varagnolo: freelance engneer Padova Aprl 2016 Prvate Practce ----------------------------------- 1. Introducton Vector 3D model representaton n computer graphcs requres

More information

Problem Definitions and Evaluation Criteria for Computational Expensive Optimization

Problem Definitions and Evaluation Criteria for Computational Expensive Optimization Problem efntons and Evaluaton Crtera for Computatonal Expensve Optmzaton B. Lu 1, Q. Chen and Q. Zhang 3, J. J. Lang 4, P. N. Suganthan, B. Y. Qu 6 1 epartment of Computng, Glyndwr Unversty, UK Faclty

More information

Subspace clustering. Clustering. Fundamental to all clustering techniques is the choice of distance measure between data points;

Subspace clustering. Clustering. Fundamental to all clustering techniques is the choice of distance measure between data points; Subspace clusterng Clusterng Fundamental to all clusterng technques s the choce of dstance measure between data ponts; D q ( ) ( ) 2 x x = x x, j k = 1 k jk Squared Eucldean dstance Assumpton: All features

More information

One-handed Keystroke Biometric Identification Competition

One-handed Keystroke Biometric Identification Competition One-handed Keystroke Bometrc Identfcaton Competton John V. Monaco 1, Gonzalo Perez 1, Charles C. Tappert 1, Patrck Bours 2, Soumk Mondal 2, Sudala Rajkumar 3, Aytham Morales 4, Julan Ferrez 4 and Javer

More information

Sequential search. Building Java Programs Chapter 13. Sequential search. Sequential search

Sequential search. Building Java Programs Chapter 13. Sequential search. Sequential search Sequental search Buldng Java Programs Chapter 13 Searchng and Sortng sequental search: Locates a target value n an array/lst by examnng each element from start to fnsh. How many elements wll t need to

More information

Real-time Motion Capture System Using One Video Camera Based on Color and Edge Distribution

Real-time Motion Capture System Using One Video Camera Based on Color and Edge Distribution Real-tme Moton Capture System Usng One Vdeo Camera Based on Color and Edge Dstrbuton YOSHIAKI AKAZAWA, YOSHIHIRO OKADA, AND KOICHI NIIJIMA Graduate School of Informaton Scence and Electrcal Engneerng,

More information

A Simple and Efficient Goal Programming Model for Computing of Fuzzy Linear Regression Parameters with Considering Outliers

A Simple and Efficient Goal Programming Model for Computing of Fuzzy Linear Regression Parameters with Considering Outliers 62626262621 Journal of Uncertan Systems Vol.5, No.1, pp.62-71, 211 Onlne at: www.us.org.u A Smple and Effcent Goal Programmng Model for Computng of Fuzzy Lnear Regresson Parameters wth Consderng Outlers

More information

Detection of hand grasping an object from complex background based on machine learning co-occurrence of local image feature

Detection of hand grasping an object from complex background based on machine learning co-occurrence of local image feature Detecton of hand graspng an object from complex background based on machne learnng co-occurrence of local mage feature Shnya Moroka, Yasuhro Hramoto, Nobutaka Shmada, Tadash Matsuo, Yoshak Shra Rtsumekan

More information

Advanced Computer Networks

Advanced Computer Networks Char of Network Archtectures and Servces Department of Informatcs Techncal Unversty of Munch Note: Durng the attendance check a stcker contanng a unque QR code wll be put on ths exam. Ths QR code contans

More information

BOOSTING CLASSIFICATION ACCURACY WITH SAMPLES CHOSEN FROM A VALIDATION SET

BOOSTING CLASSIFICATION ACCURACY WITH SAMPLES CHOSEN FROM A VALIDATION SET 1 BOOSTING CLASSIFICATION ACCURACY WITH SAMPLES CHOSEN FROM A VALIDATION SET TZU-CHENG CHUANG School of Electrcal and Computer Engneerng, Purdue Unversty, West Lafayette, Indana 47907 SAUL B. GELFAND School

More information

Cluster Analysis of Electrical Behavior

Cluster Analysis of Electrical Behavior Journal of Computer and Communcatons, 205, 3, 88-93 Publshed Onlne May 205 n ScRes. http://www.scrp.org/ournal/cc http://dx.do.org/0.4236/cc.205.350 Cluster Analyss of Electrcal Behavor Ln Lu Ln Lu, School

More information

Feature Selection for Target Detection in SAR Images

Feature Selection for Target Detection in SAR Images Feature Selecton for Detecton n SAR Images Br Bhanu, Yngqang Ln and Shqn Wang Center for Research n Intellgent Systems Unversty of Calforna, Rversde, CA 95, USA Abstract A genetc algorthm (GA) approach

More information

Related-Mode Attacks on CTR Encryption Mode

Related-Mode Attacks on CTR Encryption Mode Internatonal Journal of Network Securty, Vol.4, No.3, PP.282 287, May 2007 282 Related-Mode Attacks on CTR Encrypton Mode Dayn Wang, Dongda Ln, and Wenlng Wu (Correspondng author: Dayn Wang) Key Laboratory

More information

Fingerprint matching based on weighting method and SVM

Fingerprint matching based on weighting method and SVM Fngerprnt matchng based on weghtng method and SVM Ja Ja, Lanhong Ca, Pnyan Lu, Xuhu Lu Key Laboratory of Pervasve Computng (Tsnghua Unversty), Mnstry of Educaton Bejng 100084, P.R.Chna {jaja}@mals.tsnghua.edu.cn

More information

Mouse Biometric Authentication

Mouse Biometric Authentication Proceedngs of Student-Faculty Research Day, CSIS, Pace Unversty, May nd, 014 Mouse Bometrc Authentcaton Francsco Betances, Adam Pne, Gerald Thompson, Hedeh Zandkarm, and Vnne Monaco Sedenberg School of

More information

A Unified Framework for Semantics and Feature Based Relevance Feedback in Image Retrieval Systems

A Unified Framework for Semantics and Feature Based Relevance Feedback in Image Retrieval Systems A Unfed Framework for Semantcs and Feature Based Relevance Feedback n Image Retreval Systems Ye Lu *, Chunhu Hu 2, Xngquan Zhu 3*, HongJang Zhang 2, Qang Yang * School of Computng Scence Smon Fraser Unversty

More information

Fast Feature Value Searching for Face Detection

Fast Feature Value Searching for Face Detection Vol., No. 2 Computer and Informaton Scence Fast Feature Value Searchng for Face Detecton Yunyang Yan Department of Computer Engneerng Huayn Insttute of Technology Hua an 22300, Chna E-mal: areyyyke@63.com

More information

PYTHON IMPLEMENTATION OF VISUAL SECRET SHARING SCHEMES

PYTHON IMPLEMENTATION OF VISUAL SECRET SHARING SCHEMES PYTHON IMPLEMENTATION OF VISUAL SECRET SHARING SCHEMES Ruxandra Olmd Faculty of Mathematcs and Computer Scence, Unversty of Bucharest Emal: ruxandra.olmd@fm.unbuc.ro Abstract Vsual secret sharng schemes

More information

Writer Identification using a Deep Neural Network

Writer Identification using a Deep Neural Network Wrter Identfcaton usng a Deep Neural Network Jun Chu and Sargur Srhar Department of Computer Scence and Engneerng Unversty at Buffalo, The State Unversty of New York Buffalo, NY 1469, USA {jchu6, srhar}@buffalo.edu

More information

2x x l. Module 3: Element Properties Lecture 4: Lagrange and Serendipity Elements

2x x l. Module 3: Element Properties Lecture 4: Lagrange and Serendipity Elements Module 3: Element Propertes Lecture : Lagrange and Serendpty Elements 5 In last lecture note, the nterpolaton functons are derved on the bass of assumed polynomal from Pascal s trangle for the fled varable.

More information

Mathematics 256 a course in differential equations for engineering students

Mathematics 256 a course in differential equations for engineering students Mathematcs 56 a course n dfferental equatons for engneerng students Chapter 5. More effcent methods of numercal soluton Euler s method s qute neffcent. Because the error s essentally proportonal to the

More information

Video Object Tracking Based On Extended Active Shape Models With Color Information

Video Object Tracking Based On Extended Active Shape Models With Color Information CGIV'2002: he Frst Frst European Conference Colour on Colour n Graphcs, Imagng, and Vson Vdeo Object rackng Based On Extended Actve Shape Models Wth Color Informaton A. Koschan, S.K. Kang, J.K. Pak, B.

More information

A Probabilistic Approach to Detect Urban Regions from Remotely Sensed Images Based on Combination of Local Features

A Probabilistic Approach to Detect Urban Regions from Remotely Sensed Images Based on Combination of Local Features A Probablstc Approach to Detect Urban Regons from Remotely Sensed Images Based on Combnaton of Local Features Berl Sırmaçek German Aerospace Center (DLR) Remote Sensng Technology Insttute Weßlng, 82234,

More information

Reducing Frame Rate for Object Tracking

Reducing Frame Rate for Object Tracking Reducng Frame Rate for Object Trackng Pavel Korshunov 1 and We Tsang Oo 2 1 Natonal Unversty of Sngapore, Sngapore 11977, pavelkor@comp.nus.edu.sg 2 Natonal Unversty of Sngapore, Sngapore 11977, oowt@comp.nus.edu.sg

More information

The Greedy Method. Outline and Reading. Change Money Problem. Greedy Algorithms. Applications of the Greedy Strategy. The Greedy Method Technique

The Greedy Method. Outline and Reading. Change Money Problem. Greedy Algorithms. Applications of the Greedy Strategy. The Greedy Method Technique //00 :0 AM Outlne and Readng The Greedy Method The Greedy Method Technque (secton.) Fractonal Knapsack Problem (secton..) Task Schedulng (secton..) Mnmum Spannng Trees (secton.) Change Money Problem Greedy

More information

(1) The control processes are too complex to analyze by conventional quantitative techniques.

(1) The control processes are too complex to analyze by conventional quantitative techniques. Chapter 0 Fuzzy Control and Fuzzy Expert Systems The fuzzy logc controller (FLC) s ntroduced n ths chapter. After ntroducng the archtecture of the FLC, we study ts components step by step and suggest a

More information

Improving anti-spam filtering, based on Naive Bayesian and neural networks in multi-agent filters

Improving anti-spam filtering, based on Naive Bayesian and neural networks in multi-agent filters J. Appl. Envron. Bol. Sc., 5(7S)381-386, 2015 2015, TextRoad Publcaton ISSN: 2090-4274 Journal of Appled Envronmental and Bologcal Scences www.textroad.com Improvng ant-spam flterng, based on Nave Bayesan

More information

Brave New World Pseudocode Reference

Brave New World Pseudocode Reference Brave New World Pseudocode Reference Pseudocode s a way to descrbe how to accomplsh tasks usng basc steps lke those a computer mght perform. In ths week s lab, you'll see how a form of pseudocode can be

More information

An Image Fusion Approach Based on Segmentation Region

An Image Fusion Approach Based on Segmentation Region Rong Wang, L-Qun Gao, Shu Yang, Yu-Hua Cha, and Yan-Chun Lu An Image Fuson Approach Based On Segmentaton Regon An Image Fuson Approach Based on Segmentaton Regon Rong Wang, L-Qun Gao, Shu Yang 3, Yu-Hua

More information

MOTION BLUR ESTIMATION AT CORNERS

MOTION BLUR ESTIMATION AT CORNERS Gacomo Boracch and Vncenzo Caglot Dpartmento d Elettronca e Informazone, Poltecnco d Mlano, Va Ponzo, 34/5-20133 MILANO boracch@elet.polm.t, caglot@elet.polm.t Keywords: Abstract: Pont Spread Functon Parameter

More information

A Robust Method for Estimating the Fundamental Matrix

A Robust Method for Estimating the Fundamental Matrix Proc. VIIth Dgtal Image Computng: Technques and Applcatons, Sun C., Talbot H., Ourseln S. and Adraansen T. (Eds.), 0- Dec. 003, Sydney A Robust Method for Estmatng the Fundamental Matrx C.L. Feng and Y.S.

More information

Helsinki University Of Technology, Systems Analysis Laboratory Mat Independent research projects in applied mathematics (3 cr)

Helsinki University Of Technology, Systems Analysis Laboratory Mat Independent research projects in applied mathematics (3 cr) Helsnk Unversty Of Technology, Systems Analyss Laboratory Mat-2.08 Independent research projects n appled mathematcs (3 cr) "! #$&% Antt Laukkanen 506 R ajlaukka@cc.hut.f 2 Introducton...3 2 Multattrbute

More information

Complex Numbers. Now we also saw that if a and b were both positive then ab = a b. For a second let s forget that restriction and do the following.

Complex Numbers. Now we also saw that if a and b were both positive then ab = a b. For a second let s forget that restriction and do the following. Complex Numbers The last topc n ths secton s not really related to most of what we ve done n ths chapter, although t s somewhat related to the radcals secton as we wll see. We also won t need the materal

More information

Empirical Distributions of Parameter Estimates. in Binary Logistic Regression Using Bootstrap

Empirical Distributions of Parameter Estimates. in Binary Logistic Regression Using Bootstrap Int. Journal of Math. Analyss, Vol. 8, 4, no. 5, 7-7 HIKARI Ltd, www.m-hkar.com http://dx.do.org/.988/jma.4.494 Emprcal Dstrbutons of Parameter Estmates n Bnary Logstc Regresson Usng Bootstrap Anwar Ftranto*

More information

Virtual Machine Migration based on Trust Measurement of Computer Node

Virtual Machine Migration based on Trust Measurement of Computer Node Appled Mechancs and Materals Onlne: 2014-04-04 ISSN: 1662-7482, Vols. 536-537, pp 678-682 do:10.4028/www.scentfc.net/amm.536-537.678 2014 Trans Tech Publcatons, Swtzerland Vrtual Machne Mgraton based on

More information

EXTENDED BIC CRITERION FOR MODEL SELECTION

EXTENDED BIC CRITERION FOR MODEL SELECTION IDIAP RESEARCH REPORT EXTEDED BIC CRITERIO FOR ODEL SELECTIO Itshak Lapdot Andrew orrs IDIAP-RR-0-4 Dalle olle Insttute for Perceptual Artfcal Intellgence P.O.Box 59 artgny Valas Swtzerland phone +4 7

More information

A high precision collaborative vision measurement of gear chamfering profile

A high precision collaborative vision measurement of gear chamfering profile Internatonal Conference on Advances n Mechancal Engneerng and Industral Informatcs (AMEII 05) A hgh precson collaboratve vson measurement of gear chamferng profle Conglng Zhou, a, Zengpu Xu, b, Chunmng

More information

Learning from Multiple Related Data Streams with Asynchronous Flowing Speeds

Learning from Multiple Related Data Streams with Asynchronous Flowing Speeds Learnng from Multple Related Data Streams wth Asynchronous Flowng Speeds Zh Qao, Peng Zhang, Jng He, Jnghua Yan, L Guo Insttute of Computng Technology, Chnese Academy of Scences, Bejng, 100190, Chna. School

More information

Corner-Based Image Alignment using Pyramid Structure with Gradient Vector Similarity

Corner-Based Image Alignment using Pyramid Structure with Gradient Vector Similarity Journal of Sgnal and Informaton Processng, 013, 4, 114-119 do:10.436/jsp.013.43b00 Publshed Onlne August 013 (http://www.scrp.org/journal/jsp) Corner-Based Image Algnment usng Pyramd Structure wth Gradent

More information

Abstract. 1. Introduction

Abstract. 1. Introduction One-Class Tranng for Masquerade Detecton Ke Wang Salvatore J. Stolfo Computer Scence Department, Columba Unversty 500 West 20 th Street, New York, NY, 0027 {kewang, sal}@cs.columba.edu Abstract We extend

More information

Face Detection with Deep Learning

Face Detection with Deep Learning Face Detecton wth Deep Learnng Yu Shen Yus122@ucsd.edu A13227146 Kuan-We Chen kuc010@ucsd.edu A99045121 Yzhou Hao y3hao@ucsd.edu A98017773 Mn Hsuan Wu mhwu@ucsd.edu A92424998 Abstract The project here

More information

UB at GeoCLEF Department of Geography Abstract

UB at GeoCLEF Department of Geography   Abstract UB at GeoCLEF 2006 Mguel E. Ruz (1), Stuart Shapro (2), June Abbas (1), Slva B. Southwck (1) and Davd Mark (3) State Unversty of New York at Buffalo (1) Department of Lbrary and Informaton Studes (2) Department

More information

Signature and Lexicon Pruning Techniques

Signature and Lexicon Pruning Techniques Sgnature and Lexcon Prunng Technques Srnvas Palla, Hansheng Le, Venu Govndaraju Centre for Unfed Bometrcs and Sensors Unversty at Buffalo {spalla2, hle, govnd}@cedar.buffalo.edu Abstract Handwrtten word

More information

Learning-Based Top-N Selection Query Evaluation over Relational Databases

Learning-Based Top-N Selection Query Evaluation over Relational Databases Learnng-Based Top-N Selecton Query Evaluaton over Relatonal Databases Lang Zhu *, Wey Meng ** * School of Mathematcs and Computer Scence, Hebe Unversty, Baodng, Hebe 071002, Chna, zhu@mal.hbu.edu.cn **

More information

A MOVING MESH APPROACH FOR SIMULATION BUDGET ALLOCATION ON CONTINUOUS DOMAINS

A MOVING MESH APPROACH FOR SIMULATION BUDGET ALLOCATION ON CONTINUOUS DOMAINS Proceedngs of the Wnter Smulaton Conference M E Kuhl, N M Steger, F B Armstrong, and J A Jones, eds A MOVING MESH APPROACH FOR SIMULATION BUDGET ALLOCATION ON CONTINUOUS DOMAINS Mark W Brantley Chun-Hung

More information

Announcements. Supervised Learning

Announcements. Supervised Learning Announcements See Chapter 5 of Duda, Hart, and Stork. Tutoral by Burge lnked to on web page. Supervsed Learnng Classfcaton wth labeled eamples. Images vectors n hgh-d space. Supervsed Learnng Labeled eamples

More information

Compiler Design. Spring Register Allocation. Sample Exercises and Solutions. Prof. Pedro C. Diniz

Compiler Design. Spring Register Allocation. Sample Exercises and Solutions. Prof. Pedro C. Diniz Compler Desgn Sprng 2014 Regster Allocaton Sample Exercses and Solutons Prof. Pedro C. Dnz USC / Informaton Scences Insttute 4676 Admralty Way, Sute 1001 Marna del Rey, Calforna 90292 pedro@s.edu Regster

More information

The Research of Support Vector Machine in Agricultural Data Classification

The Research of Support Vector Machine in Agricultural Data Classification The Research of Support Vector Machne n Agrcultural Data Classfcaton Le Sh, Qguo Duan, Xnmng Ma, Me Weng College of Informaton and Management Scence, HeNan Agrcultural Unversty, Zhengzhou 45000 Chna Zhengzhou

More information

Resolving Ambiguity in Depth Extraction for Motion Capture using Genetic Algorithm

Resolving Ambiguity in Depth Extraction for Motion Capture using Genetic Algorithm Resolvng Ambguty n Depth Extracton for Moton Capture usng Genetc Algorthm Yn Yee Wa, Ch Kn Chow, Tong Lee Computer Vson and Image Processng Laboratory Dept. of Electronc Engneerng The Chnese Unversty of

More information

Image Representation & Visualization Basic Imaging Algorithms Shape Representation and Analysis. outline

Image Representation & Visualization Basic Imaging Algorithms Shape Representation and Analysis. outline mage Vsualzaton mage Vsualzaton mage Representaton & Vsualzaton Basc magng Algorthms Shape Representaton and Analyss outlne mage Representaton & Vsualzaton Basc magng Algorthms Shape Representaton and

More information

An efficient method to build panoramic image mosaics

An efficient method to build panoramic image mosaics An effcent method to buld panoramc mage mosacs Pattern Recognton Letters vol. 4 003 Dae-Hyun Km Yong-In Yoon Jong-Soo Cho School of Electrcal Engneerng and Computer Scence Kyungpook Natonal Unv. Abstract

More information

Steps for Computing the Dissimilarity, Entropy, Herfindahl-Hirschman and. Accessibility (Gravity with Competition) Indices

Steps for Computing the Dissimilarity, Entropy, Herfindahl-Hirschman and. Accessibility (Gravity with Competition) Indices Steps for Computng the Dssmlarty, Entropy, Herfndahl-Hrschman and Accessblty (Gravty wth Competton) Indces I. Dssmlarty Index Measurement: The followng formula can be used to measure the evenness between

More information

Review of approximation techniques

Review of approximation techniques CHAPTER 2 Revew of appromaton technques 2. Introducton Optmzaton problems n engneerng desgn are characterzed by the followng assocated features: the objectve functon and constrants are mplct functons evaluated

More information

Collaboratively Regularized Nearest Points for Set Based Recognition

Collaboratively Regularized Nearest Points for Set Based Recognition Academc Center for Computng and Meda Studes, Kyoto Unversty Collaboratvely Regularzed Nearest Ponts for Set Based Recognton Yang Wu, Mchhko Mnoh, Masayuk Mukunok Kyoto Unversty 9/1/013 BMVC 013 @ Brstol,

More information

BAYESIAN MULTI-SOURCE DOMAIN ADAPTATION

BAYESIAN MULTI-SOURCE DOMAIN ADAPTATION BAYESIAN MULTI-SOURCE DOMAIN ADAPTATION SHI-LIANG SUN, HONG-LEI SHI Department of Computer Scence and Technology, East Chna Normal Unversty 500 Dongchuan Road, Shangha 200241, P. R. Chna E-MAIL: slsun@cs.ecnu.edu.cn,

More information

Parameter estimation for incomplete bivariate longitudinal data in clinical trials

Parameter estimation for incomplete bivariate longitudinal data in clinical trials Parameter estmaton for ncomplete bvarate longtudnal data n clncal trals Naum M. Khutoryansky Novo Nordsk Pharmaceutcals, Inc., Prnceton, NJ ABSTRACT Bvarate models are useful when analyzng longtudnal data

More information

USING GRAPHING SKILLS

USING GRAPHING SKILLS Name: BOLOGY: Date: _ Class: USNG GRAPHNG SKLLS NTRODUCTON: Recorded data can be plotted on a graph. A graph s a pctoral representaton of nformaton recorded n a data table. t s used to show a relatonshp

More information

High Five: Recognising human interactions in TV shows

High Five: Recognising human interactions in TV shows PATRON-PEREZ ET AL.: RECOGNISING INTERACTIONS IN TV SHOWS 1 Hgh Fve: Recognsng human nteractons n TV shows Alonso Patron-Perez alonso@robots.ox.ac.uk Marcn Marszalek marcn@robots.ox.ac.uk Andrew Zsserman

More information

Extraction of Human Activities as Action Sequences using plsa and PrefixSpan

Extraction of Human Activities as Action Sequences using plsa and PrefixSpan Extracton of Human Actvtes as Acton Sequences usng plsa and PrefxSpan Takuya TONARU Tetsuya TAKIGUCHI Yasuo ARIKI Graduate School of Engneerng, Kobe Unversty Organzaton of Advanced Scence and Technology,

More information

CMPS 10 Introduction to Computer Science Lecture Notes

CMPS 10 Introduction to Computer Science Lecture Notes CPS 0 Introducton to Computer Scence Lecture Notes Chapter : Algorthm Desgn How should we present algorthms? Natural languages lke Englsh, Spansh, or French whch are rch n nterpretaton and meanng are not

More information